INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING

Similar documents
Available online at ScienceDirect. Procedia Engineering 134 (2016 )

Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway

RESEARCH OF A COMBUSTION PROCESS IN A SPARK IGNITION ENGINE, FUELLED WITH GASEOUS FUEL MIXTURES

THE IMPACT OF MOTOR VEHICLE DRIVER BEHAVIOUR FACTORS ON TRAFFIC SAFETY

Available online at ScienceDirect. Procedia Engineering 134 (2016 )

Research RES LEGAL Grid issues Country: Lithuania

VILNIAUS UNIVERSITETAS TEISĖS FAKULTETAS. Elzė Matulionytė

IMPROVEMENT OF EFFICIENCY OF OPERATION OF AN INTERNAL COMBUSTION ENGINE BY USING BROWN S GAS

A Study on Energy Usage Efficiency Improvement Scheme in 48V Multi-axis Robot System

EURO FuelSaver S.r.l. SUPER TECH. + energy + economy + ecology. REFER BOOK University of Vilnius Reference.

Analysis of Emergency Braking System

MIKLOS Cristina Carmen, MIKLOS Imre Zsolt UNIVERSITY POLITEHNICA TIMISOARA FACULTY OF ENGINEERING HUNEDOARA ABSTRACT:

Tractor fuel consumption, exhaust emissions and their normative assessment during field application

Theoretical and Experimental Investigation of Compression Loads in Twin Screw Compressor

Research RES LEGAL Access to the grid Country: Lithuania

TRACTOR MFWD BRAKING DECELERATION RESEARCH BETWEEN DIFFERENT WHEEL DRIVE

The Modeling and Simulation of DC Traction Power Supply Network for Urban Rail Transit Based on Simulink

PASSENGER TRANSPORTATION STRATEGY OF SC LITHUANIAN RAILWAYS

Performance study of combined test rig for metro train traction

CALL FOR APPLICATIONS FOR THE SELECTION OF MEMBERS OF THE TACHOGRAPH FORUM

RESEARCH OF THE DYNAMIC PRESSURE VARIATION IN HYDRAULIC SYSTEM WITH TWO PARALLEL CONNECTED DIGITAL CONTROL VALVES

STUDY OF ENERGETIC BALANCE OF REGENERATIVE ELECTRIC VEHICLE IN A CITY DRIVING CYCLE

Electromagnetic Field Analysis for Permanent Magnet Retarder by Finite Element Method

Test Based Optimization and Evaluation of Energy Efficient Driving Behavior for Electric Vehicles

Energy balance in motor vehicles

Optimization of Seat Displacement and Settling Time of Quarter Car Model Vehicle Dynamic System Subjected to Speed Bump

Charging Electric Vehicles in the Hanover Region: Toolbased Scenario Analyses. Bachelorarbeit

Flywheel energy storage retrofit system

Pre-normative research on resistance to mechanical impact of composite overwrapped pressure vessels. Dr. Fabien Nony CEA

SIMULATING A CAR CRASH WITH A CAR SIMULATOR FOR THE PEOPLE WITH MOBILITY IMPAIRMENTS

Hybrid Power System Power Flow Analysis

INVESTIGATION OF VEHICLE STABILITY ON ROAD CURVES IN WINTER CONDITIONS

An overview of Directive (EU) 2015/2193 from the Power Generation business perspective

Laboratory Tests, Modeling and the Study of a Small Doubly-Fed Induction Generator (DFIG) in Autonomous and Grid-Connected Scenarios

VERIFICATION OF LiFePO4 BATTERY MATHEMATIC MODEL

ROAD VEHICLE SIMULATION USING AVL CRUISE

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

Improvements to the Hybrid2 Battery Model

Numerical Investigation of Diesel Engine Characteristics During Control System Development

MEASUREMENT SYSTEM FOR INVESTIGATION OF TYRE-ROAD FRICTION

LOSSES COMPARISON FOR INVERTERS WITH Si AND SiC DEVICES FROM PUMPED STORAGE SYSTEMS

TRANSMISSION GRID - TO EMPOWER BUSINESS GROWTH AND WELFARE OF THE SOCIETY

Impact of Plug-in Electric Vehicles on the Supply Grid

The influence of aerodynamic forces on the vehicle bodywork of railway traction

Curbing emissions and energy consumption in the transport sector how can we deal with it in Warsaw 2012 Annual POLIS Conference

Optimization Design of the Structure of the Manual Swing-out Luggage Compartment Door of Passenger Cars

Remarkable CO 2 Reduction of the Fixed Point Fishing Plug-in Hybrid Boat

Asynchronous slip-ring motor synchronized with permanent magnets

MARINE FOUR-STROKE DIESEL ENGINE CRANKSHAFT MAIN BEARING OIL FILM LUBRICATION CHARACTERISTIC ANALYSIS

Improvements of Existing Overhead Lines for 180km/h operation of the Tilting Train

USING OF BRAKING IN REAL DRIVING URBAN CYCLE

IMECE DESIGN OF A VARIABLE RADIUS PISTON PROFILE GENERATING ALGORITHM

Design & Development of Regenerative Braking System at Rear Axle

Application of PLC in automatic control system in the production of steel. FAN Zhechao, FENG Hongwei

Lead Acid Batteries Modeling and Performance Analysis of BESS in Distributed Generation

Development of Dynamic Calibration Machine for Pressure Transducers

Nacionaliniai mobilumo konsorciumai Greta Nutautait

Laboratory Experiments for Enhanced Learning of Electromechanical Devices

Improvement the Possibilities of Capacitive Energy Storage in Metro Railcar by Simulation

Pantograph and catenary system with double pantographs for high-speed trains at 350 km/h or higher

Electric Vehicles Coordinated vs Uncoordinated Charging Impacts on Distribution Systems Performance

Racing Tires in Formula SAE Suspension Development

719. Diagnostic research of rotor systems with variable inertia moment

AS AS Australian Standard. Starter batteries Lead acid. This is a free 6 page sample. Access the full version online.

