NIST Smart Grid Interoperability Program

Similar documents
The Smart Grid: Re-powering America George W. Arnold National Coordinator for Smart Grid Interoperability NIST Gaithersburg, MD April 28, 2010

Smart Grid: A Building Utility Partnership. Steven T. Bushby Engineering Laboratory

SGIP STANDARDS ACCELERATION, PROCESSES, AND CIM. Prepared by: Stuart McCafferty SGIP Administrator, EnerNex Program Manager

Smart Grid Update Where is the Electric Grid Going?

IEEE-SA Standards-related activities for Smart Grid. Bill Ash Strategic Program Manager 11 September, 2012

Standards for Smart Grids Progress and Trends

Investing in our Energy Future. Secretary Steven Chu U.S. Department of Energy Washington, D.C. September 21, 2009

Global Standards Development:

INTRODUCTION TO SMART GRID

Becoming the wireless standard for tomorrow s smart grid. Tobin Richardson Director, Smart Energy ZigBee Alliance

Enabling Smart Grid Interoperability: A System of Systems Approach via IEEE P2030 TM and IEEE 1547 TM

Smart Grid the Industry Perspective

Smart Grid and Energy Efficiency in the U.S.

Solar Development in New Jersey, and PV Impacts on the Distribution System Carnegie Mellon Conference on the Electricity Industry - March 9, 2011

International Smart Grid Standardization Hype, Competition of Standards or useful cooperation?

Effects of Smart Grid Technology on the Bulk Power System

NYISO Market Initiatives

IEEE* American National Standards

Tobin Richardson Director, Smart Energy ZigBee Alliance ZigBee Alliance. All rights reserved.

July 28, 2009 Presentation to the Illinois Statewide Smart Grid Collaborative

Felix Oduyemi, Senior Program Manager, Southern California Edison

Presentation of the European Electricity Grid Initiative

IEEE-PES Chicago Chapter Presentation November 11, Smart Grid. Mike Born. Principal Engineer, Capacity Planning

Impact of Distributed Generation and Storage on Zero Net Energy (ZNE)

MODERN GRID S T R A T E G Y

Achievements and Perspectives of smart grids projects and deployments. M. de Nigris

Biofuels Standards Coordination Activities

Infrastructure Needs for the Smart Grid

Summer Reliability Assessment Report Electric Distribution Companies Perspective

Issue 23 draft for Nuvve

Communication Standards for Demand Response and Distributed Energy Resources

Global Perspectives of ITS

Low Carbon Green Growth Roadmap for Asia and the Pacific FACT SHEET

The California Experience. Ted Craver Chairman, President, and CEO Edison International 2009 Summer Seminar August 4, 2009

US Smart Grid Interoperability Panel and its Testing and Certification, and Electromagnetic Interoperability Issues Working Group Committees

Power and Energy (GDS Publishing Ltd.) (244).

Microgrids in the EU TP SmartGrids Context

When Grids Get Smart - ABB s Vision for the Power System of the Future

Facilitated Discussion on the Future of the Power Grid

Smart Grid and its Role in Reducing Peak Demand and Improving Electricity Delivery

Materials Research for Smart Grid Applications

Impact of Energy Efficiency and Demand Response on Electricity Demand

Features of Korea Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0

NERC s Smart Grid Task Force. Aaron Bennett Engineer of Reliability Assessments Pittsburgh, PA March 9-10, 2010

WESTERN INTERCONNECTION TRANSMISSION TECHNOLGOY FORUM

Enable Utility Industry Transformation

Prepared for JRC Enlarging and Integration Energy Security Workshop Dubrovnik, 5th-7th October 2012 OECD/IEA 2011

Roadmap for high RES penetration in Greek Non Interconnected Islands

ADB Knowledge Partnership Week. Hirokazu Yamaguchi May, 2015

SCE Smart Grid. Creating a Cleaner, Smarter Energy Future. Metering, Billing / MDM America Conference. San Diego. March 9, 2010

Distributed Generation and the Importance of the Electric Power Grid

GRID INNOVATION CAUCUS CO-CHAIRS

The Role of Electricity Storage on the Grid each location requires different requirements

Smart Grid Progress and Plans

Office of Electric Transmission and Distribution. Transforming the Grid to Revolutionize Electric Power in North America

Power Transmission Lines Are there alternatives?

