Lecture PowerPoints. Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli

Similar documents
Chapter 29 Electromagnetic Induction and Faraday s Law

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli

Electromagnetic Induction and Faraday s Law

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Electromagnetic Induction, Faraday s Experiment

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr.

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49

Chapter 22. Electromagnetic Induction

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Chapter 31. Faraday s Law

INDUCED ELECTROMOTIVE FORCE (1)

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

PHY 152 (ELECTRICITY AND MAGNETISM)

Chapter 29 Electromagnetic Induction

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

FARADAY S LAW ELECTROMAGNETIC INDUCTION

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0.

Unit 8 ~ Learning Guide Name:

Faraday s Law of Induction III

Physics12 Unit 8/9 Electromagnetism

HL: Mutual Induction. Mutual / Self-Induction Learning Outcomes. Mutual / Self-Induction Learning Outcomes

Note 9: Faraday s Law

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit

ELECTRO MAGNETIC INDUCTION

DC CIRCUITS ELECTROMAGNETISM

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Danyal Education (Contact: ) A commitment to teach and nurture. c) sketch a graph of voltage output against time for a simple a.c.

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

1. This question is about electrical energy and associated phenomena.

ELECTROMAGNETIC INDUCTION. FARADAY'S LAW

HSC Physics. Module 9.3. Motors and. Generators

INDUCTANCE FM CHAPTER 6

Eddy Currents and Magnetic Damping *

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy.

Review: Magnetic Flux, EMF

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF

1. Which device creates a current based on the principle of electromagnetic induction?

Lecture 19 Chapter 30 Faraday s Law Course website:

CHAPTER 8: ELECTROMAGNETISM

Chapter 17 Notes. Magnetism is created by moving charges.

MAGNETIC EFFECTS OF ELECTRIC CURRENT

Chapter 28. Direct Current Circuits

4) With an induced current, thumb points force/velocity and palm points current

ELEN 236 DC Motors 1 DC Motors

Physical Science Lecture Notes Chapter 13

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off.

SPH3U UNIVERSITY PHYSICS

ELECTRICITY: INDUCTORS QUESTIONS

The Physics of the Automotive Ignition System

Figure 1: Relative Directions as Defined for Faraday s Law

Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor.

II/IV B.Tech(Regular) DEGREE EXAMINATION. Electronics & Instrumentation Engineering

2014 ELECTRICAL TECHNOLOGY

3 Electricity from Magnetism

Union College Winter 2016 Name Partner s Name

Electromagnetic Induction

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

Permanent Magnet DC Motor

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

Instrumental technique presentation

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones

Fachpraktikum Elektrische Maschinen. Theory of Induction Machines

QUESTION BANK SPECIAL ELECTRICAL MACHINES

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

RL Circuits Challenge Problems


PHYS 2212L - Principles of Physics Laboratory II

Contents. Review of Electric Circuitd. Preface ;

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

Electrical machines - generators and motors

EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities

Permanent Magnet DC Motor Operating as a Generator

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

Science 30 Unit C Electromagnetic Energy

EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A

VCE PHYSICS Unit 3 Topic 2 ELECTRIC POWER

Drouin Secondary College VCE Physics Unit 4: Electric Power VCE - PHYSICS UNIT 4 TOPIC 1 ELECTRIC POWER TOPIC NOTES. Page 1

UNIT I D.C. MACHINES PART A. 3. What are factors on which hysteresis loss? It depends on magnetic flux density, frequency & volume of the material.

CURRENT ELECTRICITY - II

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

14 Single- Phase A.C. Motors I

Induction motors advantages of induction motors squirrel cage motor

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

ECET 211 Electric Machines & Controls Lecture 5-1 Electric Motors. Lecture 5-1 Electric Motors

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it?

DISSECTIBLE TRANSFORMER - large

ECE 325 Electric Energy System Components 6 Three Phase Induction Motors. Instructor: Kai Sun Fall 2016

Energy & Sustainability. Lecture 8: Electric Power Generation And Distribution February 5, 2009

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III UNIT - IV CHAPTER - 1 : PRINCIPLES OF ELECTRO-MECHANICAL ENERGY CONVERSION CHAPTER - 2 :

ESO 210 Introduction to Electrical Engineering

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

Question 2: Around the bar magnet draw its magnetic fields. Answer:

Transcription:

Lecture PowerPoints Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli This work is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Electromagnetic Induction and Faraday s Law

Contents Induced EMF Faraday s Law of Induction; Lenz s Law EMF Induced in a Moving Conductor Changing Magnetic Flux Produces an Electric Field Electric Generators

Contents Back EMF and Counter Torque; Eddy Currents Transformers and Transmission of Power Information Storage: Magnetic and Semiconductor; Tape, Hard Drive, RAM Applications of Induction: Microphone, Seismograph, GFCI Inductance

Contents Energy Stored in a Magnetic Field LR Circuit AC Circuits and Reactance LRC Series AC Circuit Resonance in AC Circuits

Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Induced EMF He found no evidence when the current through the lefthand loop was steady, but did see a current induced in the right-hand loop when the switch was turned on or off.

Induced EMF In addition, a current will be induced in a wire loop if a magnet is moved through the loop, but not when the magnet is held steady.

Induced EMF Therefore, a changing magnetic field induces an emf. Faraday s experiment used a magnetic field that was changing because the current producing it was changing; the previous graphic shows a magnetic field that is changing because the magnet is moving.

Faraday s Law of Induction; Lenz s Law The induced emf in a wire loop is proportional to the rate of change of magnetic flux through the loop. Magnetic flux: (21-1) Unit of magnetic flux: weber, Wb. 1 Wb = 1 T m2

Faraday s Law of Induction; Lenz s Law This drawing shows the variables in the flux equation:

Faraday s Law of Induction; Lenz s Law The magnetic flux is analogous to the electric flux it is proportional to the total number of lines passing through the loop.

Faraday s Law of Induction; Lenz s Law Faraday s law of induction: (21-2a) (21-2b)

Faraday s Law of Induction; Lenz s Law The minus sign gives the direction of the induced emf: A current produced by an induced emf moves in a direction so that the magnetic field it produces tends to restore the changed field.

Faraday s Law of Induction; Lenz s Law Magnetic flux will change if the area of the loop changes:

Faraday s Law of Induction; Lenz s Law Magnetic flux will change if the angle between the loop and the field changes:

Faraday s Law of Induction; Lenz s Law Problem Solving: Lenz s Law 1. Determine whether the magnetic flux is increasing, decreasing, or unchanged. 2. The magnetic field due to the induced current points in the opposite direction to the original field if the flux is increasing; in the same direction if it is decreasing; and is zero if the flux is not changing. 3. Use the right-hand rule to determine the direction of the current. 4. Remember that the external field and the field due to the induced current are different.

EMF Induced in a Moving Conductor This image shows another way the magnetic flux can change:

EMF Induced in a Moving Conductor The induced current is in a direction that tends to slow the moving bar it will take an external force to keep it moving.

EMF Induced in a Moving Conductor The induced emf has magnitude (21-3) Measurement of blood velocity from induced emf:

Changing Magnetic Flux Produces an Electric Field A changing magnetic flux induces an electric field; this is a generalization of Faraday s law. The electric field will exist regardless of whether there are any conductors around.

Changing Magnetic Flux Produces an Electric Field A changing magnetic flux induces an electric field; this is a generalization of Faraday s law. The electric field will exist regardless of whether there are any conductors around.

Electric Generators A generator is the opposite of a motor it transforms mechanical energy into electrical energy. This is an ac generator: The axle is rotated by an external force such as falling water or steam. The brushes are in constant electrical contact with the slip rings.

Electric Generators A dc generator is similar, except that it has a split-ring commutator instead of slip rings.

Electric Generators A sinusoidal emf is induced in the rotating loop (N is the number of turns, and A the area of the loop): (21-5)

Back EMF and Counter Torque; Eddy Currents An electric motor turns because there is a torque on it due to the current. We would expect the motor to accelerate unless there is some sort of drag torque. That drag torque exists, and is due to the induced emf, called a back emf.

Back EMF and Counter Torque; Eddy Currents A similar effect occurs in a generator if it is connected to a circuit, current will flow in it, and will produce a counter torque. This means the external applied torque must increase to keep the generator turning.

Back EMF and Counter Torque; Eddy Currents Induced currents can flow in bulk material as well as through wires. These are called eddy currents, and can dramatically slow a conductor moving into or out of a magnetic field.

Transformers and Transmission of Power A transformer consists of two coils, either interwoven or linked by an iron core. A changing emf in one induces an emf in the other. The ratio of the emfs is equal to the ratio of the number of turns in each coil: (21-6)

Transformers and Transmission of Power This is a step-up transformer the emf in the secondary coil is larger than the emf in the primary:

Transformers and Transmission of Power Energy must be conserved; therefore, in the absence of losses, the ratio of the currents must be the inverse of the ratio of turns: (21-7)

Transformers and Transmission of Power Transformers work only if the current is changing; this is one reason why electricity is transmitted as ac.

Information Storage: Magnetic and Semiconductor; Tape, Hard Drive, RAM Magnetic tape and computer hard drives store information by magnetizing small areas on a ferromagnetic coating. The information may be encoded in either digital or analog form.

Information Storage: Magnetic and Semiconductor; Tape, Hard Drive, RAM Random access memory (RAM) is used to store information in computers and other digital devices. The binary bits are stored as electric charges or voltages, and are either off or on ( 0 or 1 ). A common type of RAM is dynamic random access memory, or DRAM, based on transistors called MOSFETs (metal oxide semiconductor field effect transistors).

Information Storage: Magnetic and Semiconductor; Tape, Hard Drive, RAM This image shows how a DRAM array works. The bit lines are either on or off, and the word lines allow the bits to be read and written. This is a 2 2 array of MOSFETs.

Information Storage: Magnetic and Semiconductor; Tape, Hard Drive, RAM The DRAM array loses its information if the power goes off it is called volatile. Some memory needs to be nonvolatile; this diagram shows a chip that is able to preserve its state even without power.

Applications of Induction: Microphone, Seismograph, GFCI This microphone works by induction; the vibrating membrane induces an emf in the coil

Applications of Induction: Microphone, Seismograph, GFCI A seismograph has a fixed coil and a magnet hung on a spring (or vice versa), and records the current induced when the earth shakes.

Applications of Induction: Microphone, Seismograph, GFCI A ground fault circuit interrupter (GFCI) will interrupt the current to a circuit that has shorted out in a very short time, preventing electrocution.

Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil. (21-8a) And vice versa; note that the constant M, known as the mutual inductance, is the same: (21-8b)

Inductance Unit of inductance: the henry, H. 1 H = 1 V s/a = 1 Ω s A transformer is an example of mutual inductance.

Inductance A changing current in a coil will also induce an emf in the same coil: (21-9) Here, L is called the self-inductance.

Energy Stored in a Magnetic Field Just as we saw that energy can be stored in an electric field, energy can be stored in a magnetic field as well, in an inductor, for example. Analysis shows that the energy density of the field is given by: (21-10)

LR Circuit A circuit consisting of an inductor and a resistor will begin with most of the voltage drop across the inductor, as the current is changing rapidly. With time, the current will increase less and less, until all the voltage is across the resistor.

LR Circuit This plot shows the current as a function of time in an LR circuit that has just been connected across an emf.

21-12 LR Circuit If the circuit is then shorted across the battery, the current will gradually decay away.

AC Circuits and Reactance Resistors, capacitors, and inductors have different phase relationships between current and voltage when placed in an ac circuit. The current through a resistor is in phase with the voltage.

AC Circuits and Reactance The current through an inductor lags the voltage by 90.

AC Circuits and Reactance In a capacitor, the current leads the voltage by 90.

AC Circuits and Reactance Both the inductor and capacitor have an effective resistance (ratio of voltage to current), called the reactance. Inductor: Capacitor: Note that both depend on frequency. (21-11b) (21-12b)

LRC Series AC Circuit Analyzing the LRC series AC circuit is complicated, as the voltages are not in phase this means we cannot simply add them. Furthermore, the reactances depend on the frequency.

LRC Series AC Circuit We calculate the voltage (and current) using what are called phasors these are vectors representing the individual voltages. Here, at t = 0, the current and voltage are both at a maximum. As time goes on, the phasors will rotate counterclockwise.

LRC Series AC Circuit Some time t later, the phasors have rotated.

LRC Series AC Circuit The voltages across each device are given by the x-component of each, and the current by its x-component. The current is the same throughout the circuit.

LRC Series AC Circuit We find from the ratio of voltage to current that the effective resistance, called the impedance, of the circuit is given by: (21-15)

Resonance in AC Circuits The rms current in an ac circuit is: (21-18) Clearly, Irms depends on the frequency.

Resonance in AC Circuits We see that Irms will be a maximum when XC = XL; the frequency at which this occurs is (21-19) This is called the resonant frequency.

Summary Magnetic flux: Changing magnetic flux induces emf: Induced emf produces current that opposes original flux change Changing magnetic field produces an electric field Electric generator changes mechanical energy to electrical energy; electric motor does the opposite

Summary Transformer uses induction to change voltage: Mutual inductance: Energy density stored in magnetic field: LRC series circuit: