Research Article Study of Knocking Effect in Compression Ignition Engine with Hydrogen as a Secondary Fuel

Similar documents
EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

Material Science Research India Vol. 7(1), (2010)

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

C. DHANASEKARAN AND 2 G. MOHANKUMAR

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine

MODELING AND ANALYSIS OF DIESEL ENGINE WITH ADDITION OF HYDROGEN-HYDROGEN-OXYGEN GAS

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA

Effect of Direct Water Injection on Performance and Emission Characteristics of Diesel Engine Fueled with Bio Diesel and Hydrogen

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

Effect of hydrogen and gasoline fuel blend on the performance of SI engine

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

CHAPTER 3 EXPERIMENTAL SET-UP AND TECHNIQUES

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE

The influence of thermal regime on gasoline direct injection engine performance and emissions

Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings

Title. Author(s)Shudo, Toshio; Nabetani, Shigeki; Nakajima, Yasuo. CitationJSAE Review, 22(2): Issue Date Doc URL.

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

INVESTIGATIONS ON THE EFFECT OF MAHUA BIOFUEL BLENDS AND LOAD ON PERFORMANCE AND NOX EMISSIONS OF DIESEL ENGINE USING RESPONSE SURFACE METHODOLOGY

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Investigation on the Performance and Emissions of Aloevera Blends with EGR System

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Experimental Investigation of Acceleration Test in Spark Ignition Engine

COMBUSTION CHARACTERISTICS OF A DIESEL-HYDROGEN DUAL FUEL ENGINE UMP, Pekan, Pahang, Malaysia Phone:

Experimental Study on the Use of EGR in a Hydrogen-Fueled SI Engine. P. Tamilarasan, M. Loganathan

Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

Using hydrogen as a fuel in diesel engine A Review

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing

ADVANCES in NATURAL and APPLIED SCIENCES

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

PERFORMANCE AND EMISSION CHARACTERISTICS OF A VARIABLE COMPRESSION SI ENGINE USING ETHANOL- GASOLINE BLENDS AS FUEL

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

[Vishnusankarajothi, 4(6) June, 2017] ISSN: IMPACT FACTOR

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

VISUALIZATION OF AUTO-IGNITION OF END GAS REGION WITHOUT KNOCK IN A SPARK-IGNITION NATURAL GAS ENGINE

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION

Homogeneous Charge Compression Ignition combustion and fuel composition

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

Performance Analysis of 4-stroke SI Engine with HHO Generator by Morse Test

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

Numerical Investigation of the Effect of Excess Air and Thermal Power Variation in a Liquid Fuelled Boiler

An Experimental Analysis of IC Engine by using Hydrogen Blend

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester

H. Sumithra Research Scholar, School of mechanical Engineering RGMCET, Nandyal, Andhra Pradesh, India.

Proposal to establish a laboratory for combustion studies

Investigation of Effect of Intake Air Preheating By Heat Wheel on Performance and Emission Characteristics of Diesel Engine

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

Effect of Thermal Barrier Coating on Piston Head of 4-Stroke Spark Ignition Engine

CHAPTER 5 EXPERIMENTAL SET UP AND TESTING PROCEDURES

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

An investigation of the acoustic characteristics of a compression ignition engine operating with biodiesel blends

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE

(v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V.

2013 THERMAL ENGINEERING-I

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

MAGNETIC FIELD EFFECT ON COMPRESSION IGNITION ENGINE PERFORMANCE

THE EFFECT OF INJECTOR POSITION ON DIRECT INJECTION HYDROGEN ENGINE CONDITIONS

Single Cylinder 4 Stroke VCR Diesel Engine Performance And Analysis At Various Blends Of Fuels Under Various Cooling Rates

A STUDY ON DIESEL ENGINE PERFORMANCE DEPENDS ON BP AND BSFC BY APPLYING DIFFERENT INJECTION PRESSURE

EFFECT ON PERFORMANCE AND COMBUSTION CHARACTERISTICS OF DIESEL ENGINE ENRICHED WITH HYDROGEN WITH VARIED PISTON BOWL GEOMETRY

Lecture 5. Abnormal Combustion

Improvement in Thermal Efficiency of a CI Engine Using a Waste Heat Recovery Technique