Featured Articles Utilization of AI in the Railway Sector Case Study of Energy Efficiency in Railway Operations

Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World Driving Data

Master Thesis Electric Vehicle Integration

World Electric Vehicle Journal Vol. 6 - ISSN WEVA Page Page EVS27 Barcelona, Spain, November 17 20, 2013

Available online at ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering

PASSENGER TRANSPORTATION PROBLEMS OF THE PUBLIC LIMITED LIABILITY COMPANY LIETUVOS GELEŽINKELIAI

Ministry of Energy. of the Republic of Lithuania. Report on investments. in modernising electricity generation

Comparison of Standard and Fast Charging Methods for Electric Vehicles

THE APPLICATION OF SUPERCAPACITOR ENERGY STORAGE DEVICES IN DC DRIVES

Design of closing electromagnet of high power spring operating mechanism

Master Thesis Proposal: Real-time and off-line simulation of DC Grids

NORDAC 2014 Topic and no NORDAC

INVESTIGATION OF FRICTION COEFFICIENTS OF ADDITIVATED ENGINE LUBRICANTS IN FALEX TESTER

Energy Management and Control System for Smart Renewable Energy Remote Power Generation

Power Quality Analysis in Electric Traction System with Three-phase Induction Motors

A DIAGNOSTIC MAINTENANCE SYSTEM FOR COMMERICIAL AND NAVAL VESSELS JANE CULLUM

Lithuanian wind energy development trends

The test bench for testing torsional stiffness of active anti-roll bar made of extended profiles with rectangular cross-section

Research on Electric Vehicle Regenerative Braking System and Energy Recovery

The Latest Status of EV Standardization

ANALYSIS ON MECHANICAL PARAMETERS OF LUNAR ROVER WHEEL

An approach for estimation of optimal energy flows in battery storage devices for electric vehicles in the smart grid

The Institute of Mechanical and Electrical Engineer, xi'an Technological University, Xi'an

Tests of the acoustic emission of the power steering column equipped with a modified composite worm gear housing

THE THREE VOLTAGE LEVEL DISTRIBUTION USING THE 1000 V LOW VOLTAGE SYSTEM

ECONOMICS-ECON (ECON)

1) The locomotives are distributed, but the power is not distributed independently.

Research on DC Charger Control Based on Expert Fuzzy PID

RESEARCH OF AIR FLOW DEBIT WITH NEW CONSTRUCTION INNER LINER

A Method for Determining the Generators Share in a Consumer Load

Driver roll speed influence in Ring Rolling process

Computer Aided Transient Stability Analysis

COMMISSION REGULATION (EC)

Dynamic Modeling and Simulation of a Series Motor Driven Battery Electric Vehicle Integrated With an Ultra Capacitor

Transport systems integration into urban development planning processes

SUBSIDIARY BODY FOR SCIENTIFIC AND TECHNOLOGICAL ADVICE Fourteenth session Bonn, July 2001 Item 3 (b) of the provisional agenda

Transcription:

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Lionginas LIUDVINAVIČIUS INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING SUMMARY OF DOCTORAL DISSERTATION TECHNOLOGICAL SCIENCES, TRANSPORT ENGINEERING (03T) Vilnius 2012

Doctoral dissertation was prepared at Vilnius Gediminas Technical University in 2008 2012. Scientific Supervisor Prof Dr Habil Leonas Povilas LINGAITIS (Vilnius Gediminas Technical University, Technological Sciences, Transport Engineering 03T). The dissertation is being defended at the Council of Scientific Field of Transport Engineering at Vilnius Gediminas Technical University: Chairman Prof Dr Habil Marijonas BOGDEVIČIUS (Vilnius Gediminas Technical University, Technological Sciences, Transport Engineering 03T). Members: Prof Dr Žilvinas BAZARAS (Kaunas University of Technology, Technological Sciences, Transport Engineering 03T), Prof Dr Habil Roma RINKEVIČIENĖ (Vilnius Gediminas Technical University, Technological Sciences, Electrical and Electronic Engineering 01T), Assoc Prof Dr Stasys SLAVINSKAS (Aleksandras Stulginskis University, Technological Sciences, Transport Engineering 03T), Prof Dr Habil Bronislovas SPRUOGIS (Vilnius Gediminas Technical University, Technological Sciences, Transport Engineering 03T). Opponents: Assoc Prof Dr Algirdas JANULEVIČIUS (Aleksandras Stulginskis University, Technological Sciences, Transport Engineering 03T), Prof Dr Habil Algimantas Juozas POŠKA (Vilnius Gediminas Technical University, Technological Sciences, Electrical and Electronic Engineering 01T). The dissertation will be defended at the public meeting of the Council of Scientific Field of Transport Engineering in the Senate Hall of Vilnius Gediminas Technical University at 9 a.m. on 11 January 2013. Address: Saulėtekio al. 11, LT-10223 Vilnius, Lithuania. Tel.: +370 5 274 4952, +370 5 274 4956; fax +370 5 270 0112; e-mail: doktor@vgtu.lt The summary of the doctoral dissertation was distributed on 10 December 2012. A copy of the doctoral dissertation is available for review at the Library of Vilnius Gediminas Technical University (Saulėtekio al. 14, LT-10223 Vilnius, Lithuania). Lionginas Liudvinavičius, 2012

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Lionginas LIUDVINAVIČIUS LOKOMOTYVŲ ELEKTRODINAMINIO STABDYMO EFEKTYVUMO TYRIMAS DAKTARO DISERTACIJOS SANTRAUKA TECHNOLOGIJOS MOKSLAI, TRANSPORTO INŽINERIJA (03T) Vilnius 2012

Disertacija rengta 2008 2012 metais Vilniaus Gedimino technikos universitete. Mokslinis vadovas prof. habil. dr. Leonas Povilas LINGAITIS (Vilniaus Gedimino technikos universitetas, technologijos mokslai, transporto inžinerija 03T). Disertacija ginama Vilniaus Gedimino technikos universiteto Transporto inžinerijos mokslo krypties taryboje: Pirmininkas prof. habil. dr. Marijonas BOGDEVIČIUS (Vilniaus Gedimino technikos universitetas, technologijos mokslai, transporto inžinerija 03T). Nariai: prof. dr. Žilvinas BAZARAS (Kauno technologijos universitetas, technologijos mokslai, transporto inžinerija 03T), prof. habil. dr. Roma RINKEVIČIENĖ (Vilniaus Gedimino technikos universitetas, technologijos mokslai, elektros ir elektronikos inžinerija 01T), doc. dr. Stasys SLAVINSKAS (Aleksandro Stulginskio universitetas, technologijos mokslai, transporto inžinerija 03T), prof. habil. dr. Bronislovas SPRUOGIS (Vilniaus Gedimino technikos universitetas, technologijos mokslai, transporto inžinerija 03T). Oponentai: doc. dr. Algirdas JANULEVIČIUS (Aleksandro Stulginskio universitetas, technologijos mokslai, transporto inžinerija 03T), prof. habil. dr. Algimantas Juozas POŠKA (Vilniaus Gedimino technikos universitetas, technologijos mokslai, elektros ir elektronikos inžinerija 01T). Disertacija bus ginama viešame Transporto inžinerijos mokslo krypties tarybos posėdyje 2013 m. sausio 11 d. 9 val. Vilniaus Gedimino technikos universiteto senato posėdžių salėje. Adresas: Saulėtekio al. 11, LT-10223 Vilnius, Lietuva. Tel.: (8 5) 274 4952, (8 5) 274 4956; faksas (8 5) 270 0112; el. paštas doktor@vgtu.lt Disertacijos santrauka išsiuntinėta 2012 m. gruodžio 10 d. Disertaciją galima peržiūrėti Vilniaus Gedimino technikos universiteto bibliotekoje (Saulėtekio al. 14, LT-10223 Vilnius, Lietuva). VGTU leidyklos Technika 2051-M mokslo literatūros knyga. Lionginas Liudvinavičius, 2012

Introduction Topicality of the problem. A rapid social and economic development of the European Union countries, their technical progress, world trade globalisation tendencies of the world trade, generate a huge demand for high-quality transportation services. The countries of the Western Europe, being concerned about safety, environment, sustainable use of the electrical energy and other resources, use economic and legal measures to encourage and further develop transportation of passengers and loads by railways. The main instrument for the solution of electrical energy and other resources saving is the locomotives electrodynamic braiking system railway transport perfection. This doctoral thesis is devoted for the solution of the above-mentioned situations. The research subject. The principles of control of electrodynamic braking energy flows for the locomotives with DC/DC, AC/DC, DC/AC, AC/AC systems. The main goal and objectives of the work. The main goal of the paper is to conduct theoretical and experimental investigation of energy control systems in DC/DC, AC/DC, DC/AC, AC/AC locomotives and catenary system and evaluate the level of effectiveness of their energy use, to substantiate expansion of the energy control range for regenerative braking of the electric powered locomotives, electric trains, metro, tramways and a possibility of regenerative braking in diesel-electric locomotives. In order to achieve the purpose of the research the following objectives need to be accomplished: 1. To analyze world s scientific publications investigating effectiveness of electrodynamic braking systems in locomotives. To analyze the problems of theoretical and practical application and methods of their solution. 2. To investigate new energy control systems in DC/DC, AC/DC, DC/AC, AC/AC locomotives and catenary systems. 3. To investigate theoretical presumption and submit practical solutions for realization of regenerative braking in diesel-electric locomotives. 4. To create the new model of energy control in electrodynamic braking systems of non-traditional electric powered train. 5. To design non-traditional energy control systems in DC/DC, AC/DC, DC/AC, AC/AC locomotives and catenary system and mathematical model of effectiveness of their energy. Research methods regressive analysis, mathematical modeling and global optimization methods are used in this thesis. 5

Novelty of the work The following results new to the sciences of transport and electrical engineering were obtained while preparing the doctoral thesis: 1. Theoretical presumptions for realization of practical solutions for the use of the entire kinetic energy of locomotives during electrodynamic braking were submitted. 2. Mathematical relation and graphic curves of the use of regenerative braking energy were developed. 3. Theoretical presumptions for realization of practical solutions for regenerative braking in diesel-electric locomotives were submitted. 4. The non-traditional energy control systems in DC/DC, AC/DC, DC/AC, AC/AC locomotives and catenary systems will minimize consumption of electricity and fuel in locomotives by 25 30%. 5. The application of mathematical model enables the calculation nontraditional electric powered train electrodynamic braking system control parameters of deviation distribution. Practical value of the work results. The results of this thesis provide an opportunity to realize the practical solutions of regenerative braking in dieselelectric locomotives. The obtained results can enable the design of new generation locomotives with DC/DC, AC/DC, DC/AC, AC/AC systems or performing modernization of the existing ones by introducing energy saving systems in them. To design non-traditional energy saving system in the catenary system. To minimize consumption of electricity and fuel in locomotives by 25 30%. Defended propositions 1. Design of energy saving systems in non-traditional locomotives consumption of electricity and fuel in locomotives would reduce by 25 30%. 2. New regenerative braking energy control systems in the traction rollingstock can be applied in locomotives with DC/DC, AC/DC, DC/AC, AC/AC systems. 3. A possibility of regenerative braking will be created in diesel-electric locomotives and diesel electric powered trains. 4. Application of mathematical model of the parameters of electrodynamic braking energy control system in non-traditional electric powered train. Approval of the results of the work. 13 scientific articles have been published on the topic of this Doctoral Thesis: five articles in scientific magazines, included into the list of Science Citation Index Expanded (Web of Science), one article in other magazines referred to in international data bases, 6

four articles in reviewed scientific magazines in English, German or French, 3 articles in reviewed materials of an international conference held in Lithuania. The results of the research conducted in the doctoral thesis were presented at 4 international research conferences: the international conference held in 2008 in Katowice (Poland); the international conference TRANSBALTICA 2009, held in 2009 in Vilnius (Lithuania); the international conference TRANSBALTICA 2011 held in 2011 in Vilnius; the international conference held in 2011 in Katowice. The scope of the research work. The doctoral thesis consist from: the introduction, five major chapters and general conclusions, the list of literature and reference sources, list of publications of the author relevant to the topic of this thesis, and an addendum. The total volume of this thesis is 154 pages without addendum; there are 75 numbered formulas, 79 figures, and 21 tables used. 100 literature sources have been used for the doctoral thesis. Addendum is shows in the CD. 1. Locomotives electrodynamic braking systems analysis In the analysis is proposed and the results of research works, performed both nationally, and on the international level, conducted on the topic of effectiveness of electrodynamic braking of locomotives and hybrid cars. The review of scientific literature includes the theoretical and practical aspects of locomotive electrodynamic braking. The investigated scientific papers were devoted to examination of possibilities of use of the new energy control elements supercapacitors. 2. Research of the existing situation of locomotives electrodynamic braking systems and related perspectives Traction rolling stock of public limited company Lietuvos geležinkeliai is given in Fig. 1. The thesis analysis only such traction rolling stock, where electrical power is used. The Fig. 1 shows a number of locomotives, drive type and analysis of electrodynamic braking systems. The performed analysis showed that traction rolling stock fleet of public limited company consists of: 314 sections without electrodynamic braking systems 84% and 59 sections with rheostat braking systems 16%. The fleet of traction rolling stock consists of the locomotives given in the table, where electrical gears are used. In total LG has 373 locomotives, where the electrical power are used. Only 16% of the rheostat systems have been mounted in locomotives, where the train kinetic power becomes heat in braking resistors. Though LG operates 18 electrical locomotives ER-9M and 4 AC/AC current 7

system electrical trains EJ-575, no one uses recuperation braking system. Structural scheme of the traditional structure AC/AC current system electrical traction locomotive recuperation braking and mechanical characteristics of asynchronous traction engine are given in Fig. 2. Fig. 1. LG characteristics of traction rolling-stock fleet Fig. 2. Structural diagram for regenerative braking of AC/AC system electric traction locomotive and speed torque characteristics of asynchronous traction motor The mechanical characteristics set in quadrant II shows that: A recuperation is absent in the range of speeds, because the voltage of the asynchronous traction engine operating on generator mode is lower than the catenary voltage; B recuperation is present in the range of speeds, because the voltage of the asynchronous traction engine operating on generator mode is larger than the catenary voltage. 8

Structural diagram for regenerative braking of AC/AC system electric traction locomotive and speed torque characteristics of asynchronous traction motor shows regenerative braking diapason only B. 3. Locomotives electrodynamic braking experimental research Main goals of experimental researches is to perform practical experiments of the latest traction rolling stock EJ-575 and ER-20 CF electrodynamic braking systems, owned by public limited company Lietuvos Geležinkeliai, and electrodynamic braking systems and define the kinetic energy management efficiency, economic and other indicators. In order to achieve the major goal, an algorithm for the research of traction rolling stock EJ-575 and ER-20 CF electrical parameters have been developed, individual measurement diagrams have been developed to select analogous-discreet signal converters. Experimental researches have been carried out under actual conditions, i. e. all electric train EJ-575 dynamic parameters have been measured by personal computer using locomotive control programs of the companies Škoda Vagonka, Škoda Transportation and Siemens AG on the railway section N. Vilnia Vilnius Kaunas and Kaunas Vilnius N. Vilnia, locomotive ER-20 CF on the section Vaidotai Radviliškis and Radviliškis Vaidotai Vaidotai. During the research experimental of locomotive ER-20 CF kinetic energy in the electrodynamic braking mode is transformed to heat in braking resistors. Experimental researches have been carried out under actual conditions, i. e. all electric train EJ-575 dynamic parameters have been measured by personal computer using locomotive control programs of the companies Škoda Vagonka, Škoda Transportation and Siemens AG on the railway section N. Vilnia Vilnius Kaunas and Kaunas Vilnius N. Vilnia, locomotive ER-20 CF on the section Vaidotai Radviliškis and Radviliškis Vaidotai Vaidotai. The values of double-deck electric train EJ-575 energy management parameters for traction-electrodynamic braking mode have been measured by a personal computer Fig. 4. The electrodynamic braking energy management efficiency of electric train EJ-575 is shown Fig. 5 by braking capacity P B (t) variation diagrams. These diagrams show that in braking cycles: The appropriate areas defined by curves with the axis of abscissas describe the value of t 1 t 2, t 3 t 4 electrodynamic braking power P B (t) converting to heat in braking resistors. During the experimental researches it was identified that kinetic energy electrical trains EJ-575 during electrodynamic braking transformed to heat in braking resistors. 9

Fig. 3. Diagram of research for EJ-575 electric train electrodynamic braking experimental parameters when PC is used Fig. 4. Values of parameters of power control for EJ-575 two-stored electric train in traction and electrodynamic braking modes 10

The parameters of double-deck electric train EJ-575 have been calculated in the electrodynamic braking cycles 1S and 2S and presented in Fig. 5. Fig. 5. Curves for omhic power used by EJ-575 two-stored electric train from the catenary system in traction and electrodynamic braking cycles: P T (t) omhic power, kw; P B (t) electrodynamic braking power, kw; t time (s) During the experimental researches it was identified that kinetic energy during electrodynamic braking transformed to heat in braking resistors related to train No. EJ 818 (22, 4%), train No. EJ 821 (36, 1%). 4. Non-traditional structure locomotive kinetic energy control systems Non-traditional structure AC/AC current system locomotive kinetic energy control scheme (on the left electric traction locomotives, on the right locomotives with electric power) is presented in Fig. 6. Fig. 6 presents universal AC/AC current system locomotive kinetic energy management system suitable to both electric traction locomotives and diesel locomotives. In order to expand the recuperation braking range in an electric traction locomotive, to implement recuperation braking system in a diesel locomotive, it is necessary to connect energy storage batteries to intermediate DC circuit through to directions energy control keys. AC/AC current system locomotive non-traditional kinetic energy management structure provides theoretical and practical conditions to expand the recuperation braking range in electric powered locomotives until the full stopping, when the range of speeds B energy is returned to catenary, A (Fig. 7) accumulated in energy storage batteries. AC/AC current system diesel-electric powered locomotive nontraditional kinetic energy management structure provides theoretical and practical conditions to implement the recuperation braking system, because 11

energy return circuit is formed. Such a circuit does not exist in traditional structure diesel locomotives. Fig. 6. Structural diagram of kinetic energy control for non-traditional structure AC/AC system locomotives: on the left electric traction locomotives, on the right diesel-electric locomotive: Y1, Y2 control signals The author in the article (L. Liudvinavičius et al. 2010) offers to make a management system for non-traditional AC/AC current system diesel electric powered locomotive electrodynamic braking energy flows as circuit diagram and asynchronous traction motor speed-torque characteristics presented in Fig. 7. Fig. 7. Non-traditional of AC/AC current system diesel-electric powered locomotive electrodynamic braking energy flow management circuit diagram and asynchronous traction motor speed-torque characteristics 12