Smart Grid A Reliability Perspective

San Diego Gas & Electric United States

Power Quality and Smart Grid. Power Quality

Measuring the Smartness of the Electricity Grid

Microgrid solutions Delivering resilient power anywhere at any time

Efficiency Challenges for the European Utilities A view from Enel

Architecture Design For Smart Grid

EV - Smart Grid Integration. March 14, 2012

Electric Companies and the EV Revolution. NCSL Legislative Summit Energy Policy Summit Monday, August 8, 2016 Chicago, IL

Smart Grid, Smart Home for the Smart Society

Transportation Electrification Public Input Workshop. August 3, 2016

Workplace Charging May 7, 2013 Jasna Tomic CALSTART

Batteries and Electrification R&D

Updates. Pat Reiten President and CEO, PacifiCorp Transmission

Energy Institute Hrvoje Požar on Smart Grid: Past activities and future directions

PEVs: The Smart Grid Killer App. Chris Chen San Diego Gas & Electric

Grid Integration Costs: Impact of The IRP Capacity Mix on System Operations

Transportation Electrification: Reducing Emissions, Driving Innovation. August 2017

What is Smart Grid? R.W. Beck Inc.

IIC IIoT Energy & Efficiency Forum

Overview of ISO New England and the New England Wholesale Power Markets

Smart Metering IEA DSM Workshop Sophia Antipolis 18 th May 2011

GMLC Devices and Integrated Systems Ben Kroposki Devices and Integrated Systems Technical Area Lead

Workplace Charging Challenge: part of the EV Everywhere Grand Challenge

Building a Stronger and Smarter Electrical Energy Infrastructure. Smart Grid. A Necessary Component in the Remaking of America

Smart Grid, Long term planning for a sustainable energy system, from source to socket

The Use of Battery Systems to Address Power Grid Issues. Hiroshi Kuniyoshi

Critical Power: What s New in Electrical Engineering: Smart Grid and Transformers. Sponsored by:

The Future of Energy Delivery: The Ongoing Grid Transformation

Smart Charging and Vehicle Grid Integration Silicon Valley Leadership Group PEV Forum December 16, 2014

Benefits and barriers to the smart grid, the Korean example Gyu Myoung Lee ETRI (Rep. of Korea) 29 September 2010

Utility Administration & Operation of Virtually Net-Metered Generation

Rocky Mountain Smart Grid Initiative Framework for Large-scale, Synergistic, Smart Secure Grid Demonstration Projects DRAFT

Smart Grids From innovation to deployment

Spreading Innovation for the Power Sector Transformation Globally. Amsterdam, 3 October 2017

David Katz Sustainable Resources Management Former: Ontario Hydro System Planner Financial Evaluations Officer Member: Ontario Smart Grid Forum

SIMO SÄYNEVIRTA, HEAD OF PLATFORM ENGINEERING DIGITAL ABB Role of 5G in Energy and Industrial Revolutions?

Portland General Electric

Smart Grids and the Change of the Electric System Paradigm

WIRES University Overview of ISO/RTOs. Mike Ross Senior Vice President Government Affairs and Public Relations Southwest Power Pool

ENERGY STRATEGY FOR YUKON. Net Metering Policy DRAFT FOR CONSULTATION

Smart Grid Provisions in H.R. 6, 110 th Congress

Yong Tae (Philip) Yoon Electric Power Network Economics Department of Electrical Engineering Seoul National University

Transforming the U.S. Electric System: Where State & Federal Initiatives Meet. October 27, 2016 Washington DC

Transcription:

NIST Smart Grid Interoperability Program Barbara Goldstein bgoldstein@nist.gov Sr. Scientific Advisor, Physical Measurement Laboratory National Institute of Standards and Technology October 21, 2010

Agenda NIST View of the Smart Grid Key Issues and Challenges NIST Mandate, Plans and Progress

NIST View of the Smart Grid

U.S. Electric Grid 3,100 electric utility companies 10,000 power plants 157,000 miles of highvoltage lines 140 million meters $800 billion in assets $247 billion annual revenues

Today s Electric Grid Generation Markets and Operations Transmission Distribution Customer Use One-way flow of electricity Centralized, bulk generation Heavy reliance on coal, natural gas Limited automation Limited situational awareness Customers lack data to manage energy usage

Smart Grid 2-way flow of electricity and information Intelligent Infrastructure

Why Do We Need Smart Grids? Fundamental Drivers Climate change Energy security Lifestyle dependent on electricity Jobs Smart Grid goals Reduce energy use overall and increase grid efficiency Increase use of renewables (wind and solar don t produce carbon) Support shift from oil to electric transportation Enhance reliability and security Improve grid capacity utilization

Why Do We Need Smart Grids? Current Grid is Inherently Inefficient PJM Real Time Load Duration 20% of capacity is needed to serve 5% of highest usage hours Demand Response: Time shifting peak load Improves capacity utilization of the grid Source: PJM (a Regional Transmission Organization part of the Eastern Interconnection grid)

Why Do We Need Smart Grids? Integration of Renewables and PEVs PCS PCS PCS Renewable/Clean Energy (20% by 2020) Power Communication Plug-in Vehicle to Grid (Million in US by 2015) Smart Grid Energy Storage (FERC top 4 priority) Power Conditioning Systems (PCS) convert to/from 60 Hz AC for interconnection of renewable energy, electric storage, and PEVs Smart Grid Interconnection Standards required for devices to be utility controlled operational asset and enable high penetration: Dispatchable real and reactive power Acceptable ramp-rates to mitigate renewable intermittency Accommodate faults, without cascading area-wide events Voltage/frequency control and utility controlled islanding

Why Do We Need Smart Grids? Integration of PEVs Electrification of transportation could: 2020 SUMMER LOAD IMPACT NO UTILITY INVOLVEMENT* 26,000 24,000 Displace US oil imports Reduce CO 2 emissions Reduce urban air pollutants Idle capacity of the power grid could supply 70% of charging needs Batteries in EVs could provide power during peak electricity demand California Forecasted EV Charging Load Worst Case 2020 SUMMER LOAD IMPACT WITH UTILITY INVOLVEMENT* 26,000 24,000 22,000 22,000 20,000 20,000 MW 18,000 MW 18,000 16,000 16,000 14,000 14,000 12,000 12,000 10,000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hours Initial Load Forecast Ports Rail T rucks Forklifts PEVs 10,000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hours Initial Load Forecast Ports Rail Trucks Forklifts PEVs *Based on predicted 1.6 million EVs on the SCE grid Copyright 2009 Southern California Edison

Why Do We Need Smart Grids? There s no Smart Grid without Smart Buildings Other Appliances and Plug Loads 39.0 % Air-Conditioning 16.0 % Refrigerators 13.7 % Energy usage in buildings Space Heating 10.1 % Lighting 8.8 % Water Heating 9.1 % Furnace Fan 3.3 % Ways to make buildings smarter: Get real-time price signals Use energy management tools to balance load with generation and storage Get smarter loads

What Will the Smart Grid Look Like? High use of renewables some jurisdictions as high as 35% by 2020 Distributed generation and microgrids Bidirectional metering selling local power into the grid Distributed storage Smart meters that provide near-real time usage data Time of use and dynamic pricing Ubiquitous smart appliances communicating with the grid Energy management systems in homes as well as commercial and industrial facilities linked to the grid Growing use of plug-in electric vehicles Networked sensors and automated controls throughout the grid

NIST Smart Grid Conceptual Model Cybersecurity (everywhere) Wide Area Situational Awareness (WASA) Intelligent sensors Networks Electromagnetic compatibility (everywhere) Building Automation Power Electronics Electric Power Metering Industrial Control Systems

Key Issues & Challenges

Security Needs to be Designed In Integration of new IT and networking technologies brings new risks & new standards, processes, and tools Modernization provides an opportunity to improve security of the Grid Architecture is key Security must be designed in it cannot be added on later Other risks need consideration Electromagnetic interference, natural or intentional 15