2.61 Internal Combustion Engines

CHAPTER 4 VARIABLE COMPRESSION RATIO ENGINE WITH DATA ACQUISITION SYSTEM

THEVETIA PERUVIANA BIODIESEL EMULSION USED AS A FUEL IN A SINGLE CYLINDER DIESEL ENGINE REDUCES NOX AND SMOKE

AE 1005 AUTOMOTIVE ENGINES COMBUSTION IN SI ENGINES

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

ADVANCES in NATURAL and APPLIED SCIENCES

Experimental investigation on influence of EGR on combustion performance in SI Engine

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

CHAPTER-3 EXPERIMENTAL SETUP. The experimental set up is made with necessary. instrumentations to evaluate the performance, emission and

TEMPERATURE CHANGE OF A TYPE IV CYLINDER DURING HYDROGEN FUELING PROCESS

Combustion and emission characteristics of HCNG in a constant volume chamber

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 7, January 2015

A SIMULATION STUDY OF AIR FLOW IN DIFFERENT TYPES OF COMBUSTION CHAMBERS FOR A SINGLE CYLINDER DIESEL ENGINE

Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel

EXPERIMENTAL AND THEORETICAL INVESTIGATION ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL FUEL BLENDS

Effects of Pre-injection on Combustion Characteristics of a Single-cylinder Diesel Engine

Assistant Professor, Dept. of Mechanical Engg., Shri Ram College of Engineering & Management, Banmore, Gwalior (M.P) 2

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

EFFECT OF EXHAUST GAS RECIRCULATION (EGR) IN INTERNAL COMBUSTION ENGINE

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

Assignment-1 Air Standard Cycles

Design of Piston Ring Surface Treatment for Reducing Lubricating Oil Consumption

Transcription:

Chinese Engineering, Article ID 1239, 8 pages http://dx.doi.org/1.1155/214/1239 Research Article Study of Knocking Effect in Compression Ignition Engine with Hydrogen as a Secondary Fuel R. Sivabalakrishnan 1 and C. Jegadheesan 2 1 Department of Mechatronics, SNS College of Technology, Coimbatore, India 2 Department of Mechatronics, Kongu Engineering College, Perundurai, Erode, India Correspondence should be addressed to R. Sivabalakrishnan; sivaeinfo@gmail.com Received 5 November 213; Accepted 3 December 213; Published 24 February 214 Academic Editors: Z. Li and Z. Sha Copyright 214 R. Sivabalakrishnan and C. Jegadheesan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of this project is detecting knock during combustion of biodiesel-hydrogen fuel and also the knock is suppressed by timed injection of diethyl ether (DEE) with biodiesel-hydrogen fuel for different loads. Hydrogen fuel is an effective alternate fuel in making a pollution-free environment with higher efficiency. The usage of hydrogen in compression ignition engine leads to production of knocking or detonation because of its lower ignition energy, wider flammability range, and shorter quenching distance. Knocking combustion causes major engine damage, and also reduces the efficiency. The method uses the measurement and analysis of cylinder pressure signal for various loads. The pressure signal is to be converted into frequency domain that shows the accurate knocking combustion of fuel mixtures. The variation of pressure signal is gradually increased and smoothly reduced to minimum during normal combustion. The rapid rise of pressure signal has occurred during knocking combustion. The experimental setup was mainly available for evaluating the feasibility of normal combustion by comparing with the signals from both fuel mixtures in compression ignition engine. This method provides better results in predicting the knocking feature of biodiesel-hydrogen fuel and the usage of DEE provides complete combustion of fuels with higher performance, and lower emission. 1. Introduction The demand for fossil fuels gets increased by more usage of transportation and automobile. The use of fossil fuels emits more emissions such as HC, CO, CO 2, and NO x and also makes harmful environmental condition. The best solution for this problem is to move on to alternative fuels. Hydrogen is the most effective alternative fuel which reduces the emission and fuel consumption and also provides better performance. Hydrogen has some limitations such as backfire and preignition. Saravanan et al. [1] proposed that the direct injection (DI) diesel engine was used to test the performance and emission of an engine. Hydrogen was injected at the intakeportoftheengineanddieselcanbeusedasanignition source. In order to improve the efficiency, the knocking combustion occurred as a major problem due to some properties of hydrogen fuel such as wider flammability range and shorter quenching distance. The biodiesel can be used as an ignition source instead of diesel which reduces the emissions of particulate matter and limits the autoignition condition. There is a possible minimum emission of NO x at higher load conditions. Zhen et al. [2] projected that the knock detection is to be done on several types of methods. These methods are in-cylinder pressure analysis, heat transfer analysis, light radiation, cylinder block vibration analysis, intermediate radicals and species analysis, ion current analysis, and exhaust gas temperature analysis. The most suitable methods are in-cylinder pressure analysis and heat transfer analysis. The knock intensity is the maximum amplitude of cylinder pressure fluctuation and rapid increase of pressure signal and heat release rate provides the information about abnormal combustion. Wannatong et al. [3] determined that the knocking in engines leads to damaging the engine and limits the performance of the engine. The combustion and knock characteristics can be determined for diesel and dual fuel (Diesel and Natural Gas) by varying the temperature of intake