Non-traditional structure diesel-electric powered locomotive, recuperation braking energy will be used in B and A speed range. In a range of speeds B during recuperation braking energy will be returned to energy storage battery. 5. Electric train kinetic energy control systems formation and use of mathematical model AC/AC current system non-traditional structure electric train energy control parameters. Economical usage, consumption from grid and accumulated in power energy storage batteries, stability of energy system-traction transformer parameters, locomotive operation life and other parameters depend upon the automatic management system (AMS). Instability of characteristics and their possible deviations from nominal values may be fully characterized by parameter reliability. Calculated AC/AC current system non-traditional structure electric traction energy management traction, electrodynamic braking (largest) parameter reliability P 0. The most important parameters of empirical distributions are regarded the average (average feature value in a sample) and dispersion (or average square deviation). Non-traditional structure electric train energy management electrodynamic braking system presented in graphs is given in Fig. 8. It is possible to describe electromechanical systems in a mathematic model by using a theory of graphs, whose basis is objective measurement of physical parameters. By analyzing the results of the measured and calculated nontraditional electric train energy and its computer management system it is possible to assess their value of parametric reliability P 0 in potential (maximum). A theory of graphs is used to assess the value of parametric reliability P 0. A rule of three sigma: if an accidental value X has been distributed as per normal law, then it is possible value form the average digresses no further than within 3 standard deviations (through 3 sigmas). Three sigma methods is used for the determination of the maximum AC/AC non-traditional current system locomotive (electrical train) measured value ( I Tr, U Tr, U d, P B, I b, P Σ ) deviations from the arithmetical average with the essence is that the maximum deviations of accidental values do not exceed 3σ. Based on the theory of graphs, in a common case it is possible to write an equation, if one graph peak consists of a few links, then a peak signal is expressed in an amount: xi= kx 1 1+ k2x2+... + kjxj+ kx 1 ' 1= kx i i+ kijx ' i. (1) i= 1 13

14 Fig. 8. Diagram for electrodynamic braking system of power control in non-traditional structure electric train provided in charts

A graph consists of the peaks coupled from arcs (edges). The arches diverted from the peak does not impact upon the signal x i value. A member k ij x i, on the right side of the equation shows that an arch is associated with a peak, which shows an internal system element relation, when a transfer ration equals to k ij.. The equations are made as per theory of graphs: x 2 = x 1 + x 3 + x ' 2 ; x 7 = x 1 + x 4 + x ' 7 ; x 3 = x 1 + x 4 + x 11 + x' 3 ; x 8 = x 12 + x ' 8 ; x11 = x3 + x12 + x10 + x ' 11; x 9 = x 2 + x 12 + x' 9 ; x 5 = x 1 + x 4 + x' 5 ; x 6 = x 1 + x 7 + x ' 6 ; x12= x7+ x' 12 ; x2= x6+ x' 3+ x' 11 ; x10= x8+ x9+ x12+ x' 10. (2) here: x i comparative deviation of all the system output parameter; x i comparative deviation of a separate element output parameter; U d 4Q output voltage deviation of four quadrant converter from the given value in the equations defined as x 2. Four quadrant converter 4Q output parameter deviation x 2 may be expressed through the deviations of other system elements. In this case, a polar equation: 1 x2= (7 x1+ 6 x4+ x ' 2+ x ' 3+ x ' 5+ x ' 8+ x ' 9+ x ' 10+ x ' 11+ 4 x ' 12+ 4 x ' 2 ). (3) 2 Similarly, an equation is formed for the analogous electrodynamical braking power regulator: x = 2 x+ x+ x' + x' + x' + x'. (4) 2 1 4 6 7 9 11 Maximum probability density σ value is described by this functional subordination: σ probability density. 1 f ( x ) max =. (5) σ 2 π Intermediate probability density values maybe expressed in: f ( x ) = ϕ( σ ). (6) The parameters have been calculated for the non-traditional structure electrical train energy control traction and electrodynamical braking system. Curves of distribution of non-traditional structure electrical train energy control traction and electrodynamical braking system parameters have been presented in Fig. 9. 15

Fig. 9. Distribution curves of parameters of power control in non-traditional structure electric train for traction and electrodynamic braking system Here: σ s average quadratic energy control system deviation; σ r electrodynamical braking power regulator VS average quadrant deviation; f s (x) automatic control system (AVS) deviation distribution functional curve; f r (x) electrodynamic braking power regulator VS deviation distribution functional curve; f Σ (x) total energy control system deviation distribution functional curve. Using author propose electric train kinetic energy control systems mathematical model is possible to calculate deviation distribution function f Σ (x) General conclusions 1. Railway energy system catenary DC: 750 V, 1500 V, 3000 V, AC: 15 kv, 16 2/3 Hz, 25 kv, 50 Hz are very different. In most cases, they are not applied to energy return to power systems. 2. Recuperation braking range in traditional electrical traction locomotives is low possible only in large speed-zones, i. e. when the voltage is larger than the catenary voltage under the traction motors operating in generator mode. 3. Recuperation braking in traditional structure locomotives with electrical gear is not possible, because there is no energy return circuit. 4. As per performed theoretical and experimental researches in electrical trains ER-9M, EJ-575, locomotives ER-20 CF, it has been defined that kinetic energy is not used in ER-9M, and kinetic energy is used to brake a train in 16

electrical trains EJ-575, locomotives ER-20 CF. However, during electrodynamic braking process it is reduced in braking resistors. 5. During the experimental researches with electric train EJ-575 it was identified that 22,4% 36, 1% of kinetic energy during electrodynamic braking mode transformed to heat in braking resistors. 6. Traditional structure DC/DC, AC/DC, AC/AC current system diesel-electric powered locomotives direct and alternating current traction motors may only be realized during the dynamic braking mode. 7. The performed experimental researches and calculations show that applying non-traditional locomotive kinetic energy management systems it is possible to reduce about 30 35% of fuel or electrical energy consumption. 8. The author's proposed non-traditional locomotives kinetic energy management systems expand the options for recuperation braking energy control, provides theoretical and practical conditions to use the recuperation braking in locomotives with electrical power. 9. All non-traditional locomotives kinetic energy management systems intended to train kinetic energy use, which do not contradict to theoretical restrictions of traction motor operating in a generator mode and recuperation braking to be used in traction rolling stock with electric power large B and small A speed ranges. 10. Management system of four quadrants applied in electrical traction locomotives shows theoretical options of electric machines operating in motor or generator mode. 11. Using 4Q converters of four quadrants in non-traditional structure AC/DC, AC/DC current system electrical traction locomotives, recuperation braking may be used in large B and small A speed range. In a range of speeds B during recuperation braking energy will be returned to catenary, in range A to energy accumulation batteries. 12. The following must be used to manage non-traditional structure of AC/AC current system locomotive kinetic energy management must: track profile coordinates received from GPS, Galileo, GLONNASS satellites. The list of published works on the topic of the dissertation Liudvinavičius, L.; Lingaitis, L. P. 2007. Electrodynamic braking in high-speed rail transport // Transport, Vol. 22, No 3. p 178 186. ISSN 1648-4142 (Thomson ISI Web of Science). Liudvinavičius, L.; Lingaitis, L. P.; Dailydka, S.; Jastremskas, V. 2009. The aspect of vector control using the asynchronous traction motor in locomotives, Transport 24(4), p. 318 324 (Thomson ISI Web of Science). 17

