The Global EV Outlook 2018

Similar documents
The Global EV Outlook 2018 Focus on batteries and battery charging

The Global EV Outlook 2018:

Global EV Outlook 2017 Two million electric vehicles, and counting

Global EV Outlook 2017

Electric Vehicle Initiative (EVI) What it does & where it is going

Accelerating electric vehicle deployment and support policies

Electric mobility Status, policies and prospects. Clean Transport Forum - 22 September 2016, Bogotá Marine Gorner, International Energy Agency

The Electric Vehicles Initiative campaign, Pilot City Programme and GEF project

Electric Vehicles Initiative activities

Recent and on-going projects

GEAR 2030 Working Group 1 Project Team 2 'Zero emission vehicles' DRAFT RECOMMENDATIONS

Emerging international best practices to promote electric vehicles

EU CO 2 emission policy : State of Play. European Commission, DG CLIMA. Climate Action

Electric Mobility in Africa Opportunities and Challenges. African Clean Mobility Week, Nairobi/Kenya, March

Index Long term vision Transport sector in the big picture Cost effectiveness of low carbon technologies investment Sales mix in the coming decades Sh

Energy Challenges and Costs for Transport & Mobility. 13th EU Hitachi Science and Technology Forum: Transport and Mobility towards 2050

Transitioning to low carbon / low fossil fuels and energy sources for road transport

Natasha Robinson. Head of Office for Low Emission Vehicles Office for Low Emission Vehicles. Sponsors

Chapter 3 Promising Solutions for Reduced CO 2 Emissions from Automobiles

State Zero-Emission Vehicle Programs Memorandum of Understanding

Consumers, Vehicles and Energy Integration (CVEI) project

Current Global Fuel Economy Levels and Projections. Pierpaolo Cazzola Africa Clean Mobility Week Nairobi, 12 March 2018

Michigan Public Service Commission Electric Vehicle Pilot Discussion

Electric Vehicle Adoption in the South African Context

NEW ENERGY -4- MOBILITY TECHNOLOGIES

Hydrogen & Fuel cells From current reality to 2025 and beyond

Campaign. The opportunity. Aim. Goal. Implementing actions. Beijing (China), 8 June 2017

THE MULTI-STATE ZEV ACTION PLAN

Future of Mobility and Role of E-mobility for Future Sustainable Transport. Petr Dolejší Director Mobility and Sustainable Transport

Economic Development Benefits of Plug-in Electric Vehicles in Massachusetts. Al Morrissey - National Grid REMI Users Conference 2017 October 25, 2017

Overview of Global Fuel Economy Policies

EV, fuel cells and biofuels competitors or partners?

Improving fuel economy and integrating electric vehicles

Low Carbon Green Growth Roadmap for Asia and the Pacific FACT SHEET

PROMOTING THE UPTAKE OF ELECTRIC AND OTHER LOW EMISSION VEHICLES

SOLUTIONS Knowledge Sharing Kit Cluster 6: Clean vehicles.

Fuel Economy Policy Pathways for the ASEAN Region

Template for non-party stakeholders inputs for the Talanoa Dialogue. Question 1 Where are we?

ENERGY STORAGE FOR THE GRID: POLICY OPTIONS FOR SUSTAINING INNOVATION (MIT ENERGY INITIATIVE WORKING PAPER)

Overview of policies related to low carbon transportation in China

Low Carbon Technologies - Focus on Electric Vehicles. 6 mars 2018 ADEME - French Agency for Environment and Energy Management

LEGAL STATEMENT 1 / 2018 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

EMC Automotive Event Woerden, 13 en 14 november ENEVATE Outlook. Edwin Bestebreurtje FIER Automotive. FIER Automotive

EVS DEVELOPMENT IN CHINESE CITIES AND THE DRIVERS WENJING YI ENERGY RESEARCH INSTITUTE OF CHINA MAY 11 TH 2016

DECARBONISATION OF THE TRANSPORT SECTOR CONSIDERING GLOBAL LEARNING AND FLEXIBILITY POTENTIAL FOR THE ELECTRICITY SYSTEM

Promoting Electric Mobility in Developing Countries

How will electric vehicles transform the copper industry? 14 March 2018

-Mobility Solutions. Electric Taxis

Electric Vehicle Cost-Benefit Analyses

Informal Meeting of European Union Competitiveness Ministers. Chairman and CEO Ignacio S. Galán

Business Models that Capture the Indirect Value of EV Charging Services

UK Government s Ultra Low Carbon Vehicle Strategy

Vehicle Fuel Economy Standards and Feebate System

HEV, EV, Diesel Technology ; Indian trends and Role of Government for supporting

UfM Ministerial Declaration on Energy

Austria. Advanced Motor Fuels Statistics

Renewables in Transport (RETRANS)

AUDI SUSTAINABILITY PROGRAM

ELIPTIC results & recommendations

RE: Comments on Proposed Mitigation Plan for the Volkswagen Environmental Mitigation Trust

14 Dec 17. <Date> E-mobility landscape in Singapore. <Title> Goh Chee Kiong Head, Strategic Development

Poland drives e-mobility!