2 Chinese Engineering Table 1: Fuels properties. Properties Biodiesel Hydrogen Diethyl ether Chemical formula H 2 C 2 H 5 OC 2 H 5 Auto Ignition Temperature (K) 535 858 433 Calorific value (MJ/kg) 38.5 119.9 33.9 Density (kg/m 3 ) 885.837 713 Viscosity at 15.5 C, centipoises.23 Experimental setup Hydrogen cylinder Accelerometer CI engine Pressure sensor Flame arrester Check valve AVL emission test bench mixture, increasing the amount of natural gas, mixture of diesel and natural gas. Engine knocks were noted for every increase of temperature of intake mixture and increasing the amount of natural gas. In this process, the higher intake temperaturefastenedthecombustionandmadeautoignition of fuel before flame arrival. The rapid increase of cylinder pressurehasshowntheonsetofknockinengine. The knock detection method is to be done on the cylinder pressure, block vibration, and sound pressure signal in spark ignited (SI) engine. The three knock harmonic frequencies were estimated by analyzing the cylinder pressure signal under various operating conditions in spark ignited (SI) engine. The filtered pressure signal can be used to predict knock intensity and also helps to remove background noise. The knock windows and knock frequencies were determined by Lee et al. [4]. Bruntetal.[5] havemadeacomparisonofcalculated peak pressures at crank angle resolution for constant speed and also found out the peak knock pressure for all cycles. The measurement and analysis of cylinder pressure is used to obtain accurate knocking combustion. The knock intensity is to be determined by the maximum variability of peak pressure and its filtered data. 2. Fundamentals 2.1. Hydrogen Fuel. Hydrogen has clean burning characteristics that provide an efficient operation in CI engine. Hydrogen canbeusedasasecondaryfuelinaninternalcombustion engine. The hydrogen burning combines with oxygen to form water and no other combustion products (except for little amounts of NO x ). Hydrogen cannot be ignited by compression due to higher autoignition temperature (585 C) than diesel fuel (18 C). Biodiesel is used as an ignition source for hydrogen fuel during combustion of compression ignition engine (Table 1). 2.2. Knock Fundamentals. Duetopresenceofsomeconstituents in the fuel used, the rate of oxidation becomes sogreatthatthelastportionofthefuel-airmixturegets ignited instantaneously, producing an explosive violence, known as knocking. The explosive ignition of fuel-air mixture before the propagating flame is increasing successive cylinder pressure oscillations. The well-examined external mixing of hydrogen with the intake of air causes backfire and knock, especially at higher engine loads. The abnormal combustion of hydrogen fuel in CI engine will produce an increased chemical heat release rate, which results in a rapid pressure Name Type Engine Make Power Speed Stroke Bore Capacity PC based data acquisition Figure 1: Experimental setup. Table 2: Engine specification. Specification 4-Stroke, Single Cylinder Diesel Kirloskar 5.2 kw 15 rpm 11 mm 87.5 mm 661 cc rise and higher heat rejections. The maximum amplitude of pressure oscillation and analysis of exhaust temperature is a good indicator for severity of the knock. 3. Experimental Setup In this study, a single cylinder, four strokes, water cooled direct injection diesel engine was operated as dual fuel engine which uses hydrogen and biodiesel shown in Figure 1. The engine details are shown in Table 2. Hydrogen fuel is stored in a storage cylinder. A pressure regulator was used to regulate hydrogen passed to flame arrester through flow control valve and check valve. Check valve is used to pass hydrogen in forward direction alone and it can be closed if any gas returns from CI engine. Flame arrester can have 3/4thfiled water in an enclosed tank to restrict backfire to hydrogen cylinder during combustion. Hydrogen fuel is fed at the inlet manifold in diesel engine. DEE is to be fed at the inlet port before the hydrogen port is used. A pressure transducer was used to pick up peak pressure oscillation during the combustion of fuel. The pressure signal is acquired by PC data acquisition system. 4. Frequency Analysis of Pressure Signal The pressure transducer is used to record the in-cylinder pressure signal with respect to crank angle. This signal can be acquired using PC data acquisition system and the crank angle is got from rotary encoder coupled with crank shaft.

