UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Similar documents
Cambridge International Examinations Cambridge International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3

LEVEL 1/2 CAMBRIDGE NATIONAL AWARD/CERTIFICATE IN PRINCIPLES IN ENGINEERING AND ENGINEERING BUSINESS. Candidate Surname

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

To be taken together with Paper 1 in one session of 2 hours 45 minutes.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level BUSINESS STUDIES 9707/03

PHA3/W PHYSICS (SPECIFICATION A) Unit 3 Current Electricity and Elastic Properties of Solids

Physics12 Unit 8/9 Electromagnetism

A-level PHYSICS A PHYA5/2C. Unit 5C Applied Physics. Section B. Tuesday 28 June 2016

Unit 8 ~ Learning Guide Name:

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir

PURE PHYSICS ELECTRICITY & MAGNETISM (PART I)

1. This question is about electrical energy and associated phenomena.

Magnetism and Electricity ASSIGNMENT EDULABZ. the mere presence of magnet, is called...

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011.

1 A strong electromagnet is used to attract pins. core. current. coil. pins. What happens when the current in the coil is halved?

LIST OF PRACTICAL FOR IX-X GRADES

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction


ELECTRICITY: ELECTROMAGNETISM QUESTIONS

Electromagnetic Induction

Work done and Moment. When using the equipment, John wants to do 300J of work in each lift.

PAPER 2 THEORY QUESTIONS

Fig There is a current in each wire in a downward direction (into the page).

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5C: Approved specimen question paper. Version 1.1

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

PHYA5/2C. General Certificate of Education Advanced Level Examination June Section B. Monday 18 June am to am (JUN12PHYA52C01)

Design and Technology: Systems and Control Technology

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0.

Level 1 Physics, 2017

Level 1 Physics, 2012

vehicle 6.0 kn elephant elephant Fig. 4.1

Letter STUDENT NUMBER SYSTEMS ENGINEERING. Written examination. Monday 20 November 2017

INSTRUCTIONS TO CANDIDATES

Electromagnetic Induction, Faraday s Experiment

Friday 15 September PM 3.15 PM

Circuit Analysis Questions A level standard

Chapter 22: Electric motors and electromagnetic induction

Letter STUDENT NUMBER SYSTEMS ENGINEERING. Written examination. Monday 16 November 2015

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Motional EMF. F = qvb

PhysicsAndMathsTutor.com 1

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Faraday's Law of Induction

Academic Year

1. Which device creates a current based on the principle of electromagnetic induction?

HSC Physics. Module 9.3. Motors and. Generators

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

Hovercraft

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT.

Homework # Physics 2 for Students of Mechanical Engineering

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Mathematics 43601H. Cumulative Frequency. In the style of General Certificate of Secondary Education Higher Tier. Past Paper Questions by Topic TOTAL

GraspIT AQA GCSE Magnetism and Electromagnetism - Questions

Friday 4 March pm 3.15 pm Time Allowed: 2 hours 15 minutes

Chapter 29 Electromagnetic Induction

Ordinary Level Physics ANSWERS : ELECTROMAGNETIC INDUCTION. Solutions

EXPERIMENT 11: FARADAY S LAW OF INDUCTION

ELECTRICITY: INDUCTORS QUESTIONS

DESIGN AND TECHNOLOGY

INDIAN SCHOOL MUSCAT

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Figure 1. Figure

Q1. Figure 1 shows a straight wire passing through a piece of card.

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Unit P.2, P2.3. Currents in electric circuits E ½. F Fuel gauge indicator. Fuel tank. Ammeter. Float. Battery. Sliding contact. Pivot 12V.

Page 2. The go-kart always had the same mass and used the same motor.

Like poles repel, unlike poles attract can be made into a magnet

d / cm t 2 / s 2 Fig. 3.1

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

SOURCES OF EMF AND KIRCHHOFF S LAWS

21.2 Electromagnetism

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor.

7.9.2 Potential Difference

DESIGN AND TECHNOLOGY

Letter Figures Words SYSTEMS ENGINEERING. Written examination. Monday 19 November 2012

Name: Base your answer to the question on the information below and on your knowledge of physics.