National strategy for alternative fuels infrastructure

RNG Production for Vehicle Fuel. April 4, 2018

Oliver Lah, Wuppertal Institute.

JIVE & FC Bus projects Enrique Girón

actsheet Car-Sharing

California Transportation Electrification and the ZEV Mandate. Analisa Bevan Assistant Division Chief, ECARS November 2016

Move forward fuel efficiency policy in Vietnam

Transportation Electrification Public Input Workshop. August 3, 2016

Technological Viability Evaluation. Results from the SWOT Analysis Diego Salzillo Arriaga, Siemens

Incentives for Green Fleets

Energy Innovation Emporium. Transport. Chair: Prof. John Nelson, Centre for Transport Research University of Aberdeen

ELECTRO-MOBILITY PLATFORM

Consumers, Vehicles and Energy Integration (CVEI) project

Alfen acquires Elkamo in Finland A platform for expansion in the Nordics

International Zero-Emission Vehicle Alliance Third Annual Assembly May London, United Kingdom

OICA Round Table "The World Auto Industry: Situation and Trends Seoul, 23 October 2014

The Future of Electric Cars - The Automotive Industry Perspective

Future trends on critical materials. Patrick Koller June 2018

State of the Energy Sector: National Perspective. David K. Owens E2Tech Expo November 17, 2016 Portland, ME

Seoul, Korea. 6 June 2018

BMW GROUP AND THE FUTURE OF SUSTAINABLE (E)-MOBILITY. LATIN AMERICA CLEAN TRANSPORT FORUM.

Market development for green cars. Geneva, 24 April 2012 Andrea Beltramello, Directorate for Science, Technology and Industry, OECD

Nancy Gioia Director, Global Electrification Ford Motor Company

Global Perspectives of ITS

Electric Vehicles in Queensland. Doctors and Scientists for Social Justice 7 July 2010

Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) Frequently Asked Questions

GLOBAL AUTOMOBILE BUMPY ROAD AHEAD

Save-the-date: Workshop on batteries for electric mobility

Transitioning to zero-emission heavy-duty freight vehicles

The IAM in Pre-Selection of global automotive trends impacting the independent multi-brand aftermarket

Implementing Transport Demand Management Measures

New York State and EVs

NASEO 2015 Central Regional Meeting. Vision Fleet June 12, 2015

INTELECT Incentives and actual cost calculations for electric transport in the Nordic countries

City of Montréal s strategies to move smarter

Overview of Plug-In Electric Vehicle Readiness. Coachella Valley Association of Governments

Policy Options to Decarbonise Urban Passenger Transport

Advancing Electric Vehicles in Edmonton SPARK Conference November 8, 2017

Transcription:

The Global EV Outlook 218 Pierpaolo Cazzola - International Energy Agency Launch event - Institute of Energy Economics Japan, 3 May 218 IEA

Clean Energy Ministerial (CEM) High-level global forum to promote policies and programs that advance clean energy technology, to share lessons learned and best practices, and to encourage the transition to a global clean energy economy. Three Main Activities High-level policy dialogue at annual ministerial meetings helps advance international collaboration to accelerate the adoption of clean energy policies and practices. Public-private engagement builds the industry, government, and civil society cooperation needed to scale up clean energy around the globe. Year-round work through action-driven, transformative clean energy initiatives and campaigns expands the deployment of clean energy technologies, policies, and practices. Members

Electric Vehicles Initiative (EVI) Multi-government policy forum dedicated to conducting collaborative activities that support the design and implementation of domestic electric vehicle (EV) deployment policies and programs In 21, EVI was one of several initiatives launched under the CEM Currently co-chaired by Canada and China, and coordinated by the IEA Released several analytical publications, demonstrating leadership to strengthen the understanding of the opportunities offered by electric mobility to meet multiple policy goals Members Instrumental to mobilize action and commitments (Paris Declaration on Electro- Mobility and Climate Change at COP21, Government Fleet Declaration at COP22) Launched the EV3@3 Campaign in June 217 Now launching the Pilot City Programme Also working with the Global Environment Facility on the preparation of a project for the support of EV policy-making in developing regions in 218