Liudvinavičius, L.; Lingaitis, L. P. 2010. New locomotive energy management systems, Maintenance and reliability = Eksploatacja I niezawodność / Polish Academy of Sciences Branch in Lublin 1: p. 35 41 ISSN 1507-2711 (Thomson ISI Web of Science). Liudvinavičius, L.; Lingaitis, L. P.; Bureika, G. 2011. Investigation on Wheel-sets Slip and Control Problems of Locomotives with AC Traction Motors // Eksploatacja i niezawodność=maintenance and reliability / Polish Academy of Sciences Branch in Lublin. ISSN 1507-2711, Iss. 4, p. 21 28 (Thomson ISI Web of Science). Liudvinavičius, L.; Bureika, G. 2011. Theoretical and practical perspectives of diesel locomotive with dc traction motors wheel-sets slipping and sliding control // Transport. Volume 26 (4) p. 335 343 ISSN1648-4142 (Thomson ISI Web of Science). In the other editions Lingaitis, L. P.; Liudvinavičius, L. 2006. Electric drives of traction rolling stocks with AC motors, Transport 21(3) p. 223 229. Liudvinavičius, L.; Lingaitis, L. P. 2009a. Locomotive energy savings possibilities // Transport problems: International Scientific Journal, Volume 4, Issue 3, Part 1. ISSN 1896-0596. Gliwice, p. 35 41. Liudvinavičius, L.; Lingaitis, L. P. 2009b. New technical solutions of using rolling stock electrodynamical braking // Transport problems: International Scientific Journal, Volume 4, Issue 2. ISSN 1896-0596. Gliwice, p. 23 35. Liudvinavičius, L.; Lingaitis, L. P. 2011a. Management of Locomotive Tractive Energy Resouces / Liudvinavičius, L.; Lingaitis, L. P. // Energy Management Systems Rijeka, Croatia: InTech, b). ISBN 9789533075792, p. 199 222. Liudvinavičius, L.; Lingaitis, L. P. 2011b. Locomotive kinetic energy managament // Transport problems: International Scientific Journal, Volume 6, Issue 3. ISSN 1896-0596. Gliwice, p. 135 142. Liudvinavičius, L.; Djakov, V. A.; Mirgorodskaja, A. I. 2009. Impact of electromagnetic phenomena on automatics, telemechanics and traffic control systems in DC and AC contact network s power supply joint stations // Proceedings of the 6th International Scientific Conference TRANSBALTICA 2009, April 22 23, 2009, Vilnius Gediminas Technical University, Lithuania. ISSN 2029-2376 print. ISSN 2029 2384 online. Vilnius: Technika, p. 129 133. Bureika, G.; Liudvinavičius, L. 2011. New approach to quantitative estimation of railway interoperability // Proceedings of the 7 th International Scientific Conference TRANSBALTICA 2011, May 5 6, 2011, Vilnius Gediminas Technical University, Lithuania. ISSN 2029-2376 print. ISSN 2029 2384 online. Vilnius: Technika, p. 24 29. Liudvinavičius, L.; Gelumbickas, G. 2011. News generation electric multiple units energy saving systems // Proceedings of the 7 th International Scientific Conference 18

TRANSBALTICA 2011, May 5 6, 2011, Vilnius Gediminas Technical University, Lithuania. ISSN 2029-2376 print. ISSN 2029 2384 online. Vilnius: Technika, p. 91 94. About the author Lionginas Liudvinavičius was born on 5 November 1952 in Naciūnai village, Kėdainiai district. In 1975 he graduated from Electrical Power Faculty of Kaunas Politechnical Institutes (now Kaunas University of Technology ) and acquired engineer-electrician qualification. Production record of experience in railway transport mis 25 years. He started his production activities as supervisor by heading to a group of 60 people (in 1975 1983). In 1983 1991 he worked as head of electric train depot. In 1991 1995 he worked as head of locomotive service at state company Lietuvos geležinkeliai. In 1996 2000 he worked as head of Vilnius locomotive depot. He has prepared about 350 locomotives drivers, 90 bachelors and master in transport engineering. In 1998 he was awarded by badge of honour to railman under the order of Ministry of Transport and Communication, under order issued by general director of Lietuvos geležinkeliai he was awarded by second grade award badge for the merits to Lithuanian Railways. Lionginas Liudinavičius has been a member of Scientific Technical Society, a member of Railway Union, Railway expert. At present lector in railway transport department of Vilnius Gediminas Technical University. LOKOMOTYVŲ ELEKTRODINAMINIO STABDYMO EFEKTYVUMO TYRIMAS Mokslo problemos aktualumas. Europos Sąjungos šalių spartus socialinis ir ekonominis vystymasis, technikos raida, pasaulinės prekybos globalizacijos tendencijos sukelia didžiulį aukštos kokybės transporto paslaugų poreikį. Vakarų Europos šalys ekonominėmis ir teisinėmis priemonėmis dėl saugos, ekologijos bei elektros energijos ir kitų išteklių taupymo siekia skatinti keleivių ir krovinių vežimą geležinkeliu. Kaip pagrindinė elektros energijos ir kitų išteklių taupymo priemonė geležinkelio transporte yra lokomotyvų elektrodinaminio stabdymo sistemų tobulinimas. Šis disertacinis darbas kaip tik ir skiriamas minėtiems uždaviniams spręsti. Tyrimų objektas. DC/DC, AC/DC, DC/AC, AC/AC srovės sistemų lokomotyvų elektrodinaminio stabdymo energijos srautų valdymas. Darbo tikslas ir uždaviniai. Pagrindinis darbo tikslas teoriškai ir eksperimentiškai ištirti DC/DC, AC/DC, DC/AC, AC/AC srovės sistemos lokomoty- 19