MARCH 2018 Level 2 Technical Certificate in Automotive Level 2 Automotive Theory Exam (1)

MAGNETIC EFFECTS ON AND DUE TO CURRENT-CARRYING WIRES

Lab 1: DC Motors Tuesday, Feb 8 / Wednesday, Feb 9

Faraday's Law of Induction

To study the constructional features of ammeter, voltmeter, wattmeter and energymeter.

Energy Conversions Questions CfE

2. A student sets up the circuit shown. The switch is open (off). Which lamps are on and which lamps are off?

Section 1: Magnets and Magnetic Fields Section 2: Magnetism from Electric Currents Section 3: Electric Currents from Magnetism

Chapter 23 Magnetic Flux and Faraday s Law of Induction

SYSTEMS AND TECHNOLOGY

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

time in seconds Amy leaves diving board

Electromagnetism. Investigations

J ; N94/I/34. A same larger in X than in Y B same same in X as in Y. C same smaller in X than in Y

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in.

CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT

Transcription:

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *8019038925* PHYSICS 0625/03 Paper 3 Extended October/November 2007 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES Answer all questions. You may lose marks if you do not show your working or if you do not use appropriate units. Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall = 10 m/s 2 ). At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. 1 2 3 4 5 6 7 8 9 10 11 Total This document consists of 14 printed pages and 2 blank pages. SPA (MML 13331 4/06) T25941/7 [Turn over

1 A large plastic ball is dropped from the top of a tall building. 2 Fig. 1.1 shows the speed-time graph for the falling ball until it hits the ground. 20 speed m / s 15 10 5 0 0 1 2 3 4 5 6 time / s Fig. 1.1 (a) From the graph estimate, (i) the time during which the ball is travelling with terminal velocity, time =... [1] the time during which the ball is accelerating, time =... [1] (iii) the distance fallen while the ball is travelling with terminal velocity, distance =... [2] (iv) the height of the building. height =... [2]

(b) Explain, in terms of the forces acting on the ball, why 3 (i) the acceleration of the ball decreases,... [3] the ball reaches terminal velocity.... [2] [Total: 11] [Turn over

2 Fig. 2.1 shows a track for a model car. 4 S Q P 0.4 m 0.4 m 0.5 m T R Fig. 2.1 The car has no power supply, but can run down a sloping track due to its weight. (a) The car is released at Q. It comes to rest just before it reaches S and rolls back. (i) Describe the motion of the car after it starts rolling back and until it eventually comes to rest.... [2] Explain in terms of energy transformations why the car, starting at Q, cannot pass S. (b) A second car, of mass 0.12 kg, is released from P. It continues until it runs off the track at T. Calculate the maximum speed that the car could have at T assuming friction in the car is negligible. speed =... [3] [Total: 6]

3 (a) A spring of original length 3.0 cm is extended to a total length of 5.0 cm by a force of 8.0 N. 5 Assuming the limit of proportionality of the spring has not been reached, calculate the force needed to extend it to a total length of 6.0 cm. (b) Fig. 3.1 shows the arrangement for an experiment on moments. force =... [3] pivot metre rule F spring Fig. 3.1 The spring exerts a force F on the metre rule. (i) On Fig. 3.1, mark another quantity which must be measured to find the moment of the force F. [1] State how the moment of the force F is calculated. [Total: 5] [Turn over

4 Fig. 4.1 shows a sealed steel cylinder filled with high pressure steam. 6 steam Fig. 4.1 Fig. 4.2 shows the same cylinder much later when all the steam has condensed. water Fig. 4.2 (a) (i) Describe the movement of the molecules in the high pressure steam.... [2] Explain how the molecules in the steam exert a high pressure on the inside walls of the cylinder.... [2] (b) Describe, in terms of particles, the process by which heat is transferred through the cylinder wall......... [2] (c) When all the steam has condensed, 75 g of water is in the cylinder. Under these high pressure conditions, the specific latent heat of vaporisation of steam is 3200 J / g. Calculate the heat lost by the steam as it condenses. heat =... [2] [Total: 8]