EV3@3 Campaign Designed to accelerate the global deployment of electric vehicles Sets a collective aspirational goal to reach 3% sales share for EVs by 23 Launched at the 8 th CEM meeting, in Beijing, by Minister Wan Gang Implementing actions include: Supporting the deployment of chargers and tracking its progress, Galvanising public and private sector commitments for electric vehicle (EV) uptake in company and supplier fleets Scaling up policy research and information exchanges Supporting governments in need of policy and technical assistance through training and capacity building Establishing the Global EV Pilot City Programme, aiming to achieve 1 EV- Friendly Cities over five years Members Supported buy several partners

Global EV Outlook 218 EVI flagship report by the IEA 218 edition includes Data reporting (EV stock, sales, EVSE, battery costs) Overview of existing policies Battery technology and cost assessment Implications on the TCO of road vehicles Role of EVs in low carbon scenarios (23 timeframe) Electricity demand, oil displacement and GHG emission mitigation Material demand Policy recommendations 218 edition also paired with the Nordic EV Outlook 218 Focus on one of the most dynamic global regions for EV uptake Opportunity to learn on policy efficacy and consumer behaviour

Electric car stock (millions) The number of electric cars on the road also continues to grow 3.5 3. 2.5 2. 1.5 1..5 Others United States Europe China BEV. 213 214 215 216 217 BEV + PHEV The electric car stock exceeded 3 million in 217 However, electric cars still only represent.3% of the global car fleet

213 217 213 217 213 217 213 217 213 217 213 217 213 217 213 217 213 217 213 217 213 217 New electric car sales ([thousands) Electric car market share Electric car sales are on the rise in all major car markets 64 4% China 56 35% Europe United States 48 3% Norway 4 25% Germany 32 2% Japan 24 15% United Kingdom France 16 1% Sweden 8 5% Canada % Netherlands Market share of new electric cars China is the largest electric car market globally, followed by Europe and the US Norway is the global leader in terms of market share, with 4% in 217

Electric mobility is not limited to cars Electric 2-wheelers: major phenomenon in China, where there are 25 million in the rolling stock and 3 million sales per year Low Speed Electric Vehicles: estimated at 4 million units in China (sales above 1 million). Not favoured by policy support but by cost and practicality (small size, no driving license/registration required) Buses: 36 in China. Close to 9 sales in 217. Stimulated by policy support. Growing interest in C4 cities (better economics: not only pollution and climate-driven phenomenon)

EV uptake is still largely driven by the policy environment All 1 leading countries in electric vehicle adoption have a range of policies in place to promote the uptake of electric cars Policies have been instrumental to make electric vehicles more appealing to customers, reduce risks for investors and encourage manufacturers to scale up production Key instruments deployed by local and national governments for supporting EV deployment: o public procurement o financial incentives facilitating the acquisition of EVs and reducing their usage cost (e.g. by offering free parking) o financial incentives and direct investment for the deployment of chargers o regulatory instruments, such as fuel economy standards and restrictions on the circulation of vehicles based on their tailpipe emissions performance

217 policy updates: China New Energy Vehicle (NEV) credits mandate o Target of the NEV credit mandate is 1% of the passenger car market in 219, and 12% in 22 Vehicle Subsidy Program: subsidies for the purchase of electric cars, dependent on three characteristics: the vehicle range (in km), energy efficiency (in kwh/1km) and battery pack energy density (in Wh/kg) Electric bus sales in China also promoted primarily by subsidies o o Started in 29 by the central government, supplemented by support from local authorities (pilot cities) and progressively reduced over time Policy update in 217 to prevent fraud: overall subsidy reduced and converted into operational subsidies to target the support scheme to transit operators of electric buses China is considering a national ban on ICE cars running on fossil fuels