The Need for Standards is Urgent Whirlpool Corporation To Produce One Million Smart Grid-Compatible Clothes Dryers by the End of 2011 Standards for data communication, price information, schedules, demand response signals

International Standards Come From Many Sources Global Consortia Regional and National

Example: Electric Vehicles Require Many Standards J2293 (Communication) Smart Energy 2.0 National Electric Safety Code National Electric Code (Enclosures) C12 (Meter) 1547 (Distributed energy interconnection) 61850 and 61970/61968 Information models Demand response & price signaling J1772 (Connector) (Battery)

NIST Mandate, Plans and Progress

Smart Grid US National Priority We ll fund a better, smarter electricity grid and train workers to build it President Barack Obama To meet the energy challenge and create a 21 st century energy economy, we need a 21 st century electric grid Secretary of Energy Steven Chu A smart electricity grid will revolutionize the way we use energy, but we need standards Secretary of Commerce Gary Locke Congressional Priority: EISA 2007, ARRA, oversight, new bills

Government Roles in Smart Grid Federal Federal Energy Regulatory Commission State Public Utility Commissions

NIST Role Under Title XIII, Section 1305 of EISA, NIST has primary responsibility to coordinate development of a framework that includes protocols and model standards for information management to achieve interoperability of smart grid devices and systems Congress directed that the framework be flexible, uniform, and technology neutral Use of these standards is a criteria for DoE Smart Grid Investment Grants Input to FERC and state PUC rulemaking 22

Smart Grid Investment Grants Category $ Million Integrated/Crosscutting 2,150 AMI 818 Distribution 254 Transmission 148 Customer Systems 32 Manufacturing 26 Total 3,429 18 million smart meters 1.2 million in-home display units 206,000 smart transformers 177,000 load control devices 170,000 smart thermostats 877 networked phasor measurement units 671 automated substations 100 PEV charging stations Geographic Coverage of Selected Projects SGIG Topic Areas

NIST Three Phase Plan for Smart Grid Interoperability PHASE 1 Identify an initial set of existing consensus standards and develop a roadmap to fill gaps PHASE 2 Establish Smart Grid Interoperability Panel (SGIP) public-private forum with governance for ongoing efforts Summer 2009 Workshops Draft Framework Sept 2009 Smart Grid Interoperability Panel Established Nov 2009 NIST Interoperability Framework 1.0 Released Jan 2010 PHASE 3 Conformity Framework (includes Testing and Certification) SGIP meetings Congressional testimony NISTIR 7628 Cyber Security Guidelines Released Sep 2010 2009 2010 today

NIST Framework and Roadmap Revised version January 2010 Smart Grid Vision / Model 75 key standards identified IEC, IEEE, 25 ready for implementation 16 Priority Action Plans to fill gaps: One completed Another added (wind plant communication) Cyber security strategy Companion document NISTIR 7628 http://www.nist.gov/smartgrid/ Conceptual Reference Model

NIST Smart Grid Interoperability Panel Public-private partnership created by NIST in Nov. 2009 Broad range of stakeholders in SGIP developing consensus about standards needed to build a smarter grid Nearly 600 member organizations (with over 50 international organizations) & over 1700 participants from 22 stakeholder categories Supports NIST to coordinate the development of standards by Standards Development Organizations (SDOs) Identifies Requirements Prioritizes standards development programs Works with over 20 SDOs including IEC, ISO, ITU, IEEE, Open, transparent & inclusive process SGIP Twiki: http://collaborate.nist.gov/twikisggrid/bin/view/smartgrid/sgip

Smart Grid Interoperability Panel and Governing Board Stakeholder Category Members (22) including utilities, suppliers, IT developers One Organization, One Vote (Over (Over 450; 600; over over 15001700 persons participating persons participating including from including from international organizations) international organizations) Smart Grid Identified Standards Use Cases Priority Action Plans At large Members (3) Ex Officio (non-voting) Members Standing Committees (Architecture, Conformance and Security) SGIPGB SGIP Working Groups (DEWG, PAP, Other) Smart Grid Interoperability Panel and Governing Board Requirements Standards Descriptions Conceptual Model http://www.nist.gov/smartgrid/ Products (IKB)