Chinese Engineering 3 Filename Peak FFT signal Path Error in (no error) Read from measurement file Signals Spectral measurements Signals FFT-(peak) Error in (no error) Error out Unbundle TF I32 abc Input signal 2 1 T V i. 1. Figure 2: Program for FFT conversion. Thissignalisgiventopowerspectralanalysistoolin LabView software which converts the given signal into frequency domain. The conversion of pressure signal into frequency domain is shown in Figure 2.Thefrequencysignal is used to predict the knocking combustion of engine during abnormal conditions. 5. Result and Discussion Experimental tests were carried out for biodiesel-hydrogen mixtures and biodiesel-hydrogen mixture with DEE at various loads. The pressure signal variation and its power spectrumcanbeshowninfigures3 and 4. Theenginehasbeen runonbiodiesel-hydrogenmixturesfromnoloadtofullload. In normal combustion, the pressure signal gradually reaches thepeakvalueaftertopdeadcentreofthepiston(tdc ofgreaterthan36ofcrankangle)andagainsmoothly decreases to minimum value of the pressure. In knocking combustion, the peak pressure signal gets rapid oscillation at every crank angle. After crossing the load of 52%, there could be a maximum oscillation in peak pressure compared to light load, as well as a significant notification from power spectrum of pressure signal. From thepowerspectrumsignal,thefirstharmonicknocking frequency can be found as 1.65 khz for 7% and 8% load and second harmonic frequency is 2.4 khz and 2.3 khz for 7%and8%load,respectively.Therearenoharmonic frequencies found for biodiesel-hydrogen with diethyl ether. Next, the engine was run on biodiesel-hydrogen mixture and diethyl ether can be injected at the intake valve opening moment in an engine. The different types of load can be appliedtothesemixturesandthesignalcanbenoteddown. This result shows that complete combustion of engine during the application of higher loads. Along with the analysis of pressure signal, the exhaust gas temperature and brake specific fuel consumption can be considered to find out the knocking behavior of the engine. 5.1. Combustion Characteristics. The cylinder peak pressure variation and its power spectrum are given in Figures 3 and 4. The peak pressure and pressure oscillation are higher for the biodiesel-hydrogen fuel mixture when compared to the diethyl ether. The biodiesel fuel can act as a main fuel which can be injected at direct injection port and hydrogen is supplied at intake manifold whose flow rate is fixed at.5 lpm. In biodiesel-hydrogen, the hydrogen fuel properties make the abnormal combustion in compression ignition engine. This can be got from analysis of pressure signal and its power spectrum. The pressure signal can be got from PC data acquisition system which is given in the LabView software. This can be converted into frequency domain. In part load, there is no rapid rise or oscillation of pressure signal during combustion phase. This shows that the complete combustion fuel mixture takes place at minimum load. After injecting the diethyl ether with the biodiesel-hydrogen, there are no changes in pressure signal during minimum (<6%) load. The flow rate of diethyl ether is optimized at.25 g/min, according to the signal got from the engine during the operation. The diethyl ether helps to reduce the abnormal combustion to take place at maximum (>6%) load. The diethyl ether reduces the peak pressure occurring during the combustion of fuel due to lag in ignition timing and acts as an ignition improver. The autoignition can be prevented by supplying diethyl ether as an additive. The knocking combustion can be found at higher load and after applying