217 policy updates: European Union Update of the CO 2 emissions standards for new cars and LCVs (to 23) o Inclusion of an incentive scheme aiming to stimulate the uptake of zero- and low-emission vehicles o The incentive scheme reduces (by up to 5%) the overall CO 2 target for manufacturers that exceed the 225 (15%) and 23 (3%) lowand zero-emission vehicle market share thresholds (shares calculated using weights) o No penalty for non-compliance of low-or zero emission targets France, Ireland, the Netherlands, Slovenia, Sweden, UK (+ Norway) pledged to end sales of ICEVs by 23 to 24 Selected examples of policies on zero emission buses: o Public procurement (Clean Vehicles Directive) o Netherlands: aims for all emissions-free bus sales by 225 & all-electric stock by 23 o C4 fossil-fuel-free streets declaration: only electric buses would added to the municipal fleets of Barcelona, Copenhagen, London, Milan, Oxford and Paris (plus others globally) EU roadmap: aim to reduce its GHG emissions by 8% in 25 compared with 199 levels o Emissions from transport could be reduced to more than 6% below 199 levels by 25

217 policy updates: India Dynamic situation: o FAME: incentive scheme that reduces the upfront purchase price of hybrid and electric vehicles (launched in 215) o April 217: vision aiming to have an all-electric vehicle fleet by 23 o o o o September 217: Tata Motors won 1 st public procurement EV tender by EESL December 217: SIAM white paper proposing a pathway towards all new vehicle sales being all electric by 247 and 1% of intra-city public transport as all electric by 23 February 218: Ministry of Heavy Industries and Public Enterprises stated that it had not set any target for electric cars for 23 and referred back to FAME scheme for EV policy February 218: launch of the National E-Mobility Programme by the Ministry of Power. Focusing on creating the charging infrastructure and a policy framework so that by 23 more than 3% of vehicles in India are electric Greater coordination needed, but positive signs for EVs

217 policy updates: United States Federal level revision of fuel economy standards announced in April 218 Details of new standards still unknown California (granted a waiver by EPA to regulate CO 2 emissions) vowed to stick with the stricter rules o A number of other States followed California on this ZEV mandate also increased in ambition in California and other States o o 1.5 million ZEVs and 15% of effective sales by 225, 3.3 million in 8 States combined (California, Connecticut, Maryland, Massachusetts, New York, Oregon, Rhode Island, Vermont) Target of 5 million ZEVs by 23 in California There is a risk of a double standard in the US market o o More stringent rules for cars sold in California and the States that follow its lead Weaker rules for the rest of the States

National and local announcements for EVs and towards the end of ICEs + EV3@3 and country/state-level EV targets ICE phase-out pledges have been mainly announced in Europe China has also mentioned that it is considering the ICE phase out

Charging outlets (thousands) Charger deployment accompanies EV uptake 4 3 5 3 2 5 2 1 5 1 Publicly available fast chargers Publicly available slow chargers Private fast chargers (bus fleets) Private slow chargers (cars) 5 21 211 212 213 214 215 216 217 EV owners charge mostly at home or at work: private chargers far exceed publicly accessible ones Publicly accessible chargers important to ensure EV market expansion, fast chargers essential for buses

Charger deployment also currently supported by policy 12 9 1 8 7 8 6 5 6 4 4 3 2 km/charging station Major markets such as China, the European Union and the United States clearly have ramped up their ambition to install fast charging facilities along highways Target number of charging stations 1 2 1 China EU US Minimum distance targeted between two highway chargers (right axis) Cities are using a variety of measures to support charger deployment Four main categories: targets, financial incentives, regulatory requirements (building codes) and direct deployment of chargers

EV electricity consumption (TWh) EVs lead to higher electricity demand Electricity demand due to EVs: 54 TWh (more than the electricity demand of Greece) 6 5 4 United States 3 2 China Other France Norway Germany Japan United Kingdom 1 215 216 217 2 Wheeler Bus LDV Netherlands Canada Others Around 91% of the power for electric vehicles in 217 was consumed in China The share of electricity demand from EVs was.8% in China and.5% in Norway

but they enable reductions in oil use, GHG & pollutant emissions EVs consume (in final energy terms) half to one third of the energy used by ICE powertrains o This is due both to the higher efficiency of the powertrain and the EVs ability to regenerate kinetic energy when braking EVs displaced.4 mb/d of diesel and gasoline demand in 217 o The majority of the displacement is attributed to two- and three-wheelers (73%), the rest to buses (15%) and LDVs (12%) EVs also allowed to reduce global well-to-wheel CO 2 emission savings of 29.4 Mt CO 2 in 217, and abated pollutant emission savings in high exposure areas (urban environments), thanks to zero tailpipe emissions

EV batteries Technology development and costs

The role of consumer electronics for Li-ion battery improvements 213 21 21 1995 216 215 217 216 Consumer electronics led to cost declines (through technology progress and scale) for Li-ion in the past This benefited both EV packs, now set to deliver the next scale up, and stationary storage