5 Fig. 5.1 shows some apparatus which is to be used to compare the emission of infra-red radiation from four differently painted surfaces. 7 metal box this side painted shiny white water inlet this side painted dull white this side painted dull black this side painted shiny black Fig. 5.1 Near the centre of each side is an infra-red detector. The four detectors are identical. A supply of very hot water is available. (a) Describe how you would use this apparatus to compare the infra-red radiation from the four surfaces......... [3] (b) Suggest which surface will be the best emitter and which will be the worst emitter. best emitter... worst emitter... [1] (c) The infra-red detectors are made from thermocouples soldered to blackened metal plates. These are connected to galvanometers. In the space below, draw a labelled diagram of a thermocouple. [2] [Total: 6] [Turn over

6 Virtual images may be formed by both plane mirrors and by convex lenses. 8 Fig. 6.1 shows a plane mirror and a convex lens. O P F F Fig. 6.1 (a) On Fig. 6.1, draw rays to locate the approximate positions of the images of the tops of the two arrow objects O and P. Label the images. [5] (b) Both images are virtual. (i) What is meant by a virtual image? State one other similarity between the two images. (iii) State one difference between the two images. [Total: 8]

7 (a) In the space below, draw a diagram to represent a sound wave. 9 On your diagram, mark and label (i) two consecutive compressions and two consecutive rarefactions, the wavelength of the wave. [3] (b) Fig. 7.1 shows part of the electromagnetic spectrum. X-RAYS INFRA RED Fig. 7.1 (i) On Fig. 7.1, label the positions of γ-rays, visible light waves and radio waves. [1] State which of the three types of wave in (i) has the lowest frequency. (iii) State the approximate value of the speed in air of radio waves. [Total: 6] [Turn over

8 Fig. 8.1 shows two electrical circuits. 10 V 4.0 Ω A ammeter 1 4.0 Ω P ammeter P 6.0 Ω A A 2 6.0 Ω Q Q circuit 1 circuit 2 The batteries in circuit 1 and circuit 2 are identical. Fig. 8.1 (a) Put ticks in the table below to describe the connections of the two resistors P and Q. series parallel circuit 1 circuit 2 (b) The resistors P and Q are used as small electrical heaters. [1] State two advantages of connecting them as shown in circuit 2. advantage 1... advantage 2... [2] (c) In circuit 1, the ammeter reads 1.2 A when the switch is closed. Calculate the reading of the voltmeter in this circuit. voltmeter reading =... [2] (d) The two switches in circuit 2 are closed. Calculate the combined resistance of the two resistors in this circuit. combined resistance =... [2]

11 (e) When the switches are closed in circuit 2, ammeter 1 reads 5 A and ammeter 2 reads 2 A. Calculate (i) the current in resistor P, current =... [1] the power supplied to resistor Q, power =... [1] (iii) the energy transformed in resistor Q in 300 s. energy =... [1] [Total: 10] [Turn over

9 Electromagnetic induction may be demonstrated using a magnet, a solenoid and other necessary apparatus. 12 (a) Explain what is meant by electromagnetic induction............ [2] (b) In the space below, draw a labelled diagram of the apparatus set up so that electromagnetic induction may be demonstrated. [2] (c) Describe how you would use the apparatus to demonstrate electromagnetic induction............ [2] (d) State two ways of increasing the magnitude of the induced e.m.f. in this experiment. 1....... 2...... [2] [Total: 8]

10 (a) Fig. 10.1 shows an AND gate with two inputs A and B and one output. 13 A output B Fig. 10.1 State the output when (i) A is high and B is low, both A and B are low. (b) An electrical thermometer in a greenhouse gives a low output if the temperature is too low. A humidity sensor in the same greenhouse gives a high output if the humidity in the greenhouse is too high. An alarm sounds when both the temperature is too low and the humidity is too high. (i) Complete the diagram below to show how a NOT gate and an AND gate may be used to provide the required output to the alarm. [2] electrical thermometer alarm humidity sensor On your diagram, use either high or low to indicate the level of the inputs and outputs of both gates when the alarm sounds. [2] [Total: 6] [Turn over

11 Fig. 11.1 shows an experiment to test the absorption of β-particles by thin sheets of aluminium. Ten sheets are available, each 0.5 mm thick. 14 β-particle source sheets of aluminium detector counter Fig. 11.1 (a) Describe how the experiment is carried out, stating the readings that should be taken............... [4] (b) State the results that you would expect to obtain............ [2] [Total: 6]

15 BLANK PAGE

16 BLANK PAGE Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.