vų ir kontaktinio tinklo energijos valdymo principus bei įvertinti jų energijos naudojimo efektyvumo lygį, pagrįsti elektrovežių, elektrinių traukinių, metro, tramvajų rekuperacinio stabdymo energijos valdymo diapazono išplėtimą, rekuperacinio stabdymo galimybę šilumvežiuose. Darbo tikslui pasiekti darbe reikia spręsti šiuos uždavinius: 1. Išanalizuoti mokslo publikacijas, nagrinėjančias lokomotyvų elektrodinaminio stabdymo sistemų efektyvumą. Išnagrinėti teorines ir praktinio taikymo problemas ir jų sprendimo būdus. 2. Ištirti DC/DC, AC/DC, DC/AC, AC/AC srovės tipo lokomotyvų ir kontaktinio tinklo tradicines energijos valdymo sistemas ir pateikti teorinius bei praktinius sprendimus jiems tobulinti. 3. Ištirti teorines prielaidas ir pateikti praktinius sprendimus rekuperaciniam stabdymui šilumvežiuose realizuoti. 4. Sudaryti naują elektrinio traukinio elektrodinaminio stabdymo sistemos energijos valdymo matematinį modelį. 5. Sudaryti DC/DC, AC/DC, DC/AC, AC/AC srovės tipo lokomotyvų ir kontaktinio tinklo naujas energijos valdymo sistemas. Tyrimų metodika. Darbe taikyti regresinės analizės, matematinio modeliavimo, globalios optimizacijos metodai. Darbo mokslinis naujumas Rengiant disertaciją gauti šie transporto inžinerijos ir elektros inžinerijos mokslui nauji rezultatai: 1. Išnagrinėtos teorinės prielaidos ir pateikti praktiniai sprendimai visai lokomotyvų kinetinei energijai naudoti elektrodinaminio stabdymo metu. 2. Sudarytos rekuperacinio stabdymo energijos valdymo matematinės ir grafinės priklausomybės. 3. Išnagrinėtos teorinės prielaidos ir pateikti praktiniai sprendimai rekuperaciniam stabdymui šilumvežiuose realizuoti. 4. Sudarytos DC/DC, AC/DC, DC/AC, AC/AC srovės tipo lokomotyvų ir kontaktinio tinklo netradicines energijos valdymo sistemos sumažins elektros energijos, degalų sąnaudas 25 30 %. 5. Matematinio modelio pritaikymas leidžia apskaičiuoti netradicinės sandaros elektrinio traukinio elektrodinaminio stabdymo energijos valdymo sistemos parametrų skirstinio kreives. Darbo rezultatų praktinė reikšmė. Darbo rezultatai suteikia galimybę praktiniams sprendimams rekuperaciniam stabdymui šilumvežiuose realizuoti. Iš gautų rezultatų galima sukurti DC/DC, AC/DC, DC/AC, AC/AC srovės sistemų naujos kartos lokomotyvus arba modernizuoti eksploatuojamus, įdiegiant energijos taupymo sistemas. Sukurti kontaktinio tinklo netradicines energijos 20

taupymo sistemas. Sumažinti lokomotyvų elektros energijos, degalų sunaudojimą 25 30 %. Ginamieji teiginiai 1. Sukūrus netradicinės sandaros lokomotyvų energijos valdymo sistemas lokomotyvų elektros energijos, degalų sunaudojimas sumažės iki 25 30 %. 2. Naujos traukos riedmenų rekuperacinio stabdymo energijos valdymo sistemos gali būti taikomos DC/DC, AC/DC, DC/AC, AC/AC srovės sistemų lokomotyvuose. 3. Rekuperacinio stabdymo sistema bus realizuota šilumvežiuose ir dyzeliniuose traukiniuose su elektros pavara. 4. Taikant matematinį modelį galima apskaičiuoti netradicinės sandaros elektrinio traukinio energijos valdymo traukos, elektrodinaminio stabdymo sistemos parametrus. Darbo rezultatų aprobavimas. Disertacijos tema yra atspausdinta 13 mokslinių straipsnių: penki mokslo žurnaluose, įtrauktuose į Science Citation Index Expanded (Web of Science) sąrašą, vienas kitose tarptautinėse duomenų bazėse referuojamuose žurnaluose, keturi straipsniai recenzuojamuose mokslo žurnaluose anglų, vokiečių ar prancūzų kalbomis, 3 straipsniai recenzuojamoje Lietuvos tarptautinės konferencijos medžiagoje. Disertacijoje atliktų tyrimų rezultatai buvo paskelbti 4 tarptautinėse mokslinėse konferencijose. Darbo struktūra. Disertaciją sudaro įvadas, penki skyriai ir bendrosios išvados, literatūros sąrašas ir šaltiniai, autoriaus publikacijų disertacijos tema sąrašas bei priedai. Darbo apimtis yra 154 puslapiai be priedų, tekste panaudotos 75 numeruotos formulės, 79 paveikslai ir 21 lentelė. Rašant disertaciją buvo naudotasi 100 literatūros šaltinių. Priedai pateikti kompaktiniame diske. Pirmajame skyriuje išanalizuoti pastarųjų metų moksliniai darbai, susiję su lokomotyvų frikcinių ir elektrodinaminio stabdymo sistemų tobulinimu, elektros mašinų, statinių keitiklių sandara ir valdymu. Antrajame skyriuje analizuojamos esamos tradicinės sandaros lokomotyvų su elektros pavara elektrodinaminio stabdymo sistemos, kurios vyrauja pasaulio geležinkeliuose. Trečiajame skyriuje pateikiami praktiniai dviaukščių traukinių EJ-575, šilumvežių ER-20 CF elektrodinaminio stabdymo sistemų efektyvumo tyrimai ir gautos išvados. Ketvirtajame skyriuje pateiktos netradicinių sandarų lokomotyvų elektrodinaminio stabdymo sistemų sudarymo teorinės prielaidos ir praktiniai sprendimai. Nagrinėjamos naujos lokomotyvų elektrodinaminio stabdymo sandaros sistemos, leidžiančios ženkliai sumažinti elektros energijos, degalų sąnaudas. 21