Li-ion expected as the technology of choice for the next decade Current Being deployed Next generation Lithium-ion Advanced Lithium-ion Beyond Lithium-ion Cathode NMC111 N.8 C.15 A.5 NMC622 N.9 C.5 A.5 NMC811 Li Metal, HVS Anode Graphite Carbon alloys Graphite + 5-1% Silicon Graphite/Silicon composite Li-Air Li-Sulphur Electrolyte Organic solvent + LiPF 6 salts Gel Polymer 5V electrolyte salts Polymer 217 22 225 23 Li-ion will continue to improve, thanks to several enhancements possible in battery performance Other technology options will be ready after 225, and scaled up in the following years

Li-ion improvements: effects of size & production volumes on costs Note: graphics developed for BEV batteries for cars Battery size and manufacturing capacities have sizable impacts on the cost of batteries per kwh Over time, both these factors will help delivering significant cost reductions

Battery costs (USD/kWh) Battery cost (USD/kWh) Lithium-ion batteries: further cost reductions at reach 4 36.5-8 GWh/year 35 GWh/year Plant scale 2-75 kwh 7-8 kwh 25 Other materials 2 Battery jacket 15 1 5 Module hardware Electrolyte Separators Battery size Negative active material Positive active material Other cost components 155 LFP-Gr NMC 111-Gr NCA-Gr NMC622-Gr NMC 811-Gr Cathode chemistry Chemistry 12 NMC 111 NMC 811 217 1 23? The combined effect of manufacturing scale up, improved chemistry and increased battery size explain how battery cost can decline significantly in the next 1 to 15 years

Cost difference (thousand USD) TCO differential (ICE-BEV) (USD/km) TCO differential (ICE-BEV) Cost difference (thousand USD) Cost difference (USD) Cost difference (USD) Cost difference (USD) Cost difference (USD) Cost difference (USD) Cost difference (USD) TCO differential (ICE-BEV) (USD/km) Cost difference (USD) Cost difference (USD) TCO differential (ICE-BEV) (USD/km) TCO differential (ICE-BEV) (USD/km) TCO differential (ICE-BEV) (USD/km) Gasoline e price: price: USD price: USD 1.5 USD 1.5 /L /L 1.5 /L -.2 15 15 15 Annual mileage (thousand km/year) and this 1 1 1has implications for the cost competitiveness of EVs 2 3 3 3 4 4 4 5 5 51 1 1 2 2 2 3 3 3 4 4 4 5 5 5 15 15 BEVs 1 are most competitive 1 The economic case for 5 5 in markets with high fuel electric two-wheelers is - 5 1 2 3 4 5-5 1 2 3 4 5 taxes and at high mileage strong: in countries with - 1-1 At - 15 a USD 12/kWh battery high fuel taxes electric - 15 price - 2 and with EU gasoline - 2 two-wheelers Annual mileage (thouand km) Annual mileage (thousand are km) already prices, BEV are competitive even at low mileage Battery price: Large Large car Large car - Gasoline -car - Gasoline price: price: USD price: USD 1.5 USD 1.5 /L /L 1.5 /L 2 2 2 5 5 5-5 - 5-5 LDVs - BEV 2-wheelers - 1-1 - 1.2 Small car Gasoline - Gasoline price: price: USD USD.8 /L 1.5 /L Large car -Gasoline price: USD 1.5 /L High income.2-15- 15-15 6 2 2 6 Diesel price of USD 1.4 /L, electricity price of USD.13 /kwh Dies - 2-2 - 2.15.15 nual l mileage Annual mileage (thousand mileage (thousand km) km) km) Annual Annual mileage Annual mileage (thousand mileage Gasoline (thousand km) km) price: km) USD.8 /L Gasoline price: USD 1.5 /L 4.2 15 Gasoline 6 price: USD.8 /LGasoline 15 price: 4 USD.8 /L Gasoline 6 price: Gasoline price: USD 1.5 /L 6.1 USD 1.5 /L 2 6.15.1 asoline price: USD.8 /L Large car 6 price: price: USD USD.8 1.8 /L /L Large Large car car - Gasoline - - Gasoline price: price: 4USD price: USD.8 USD.8 /L /L.8 /L 6 1 2 4 2 2 2 4 4 4 2 4.5.1.5 5 15 15 15 5 1 4 7 21 2 2-2 1 2 2 1 1 1 4 7 1.5 1 4-2 7 1-5 1-4 5 5 5 1 2 3 4 5-5 1 4 2 7 3 1 1-2 4-2 7 1 1425 3 4 5 35 7 4 45 1 5 55 25 3 35-2 1-2 -.5 4 1 7 4 1 7 1 -.5-4 - 6-4 - 2-2 25 3 35 4 45 5 55 2 3 3 3 4 5-1 4 4 5 5-5 1-4 2 3-4 - 1 5 -.5-5 - 1 5 1 2 2 3 3 4 4 5 5-4 - 8-6 - 6-6 - 4 -.1-4 -.1-1 - 6-1- 1-15 - 15 -.1-8 - 6-1 - 15-8 - 8-6 - 6-15- 15-8 -.15 -.15-2 Annual mileage (km) - 2 -.15-2 - 2-1 -1-1 Annual mileage (thousand km) Annual mileage Annual - (thousand mileage 8-2 - 8 km) (km)- 8 Annual mileage (thouand km) Annual mileage (thousand Annual km) mileage Annual (km) mileage (km) ual mileage mileage (thouand km) km) Annual Annual mileage mileage (thousand km) km) Annual mileage (km) -.2Annual mileage Annual (km) mileage Annual (km) mileage (km) -.2 -.2 18 USD/kWh 4 USD/kWh 6 USD/kWh Annual mileage (thousand km/year) 4 USD/kWh: Large battery 26 USD/kWh: Large battery 12 USD/kWh: Large Annual mileage (thousand km/year) Annual mileag 4 USD/kWh: Large Large battery battery 26 26 USD/kWh: Large Large battery battery 12 12 USD/kWh: Large Large 18 battery USD/kWh battery18 USD/kWh 18 USD/kWh 4 USD/kWh4 USD/kWh4 USD/kWh 6 USD/kWh 6 USD/kWh 6 USD/kWh 4 USD/kWh: 4 USD/kWh: Current Current Small battery Current battery car battery - Gasoline 26 26 USD/kWh: 26 USD/kWh: price: Current Current battery USD Current battery.8 battery /L 12 12 USD/kWh: 12 USD/kWh: Current Current battery Current battery battery Large car - Gasoline price: USD.8 /L 2 2 4 USD/kWh 26 USD/kWh 12 USD/kWh Low income Diesel price of USD 1.4 /L, electricity price of USD.13 /kwh Dies -.15 cost competitive with gasoline models 4 USD/kWh: Large battery 26 USD/kWh: Large battery 12 USD/kWh: Large battery 4 USD/kWh: Current battery 26 USD/kWh: Current battery 12 USD/kWh: Current battery Low income Diesel price of USD 1.4 /L, electricity price of USD.13 /kwh Buses -.15 -.2 Diesel price of USD.9 /L, electricity pric.2 Electric buses travelling.15 4-5.1 km/year are cost.5 competitive in regions with high 25 3 diesel 35 taxation 4 45 5 55 -.5 regimes if battery prices -.1 -.15 are below USD 26/kWh -.2 Annual mileage (thousand km/year) Annual mileage (th 4 USD/kWh 26 US