International Standards are Vital Source of Standards in NIST Roadmap US Government 10% US Domestic 13% International 77% International Coordination Bilateral interactions China, Japan, Korea, India, Brazil, France, Germany, Ireland US-EU Energy Council activities Smart Grids-Electric Vehicles Public workshop, USG-European Commission Coordination with International Standards Organizations: NIST Liaison to IEC-SG3 SGIP international participation

Priority Action Plans (PAPs) Created to address gaps in Smart Grid standards # Priority Action Plan # Priority Action Plan 0 Meter Upgradeability Standard 9 Standard DR and DER Signals 1 Role of IP in the Smart Grid 10 Standard Energy Usage Information 2 Wireless Communication for the Smart Grid 11 Common Object Models for Electric Transportation 3 Common Price Communication Model 12 IEC 61850 Objects/DNP3 Mapping 4 Common Scheduling Mechanism 13 Time Synchronization, IEC 61850 Objects/ IEEE C37.118 Harmonization 5 Standard Meter Data Profiles 14 Transmission and Distribution Power Systems Model Mapping 6 Common Semantic Model for Meter Data tables 15 Harmonize Power Line Carrier Standards for Appliance Communications in the Home 7 Electric Storage Interconnection Guidelines 16 Wind Plant Communications 8 CIM for Distribution Grid Management 17 Facility Smart Grid Information

SGIP Stakeholder Categories 1 2 3 4 5 6 7 8 Appliance and consumer electronics providers Commercial and industrial equipment manufacturers and automation vendors Consumers Residential, commercial, and industrial Electric transportation industry Stakeholders Electric utility companies Investor Owned Utilities (IOU) Electric utility companies - Municipal (MUNI) Electric utility companies - Rural Electric Association (REA) Electricity and financial market traders (includes aggregators) 9 Independent power producers 10 11 Information and communication technologies (ICT) Infrastructure and Service Providers Information technology (IT) application developers and integrators 12 13 Power equipment manufacturers and vendors Professional societies, users groups, and industry consortia 14 R&D organizations and academia 15 Relevant Federal Government Agencies 16 Renewable Power Producers 17 Retail Service Providers 18 Standard and specification development organizations (SDOs) 19 State and local regulators 20 Testing and Certification Vendors 21 Transmission Operators and Independent System Operators 22 Venture Capital

Some Members We Know (of the 633) Appliance & Consumer Electronics Sony Commercial & Industrial Equipment Honeywell Electric Transportation Chrysler, Ford, BMW, GM, Mercedes Information & Communication Technologies Cisco, Motorola, Sprint, Texas Instruments, T-Mobile Power Equipment Fuji, Mitsubishi, Petra Solar, Siemens, Toshiba R&D Organizations EPRI, Georgia Tech, MIT Standards & Specifications Development Organizations IEC, IEEE, NEMA, NAESB, OASIS

Guidelines for Smart Grid Cyber Security (NISTIR 7628) Published August 2010 What it IS A tool for organizations that are researching, designing, developing, and implementing Smart Grid technologies May be used as a guideline to evaluate the overall cyber risks to a Smart Grid system during the design phase and during system implementation and maintenance Guidance for organizations Each organization must develop its own cyber security strategy (including a risk assessment methodology) for the Smart Grid. What it IS NOT It does not prescribe particular solutions It is not mandatory 32

Examples of NIST Research Activities Supporting Smart Grid Metering Power and energy calibrations Quantum Watt link quantum-based standards New metering testbed under development ANSI C12 U.S. metering standards Phasor Measurement Units (PMUs) Special test calibrations, feedback to manufacturers Testbed expanded for dynamic measurements Building automation, power electronics, cybersecurity, wireless measurements, electromagnetic compatibility, SCADAs,

For more information George Arnold, National Coordinator for Smart Grid Interoperability, george.arnold@nist.gov, 301-975-5987 David Wollman, david.wollman@nist.gov NIST Smart Grid Website: http://www.nist.gov/smartgrid/ NIST SGIP Collaborative Twiki site: http://collaborate.nist.gov/twiki-sggrid/bin/view/smartgrid/