Penktasis skyrius skirtas netradicinės sandaros elektrinio traukinio energijos valdymo elektrodinaminio stabdymo sistemos matematiniam modeliui sudaryti. Disertacijos pabaigoje pateikiamos bendrosios išvados. Bendrosios išvados 1. Geležinkelio energetinės sistemos kontaktinio tinklo įtampos DC: 750 V, 1500 V, 3000 V, AC: 15 kv, 16 2/3 Hz, 25 kv, 50 Hz labai įvairios ir daugeliu atvejų nepritaikytos energijos grąžinimui energetinei sistemai. 2. Tradicinės sandaros elektrinės traukos lokomotyvuose rekuperacinio stabdymo diapazonas mažas galimas tik didelių greičių zonoje, t. y. tik esant traukos variklių, veikiančių generatoriniu režimu, įtampai didesnei už kontaktinio tinklo įtampą. 3. Rekuperacinis stabdymas tradicinės sandaros šilumvežiuose su elektros pavara negalimas nėra energijos grąžinimo grandinės. 4. Pagal atliktus teorinius ir eksperimentinius tyrimus elektriniuose traukiniuose ER-9M, EJ-575, šilumvežiuose ER-20 CF, nustatyta, kad ER-9M kinetinė energija nenaudojama, o elektriniuose traukiniuose EJ-575, šilumvežiuose ER-20 CF, kinetinė energija naudojama sąstatui stabdyti, tačiau elektrodinaminio stabdymo proceso metu gesinama stabdymo rezistoriuose. 5. Eksperimentiniais tyrimais nustatyta, kad 22,4 % 36,1 % elektrinio traukinio EJ-575 kinetinės energijos virto šiluma stabdymo rezistoriuose elektrodinaminio stabdymo metu. 6. Tradicinės sandaros DC/DC, AC/DC, AC/AC srovės sistemos šilumvežių nuolatinės ir kintamosios srovės traukos variklių elektrinis stabdymas gali būti realizuotas tik dinaminio stabdymo būdu. 7. Atlikti eksperimentiniai tyrimai ir skaičiavimai parodo, kad, taikant sukurtą netradicinę lokomotyvų kinetinės energijos valdymo sistemą, galima sumažinti iki 30 35 % degalų ar elektros energijos. 8. Autoriaus pasiūlytos netradicinės lokomotyvų kinetinės energijos valdymo sistemos išplečia rekuperacinio stabdymo energijos valdymo galimybes, sudaro teorines ir praktines prielaidas rekuperacinį stabdymą naudoti šilumvežiuose su elektros pavara. 9. Norint naudoti visą traukinio kinetinę energiją, pateiktos netradicinės lokomotyvų kinetinės energijos valdymo sistemos, kurios neprieštarauja elektros mašinų, veikiančių generatorių režimu teoriniams apribojimams ir įgalina traukos riedmenyse su elektros pavara naudoti didelių B ir mažų A greičių diapazone rekuperacinį stabdymą. 22

10. Keturių kvadrantų valdymo sistema, taikoma elektrinės traukos lokomotyvuose, sudaro teorines galimybes elektros mašinai veikti variklio ar generatoriaus režimais. 11. Netradicinės sandaros AC/DC, AC/AC srovės sistemos elektrinės traukos lokomotyvuose, naudojant keturių kvadrantų 4Q keitiklius, rekuperacinį stabdymą galima naudoti didelių B ir mažų A greičių diapazone. Greičių diapazone B rekuperacinio stabdymo metu energija bus grąžinta į kontaktinį tinklą, A diapazone į energijos kaupimo baterijas. 12. Netradicinės sandaros AC/AC srovės sistemos lokomotyvų kinetinei energijai valdyti tikslinga naudoti sistemas, kelio profilio pokyčio koordinates gaunant iš GPS, Galileo, GLONNASS palydovų. Trumpos žinios apie autorių Lionginas Liudvinavičius gimė 1952 m. lapkričio 5 d. Kėdainių rajono Naciūnų kaime. 1975 m. baigė Kauno politechnikos institutą instituto (dabar KTU) Elektrotechnikos fakultetą ir įgijo inžinieriaus elektriko kvalifikaciją. Gamybinis stažas geležinkelio transporte 25 metai. Gamybinę veiklą pradėjęs 1975 m., 1975 1983 metais vadovavo 60 žmonių kolektyvui ir ėjo cecho viršininko pareigas. 1983 1991 metais dirbo Elektrinių traukinių depo viršininku. 1991 1995 metais dirbo Valstybinės įmonės Lietuvos geležinkeliai Lokomotyvų tarnybos viršininku. 1996 2000 metais ėjo Vilniaus lokomotyvų depo viršininko pareigas. Parengė apie 350 mašinistų, 90 transporto inžinerijos bakalaurų ir magistrų. 1998 m. apdovanotas Garbės geležinkelininko ženklu, 2010 m. apdovanotas antrojo laipsnio ženklu už nuopelnus Lietuvos geležinkeliams. Lionginas Liudvinavičius yra mokslinės techninės draugijos, Geležinkelininkų sąjungos narys, geležinkelių transporto ekspertas. Šiuo metu dirba lektoriumi Vilniaus Gedimino technikos universiteto Geležinkelių transporto katedroje. 23

Lionginas LIUDVINAVIČIUS INVESTIGATION OF LOCOMOTIVE ELECTRODYNAMIC BRAKING Summary of Doctoral Dissertation Technological Sciences, Transport Engineering (03T) Lionginas LIUDVINAVIČIUS LOKOMOTYVŲ ELEKTRODINAMINIO STABDYMO EFEKTYVUMO TYRIMAS Daktaro disertacijos santrauka Technologijos mokslai, transporto inžinerija (03T) 2012 12 10. 1,5 sp. l. Tiražas 70 egz. Vilniaus Gedimino technikos universiteto leidykla Technika, Saulėtekio al. 11, 10223 Vilnius, http://leidykla.vgtu.lt Spausdino UAB Ciklonas J. Jasinskio g. 15, 01111 Vilnius 24