Outlook

Million vehicles Global EV deployment under the NPS and the EV3@3 scenario New Policies Scenario EV3@3 Scenario 24 24 22 22 2 2 18 18 16 16 14 14 12 12 1 1 8 8 6 6 4 4 2 2 217 22 225 23 217 22 225 23 PLDVs - BEV PLDVs - PHEV LCVs - BEV LCVs - PHEV Buses - BEV Buses - PHEV Trucks - BEV Trucks - PHEV The EV3@3 Scenario sees almost 23 million EVs (excluding two- and three-wheelers), mostly LDVs, on the road by 23. This is about 1 million more than in the New Policies Scenario

Million electric LDVs Benchmarking scenario results against OEM targets for PLDVs 25 2 15 1 5 217 218 219 22 221 222 223 224 225 226 227 228 229 23 OEMs announcements (estimate) New Policies Scenario EV3@3 Estimates based on manufacturers projections suggest an uptake of electric LDVs ranging in-between the New Policies and the EV3@3 scenarios by 225

Market share (%) Market share (%) Regional insights on the GEVO 218 scenarios EV market share by mode in a selection of regions, NPS and EV3@3 scenario, 23 % 1% 8% 6% 4% 2% China 1% Europe 8% 6% 4% 2% 1% Japan 8% 6% 4% 2% % % 1% NPS EV3@3 NPS EV3@3 NPS EV3@3 BEV PHEV BEV PHEV BEV PHEV United States 1% India 1% Rest of the World 8% 8% 8% 6% 6% 6% 4% 4% 4% 2% 2% 2% % % % NPS EV3@3 NPS EV3@3 NPS EV3@3 BEV PHEV BEV PHEV BEV PHEV China and Europe are the global regions with the fastest development of EVs in both scenarios and in virtually all modes

TWh TWh Power demand projections 3 United States 3 Europe 3 China 25 25 25 2 2 2 15 15 15 1 1 1 5 5 5 NPS EV3@3 NPS EV3@3 NPS EV3@3 3 Japan 3 India 3 Rest of the World 25 25 25 2 2 2 15 15 15 1 1 1 5 5 5 NPS EV3@3 NPS EV3@3 NPS EV3@3 PLDV LCV Bus and Minibus HDV 2/3 wheelers Two-wheeler and bus electricity demand make China the highest consumer of electricity for EVs in both scenarios. In the EV3@3 Scenario, electricity demand for EVs is more geographically widespread

Mt CO₂ GHG emissions 8 EV3@3 8 NPS 7 7 6 6 5 4 3 2 1 5 4 3 2 1 217 22 225 23 Avoided emissions, without grid decarbonisation, compared to equivalent ICE fleet Avoided emissions due to grid decarbonisation Emissions from EVs 217 22 225 23 In 23, CO 2 emissions associated with the use of EVs is lower than those of equivalent ICE vehicles at a global scale, even if electricity generation does not decarbonise from current levels

Battery capacity additions (GWh/year), 23 Battery capacity additions (GWh/year), 23 Battery capacity 2 5 2 5 2 2 1 5 1 5 1 1 5 5 217 22 225 23 NPS EV3@3 NPS EV3@3 LDVs-BEV LDVs-PHEV Buses Trucks 2/3 Wheelers Demand for battery capacity for electric vehicles, primarily PLDVs, is projected to increase to.78 TWh per year in the New Policies Scenario and 2.2 TWh per year in the EV3@3 Scenario and to 23

Metal Demand (kt) Metal Demand (kt) Material demand 4 Cobalt 4 Lithium 35 35 3 3 25 25 2 2 15 15 1 1 5 5 NPS EV3@3 NPS 217 23 217 23 Historical Low cobalt chemistry High cobalt chemistry Central estimate EV3@3 Lithium and cobalt demand from electro mobility in 23 will be much higher than current demand Developments in battery chemistry can greatly affect future demand

Policy recommendations

Policies favouring the transition to electric mobility CARBON PRICING PUBLIC BRIDGING THE FUEL ECONOMY LOCAL ACCESS ROAD PRICING OF FUELS PROCUREMENT PRICE GAP STANDARDS REGULATIONS PRIVATE & PUBLIC EVSE ROLLOUT DEMAND-DRIVEN & BUSINESS-DRIVEN EVSE SUCCESSFUL GRID INTEGRATION MATERIAL DEMAND MANAGEMENT SECOND LIFE, END-OF- LIFE AND RECYCLING

Stimulating the adoption of electric vehicles Carbon pricing on transport fuels Targets to phase in zero emission vehicles Public procurement programmes for zero-emission vehicles, providing a pivotal stimulus to market creation and expansion Bridging the price gap (adjusting to the EV uptake) o Differentiated taxes on vehicle purchase, best if based on environmental performances (bonus/malus, feebates) o Circulation advantages (free or discounted parking, free charging and access to priority traffic lanes and reduced charges on the use of transport infrastructure) Fuel economy standards Zero emission incentives (more flexible to technology development) or mandates (higher certitude) Local initiatives to regulate access

Focus on fuel economy standards and ZEV incentives/mandates Fuel-economy and tailpipe CO 2 emissions standards have demonstrated their efficacy to lead to improved ICE vehicle efficiency Standards must be sufficiently stringent to secure timely investment and help ramp-up production and supporting infrastructure Once legislated standards shall not be compromised by changes Standards can be coupled with differentiated purchase taxes Standards can also be coupled with ZEV incentives (more room for flexibility to manage technology uncertainties) or mandates (higher certitude on volumes) Life cycle approach desirable, but there is a risk of overlaps with other regulatory frameworks (such as those regulating emissions for the fuel supply chain) and implementation challenges Need to ensure that power generation and other fuels will also decarbonize (need for complementary measures in the power and fuel production sectors)