4 Chinese Engineering 8 Pressure signal at 6% load 3 (Power spectrum at 6% load) 7 2 Cylinder pressure (bar) Cylinder pressure (bar) Cylinder pressure (bar) 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 2 3 4 5 6 72 Pressure signal at 8% load 1 2 3 4 5 6 72 Pressure signal at 1% load 1 1 2 3 4 5 3 2 1 1 2 3 4 3 2 1 1 2 3 (Power spectrum at 8% load) (Power spectrum at 1% load) 1 4 1 2 3 4 5 6 72 5 (a) (b) Figure 3: (a) In-cylinder pressure signal for biodiesel and hydrogen at various loads. (b) Power spectrum of pressure sign. diethyl ether smooth combustion of fuel mixture takes place inside the engine. 5.2. Performance Characteristics. The performance of biodiesel-hydrogen fuel and biodiesel-hydrogen fuel with DEE can beshownintables3 and 4, respectively. The performance can be noted for various applications of load up to 8% load. The exhaust temperature is taken from the thermocouple sensor. The performance of engine during knocking and nonknocking can be evaluated using these equations. The power and efficiency can be calculated from these formulas.

Chinese Engineering 5 8 Pressure signal at 6% load 3 (Power spectrum at 6% load) 7 2 Cylinder pressure (bar) 6 5 4 3 2 1 1 2 3 1 4 1 2 3 4 5 6 72 5 8 Pressure signal at 8% load 3 (Power spectrum at 8% load) 7 2 Cylinder pressure (bar) 6 5 4 3 2 1 1 1 2 3 4 5 1 2 3 4 5 6 72 6 Cylinder pressure (bar) Pressure signal at 1% load 8 7 6 5 4 3 2 1 1 2 3 4 5 6 72 (a) (Power spectrum at 1% load) 3 2 1 1 2 3 4 5 6 (b) Figure 4: (a) In-cylinder pressure signal for biodiesel and hydrogen with DEE at various loads. (b) Power spectrum of pressure signal. (i) Indicated power IP = np milank 1 kw, (1) 6 where P mi indicatedmeaneffectivepressureinbar, n indicated number of cylinders, L indicated length of stroke in m, A indicated area of piston in m 2, N indicated speed in rpm, and k indicated 1/2 (for fourstroke engine). (ii) Brake power BP = 2πNT kw, (2) 6 1 where N is speed in rpm and T is torque in Nm.

6 Chinese Engineering Sl. no. Exhaust temerature T3 ( C) Table 3: Performance of Biodiesel and hydrogen. Indicated power, IP (kw) Brake power, BP (kw) BSFC = FC/BP (kg/kw-hr) Mech Efficiency = BP/IP (%) 1 198 2.68715.2835 1.84282 1.55151 2 2 229 3.8422.856.69387 27.5813 3 4 247 3.472626 1.4176.46834 4.8243 4 6 273 3.753743 1.9847.37341 52.87376 5 8 338 4.274637 2.5518.3221 59.69665 6 1 375 4.81267 3.1188.351 64.81384 7 12 41 5.27584 3.6859.28817 69.81384 8 14 55 5.82782 4.253.27749 73.6622 9 16 564 6.449162 4.82.27545 74.73987 kw: Killowatt, C: Degree Celcius, kg: killogram; hr: hourhenry. Sl. no. Exhaust temerature T3 ( C) Table 4: Performance of biodiesel and hydrogen with DEE. Indicated power, IP (kw) Brake power, BP (kw) BSFC = FC/BP (kg/kw-hr) Mech Efficiency = BP/IP (%) 1 194 2.4845.283 2.14154 11.438 11 2 224 2.7369.85.8882 31.4693 12 4 255 3.47263 1.417.55646 4.8243 13 6 291 3.81162 1.984.42659 52.791 14 8 327 4.2333 2.551.3829 6.27963 15 1 361 4.72112 3.118.34491 66.6244 16 12 44 5.21721 3.685.3774 7.64998 17 14 451 5.69676 4.253.315 74.65692 18 16 52 6.18458 6.184.29316 77.9373 kw: Killowatt, C: Degree Celcius, kg: killogram; hr: hourhenry. (iii) Mechanical efficiency η mech = BP IP. (3) Figure 5 shows the variation of exhaust gas temperature with respect to load. It is observed that the exhaust gas temperature of biodiesel-hydrogen is similar to that of those fuel mixtures along with DEE for below 6% of load. When the amount of load was increased, the engine experienced knocking level due to improper combustion of fuel (fuel mixture remains same to find out knocking level). The exhaust gas temperaturegetsincreasedfortheloadabove7%duetolate combustion of fuel increasing the exhaust gas temperature. The hydrogen fuel gets accumulated in full throttle running of an engine during higher load. The injection of diethyl ether leads to providing normal combustion of engine, and the complete combustion of fuel takes place due to timed injection of DEE at the inlet port. Figure 6 shows the variation of brake specific fuel consumption for various fuel mixtures with respect to load. The brake specific fuel consumption is mainly based on the torque Exhaust temperature T3 ( C) 6 5 4 3 2 1 2 4 6 8 1 12 14 16 (1 lpm)+ DEE Figure 5: Exhaust temperature variation with load.