Focus on local initiatives Public procurement o Co-benefits for municipalities and businesses: Bulk purchase reduces units costs Helps OEMs scale-up Kick-starts EVSE deployment and the emergence of EVSE-related businesses o Benefits for the public: Demonstrates the technology to the public, makes EVs familiar in the daily environment Facilitates EVSE roll-out and the emergence of publicly accessible infrastructure o Buses: procurement deals allowing to lift capital cost barriers Regulating access o Low-emission zones: complementary to national-level targets and bans, easier to implement, they can have significant impacts o Concerns over clusterizing the market: harmonized labelling can provide clarity to both consumers and OEMs Integrate electrification with Mobility as a Service

Complementing fuel taxes with road pricing In the medium-to-long term, with growing EV sales: o Conventional vehicle sales and activity decreases o Government revenues from gasoline/diesel taxation decrease Alternative road transport taxation solutions will need to emerge: o Km-based tax is a solution to maintain government revenues with multiple technologies on the road o This can include a time/congestion-based component to target vehicles most responsible for infrastructure wear and pollution peaks Current government revenues from fuel taxation would be maintained by o A tax of USD.1/km in US and China o A tax of USD.8/km in Europe and Japan

Supporting the roll out of private chargers Private chargers have a number of advantages: low installation cots, low impact on the power grid (low power, possibility to enable night time charging) Measures suitable for their support include: Financial incentives, aiming to reduce the cost of installation for early adopters. They are also relevant for fleets, and need to be adapted as the market emerges. Regulatory instruments, such as: o Building regulations requiring minimum levels for the number of "EVready parking spots o Changes in property laws to to simplify and accelerate approval procedures for electric car owners to install and use charging infrastructure)

Supporting the roll out of publicly accessible chargers Defining deployment targets (in conjunction with vehicle deployment targets by mode) Direct investment (e.g. for the deployment of a critical mass of chargers, as well as for chargers to provide a minimum service level) Financial support, e.g. through financing from public entities at low interest rates, loan guarantees and other instruments covering the risk of default, and publicprivate partnerships, where the commercial risk is shared among private partners and the public sector Regulations, e.g. in the case of publicly accessible charger availability for individuals who do not have access to private parking The use of open standards is also important for vehicle-charge point communication and payment as a means to enable inter-operability between charging networks, increase innovation and competition, and reduce costs to drivers

Achieving demand- and business-driven EVSE development Business cases are needed: o High-frequency use locations o Complementary revenues streams, such as parking fees and income from commercial activities enabling the use of charging points Government guidance and support/regulations should ensure: the availability of EVSE in less frequented areas ( universal access and public service principles), via: o Public-private partnerships o Mandating EVSE providers to cover certain areas and encourage cross-subsidization of highly used EVSE towards less used EVSE Interoperability features and easy-to-use network for all Strong EV commitments also helps the private sector take ownership of EVSE roll-out (e.g. OEMs dedicated to establishing highway corridors)

Ensuring that EVs are effectively integrated in the electricity grid Power generation: variable renewable capacity additions are breaking records Local power distribution: need to minimize the risk of local grid disruptions and the need for costly grid upgrades Flexible charging is key To accommodate efficiently variable renewable generation (e.g. daytime workplace charging when PV generates most) To release pressure on the grid at high power demand peak hours To avoid grid disruptions locally, provide frequency and load balancing services How? Default vehicle software allowing flexibility Time-of-use pricing Smart-meters Regulatory environment favourable to aggregators Who pays for local grid upgrades? Utility? EV owner x? All EV owners? Everyone?

Managing changes in material demand from EV batteries Challenges (material procurement): o Fluctuating prices, stockpiling o Uncertainty for EV developments and battery technologies o Concentrated extraction (DRC for cobalt) Solutions: o Long-term contracts o Need clarity and certainty over future market key area with national/local governments influence (ZEV mandates, targets, bans) Challenges (social and environmental sustainability): o Environmental impact of mining o Black market/child labour o Extremely untransparent supply chains Solutions: o Multi-stakeholder actions and signals (governments, civil society, NGOs, industry) o Sustainability standards to be developed, labelling

Managing the battery end-of-life treatment Rules over legal responsibility for battery end-of-life (1 st /2 nd /3 rd life) o Risk of disengagement and no battery management chains / recycling o Risk of landfilling in-country or abroad (consumer electronics battery problem) Certifications and traceability schemes along the lifecycle of batteries (material extraction, assembly, use, 2 nd /3 rd life, recycling/disposal) Encourage manufacturing design enabling recycling processes that allow the recovery of high-value materials minimizing costs and energy use o Regulatory framework mandating that batteries are suitable for physical separation? o Need for multi-stakeholder coordination to understand scope for feasibility without hindering technological advances in battery chemistries/manufacturing