Chinese Engineering 7 2.5 9 8 BSFC = FC/BP (kg/kw-hr) 2 1.5 1.5 Mech. effeciency = BP/IP (%) 7 6 5 4 3 2 1 2 4 6 8 1 12 14 16 2 4 6 8 1 12 14 16 (1 lpm)+ DEE (1 lpm)+ DEE Figure 6: Brake specific fuel consumption variation with load. Figure 7: Mechanical efficiency variation with load. delivered by the engine with respect to the mass flow rate of fueldeliveredtotheengine. It is observed that the brake specific fuel consumption of biodiesel-hydrogen with DEE is decreased with the load increasing to maximum. In case of hydrogen-biodiesel, brake specific fuel consumption is increased because of knocking combustion. When there is a decrease in brake specific fuel consumption, it also decreases the brake thermal efficiency of the engine. The brake specific fuel consumption is well decreased at minimum load compared to higher load, while applying diethyl ether during the combustion of fuel mixture. Figure 7 shows the variation of mechanical efficiency for various fuel mixtures with respect to load. The mechanical efficiency is defined as the ratio of brake power to the indicated power. It is observed that the mechanical efficiency of biodiesel-hydrogen with DEE increases for load above 5%. There is a slight increase of mechanical efficiency for the1%load.theincreaseinmechanicalefficiencyinthe case of hydrogen-biodiesel with DEE operation is mainly due to higher charge intake leading to complete combustion and the energy release is higher in case of DEE. The diethyl ether helps to make complete burning of fuel during combustion at higher load. 6. Conclusions An experimental model of knock detection for biodieselhydrogen fuel and biodiesel-hydrogen fuel mixtures with diethyl ether has been developed. The most suitable knock techniques have been applied to detect knock in compression ignition engine. (i) The knock measurement and analysis can be done for the biodiesel-hydrogen fuel and biodiesel-hydrogen fuel with DEE. (ii) The pressure signal could be got from a pressure transducer and converted into frequency domain for analysis of the knock. (iii) The exhaust temperature can also be used to find out the knocking combustion for the same fuel mixture (biodiesel-hydrogen fuel at 1 lpm) at higher loads. (iv) The performance and knock limiting operation of enginecouldbeimprovedbyusingdeeasanadditive fuel. (v) The diethyl ether is taken to suppress the knocking behaviour in compression ignition engine during combustion of mixture of hydrogen-biodiesel fuel. The performance characteristics of both hydrogenbiodiesel fuel and hydrogen-biodiesel fuel with DEE could be computed for various applications of load. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. References [1] N. Saravanan, G. Nagarajan, C. Dhanasekaran, and K. M. Kalaiselvan, Experimental invetigation of hydrogen fuel injection in DI dual fuel diesel engine, SAE Paper 27-1-1465, 27. [2] X.Zhen,Y.Wang,S.Xuetal., Theengineknockanalysis an overview, Applied Energy,vol.92,pp.628 636,212. [3] K.Wannatong,N.Akarapanyavit,andS.Siengsanorh, Combustion and knock characteristics of natural gas diesel dual fuel engine, JSAE 27-1-247, 27. [4] J.-H. Lee, S.-H. Hwang, J.-S. Lim, D.-C. Jeon, and Y.-S. Cho, New knock-detection method using cylinder pressure, block vibration and sound pressure signals from a SI engine, in

8 Chinese Engineering Proceedings of the SAE International Spring Fuels & Lubricants Meeting & Exposition, pp. 27 38, May 1998. [5] M.F.J.Brunt,C.R.Pond,andJ.Biundo, Gasolineengineknock analysis using cylinder pressure data, in Proceedings of the SAE International Congress & Exposition, pp. 21 33, February 1998.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration