Factory Data: MOSFET Controls Supercapacitor Power Dissipation

Similar documents
Tech Tip The Fundamentals of Supercapacitor Balancing

Integrated Inverter/Battery Monitoring System (IBMS)

Solar Powered Wireless Sensors & Instrumentation

Supercapacitors: A Comparative Analysis

CONTENTS TABLE OF CONTENTS... 1 INTRODUCTION... 2 SEC 1 - SPECIFICATIONS... 3 SEC 2 - DESCRIPTION... 5 SEC 3 - OPERATING INSTRUCTIONS...

Best Practices for Managing Fleet Battery Costs By Zena Johnson, PulseTech Products Corp.

Switching & Protecting Electronics in Battery-Powered Systems

What is an Ultracapacitor? APEC Special Presentation Ultracapacitors March Tecate Group. Powerburst Presentation APEC 2011

SENTINEL BATTERY MONITORING

PVP Field Calibration and Accuracy of Torque Wrenches. Proceedings of ASME PVP ASME Pressure Vessel and Piping Conference PVP2011-

Reference: Photovoltaic Systems, p References: Photovoltaic Systems, Chap. 7 National Electrical Code (NEC), Articles 110,

Ultracapacitor/Battery Hybrid Designs: Where Are We? + Carey O Donnell Mesa Technical Associates, Inc.

Battery Capacity Versus Discharge Rate

Supercapacitors as Power Buffers between Energy Harvesters and Wireless Sensors Pierre Mars Battery Power, September 18-19, 2012

Jet Dispensing Underfills for Stacked Die Applications

INSTRUCTIONS FOR TRI-METRIC BATTERY MONITOR May 8, 1996

Saft s Xcelion 6T 28V Lithium Ion Battery for Military Vehicles

Nanopower IoT Power Supply Accurately Monitors Battery Discharge. by Samuel Nork Director, Boston Design Center Linear Technology Corporation

High Effective Availability Decentralized UPS HEAD-UPS (c) 3.0 High Effective Availability Decentralized UPS-HEAD-UPS(c)

Renewable Energy. Presented by Sean Flanagan

SUPER CAPACITOR CHARGE CONTROLLER KIT

Technical Article. How to implement a low-cost, accurate state-of-charge gauge for an electric scooter. Manfred Brandl

THINERGY MEC220. Solid-State, Flexible, Rechargeable Thin-Film Micro-Energy Cell

Why array oversizing makes financial sense

Reach Beyond Traditional Powering Scenarios with New Ultralow I Q Buck-Boost Converters

Performance of Batteries in Grid Connected Energy Storage Systems. June 2018

Solar Power Energy Harvesting Electrical Integration

Robotic Device for Cleaning of Photovoltaic Arrays V2

Measuring Battery Life on Battery Powered Medical Devices

BASIC ELECTRICAL MEASUREMENTS By David Navone

Power Management Solution: Constant Voltage (CV) Pulse Charging of Hybrid Capacitors

INTRODUCTION. Specifications. Operating voltage range:

MC LED Array System. Instruction Manual. Contact us: (858)

TOTALFLOW Technical Bulletin 59 Lead Acid Battery Inspection and Maintenance Procedures

Understanding The HA2500's Horiz Driver Test

HIGH VOLTAGE vs. LOW VOLTAGE: POTENTIAL IN MILITARY SYSTEMS

Li-Ion Charge Balancing and Cell Voltage Monitoring for Performance and Safety

WIMA SuperCap Presentation

LEADING BATTERY ENERGY STORAGE SOLUTIONS AVAILABLE FROM FREEDOM WON (DATA SHEETS AVAILABLE UPON REQUEST) Freedom Lite Home & Business

White Paper. Application of Resistive/Reactive Load Banks for kva Testing

Electricity MR. BANKS 8 TH GRADE SCIENCE

Introducing a Green Option for Barcode Scanning

Need Uninterrupted Power? Let A Supercapacitor Come To The Rescue

ULTRACAPACITORS FOR UNINTERRUPTIBLE POWER SUPPLY (UPS)

Care and Feeding of Rechargeable Batteries. Chris Capener March 1, 2012

Goals. Introduction (4.1) R = V I

CHAPTER 19 DC Circuits Units

Final Year Project Final Presentation Title: Energy Conversion for low voltage sources.

How to: Test & Evaluate Motors in Your Application

Lithium battery charging

Using the LCT100 for Load Cell Troubleshooting

Figure 1b: Daily Production Profile Non Power Limiting Day

Lithium-ion battery systems for ABB UPS solutions Reliable, lightweight and compact UPS energy storage for critical applications

How supercapacitors can extend alkaline battery life in portable electronics

A novel 3D TCAD simulation of a thermoelectric couple configured for thermoelectric power generation. Staffordshire University (UK) ICREPQ 11

Generator Efficiency Optimization at Remote Sites

High Efficiency Battery Charger using Power Components [1]

1/7. The series hybrid permits the internal combustion engine to operate at optimal speed for any given power requirement.

45V MODULE ENDURANCE HIGH POWER 45V LIC MODULE. Powered by

NorthStar Battery Company DCN: SES DCR: 1548-S09 Date:

Dynamic power path management in battery chargers: a highly integrated implementation

Orion 2 BMS Operation Manual

Microgrid with Solar Power and Fuel Cell Technology

Chek-A-Cell TM TestEquipmentDepot.com. Instruction Manual Rev A 8/12

Cold-Weather Modifications of Plug-in Hybrid Electric Vehicles (PHEV) for Manitoba Operation

Winter 2016 Conference


Variable Intake Manifold Development trend and technology

POWER PROFET A simpler solution with integrated protection for switching high-current applications efficiently & reliably

Name: Class: Date: Number :

Storage-less and converter-less maximum power tracking of photovoltaic cells for a nonvolatile microprocessor

Data Centres Using resources to support grid systems Another revenue stream?

Give Your Battery A Rest With A Supercapacitor-based Power Subsystem

Lithium Polymer Battery Packs for RC Use FAQ s By Chris Nicastro 3/9/2012

Programming of different charge methods with the BaSyTec Battery Test System

EMERGENCY EGRESS LIGHTING POWER SUPPLY BATTERY

Bridge Time UPS Batteries: A Scalable Alternative to Flywheels by

Introduction: Supplied to 360 Test Labs... Battery packs as follows:

ECET Distribution System Protection. Overcurrent Protection

The Single Spool Core: A proven design for performance and simplicity

Physical Science. Chp 22: Electricity

Supercapacitors for Micro-Hybrid Automotive Applications. Anthony Kongats, CEO, CAP-XX Ltd 18 th April 2013

SECTION #1 - The experimental design

LS Mtron Ultracapacitor Stand: 2015

XLM 62V Energy Storage Module

Second Generation Bicycle Recharging Station

How to use the Multirotor Motor Performance Data Charts

Overview. Battery Monitoring

B How much voltage does a standard automobile battery usually supply?

Achieving the Highest Power Density in the Smallest Footprint

TECHNICAL WHITE PAPER

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

Chapter 1: Battery management: State of charge

Segen offer the SE2200, SE3000, SE3500, SE3680, SE4000, SE5000 and SE6000 single-phase inverters at great value prices.

Q2. The diagram shows a network of four 2 Ω resistors. The effective resistance, in Ω, between X and Y is A 0.5 B 1.2 C 1.7. D 2.

AN INTRODUCTION TO THE BENEFITS OF IMPRES ENERGY SOLUTIONS

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

EV Power - Battery Control Unit Instructions. 8 Cell 24V

Battery Bank for Wind Turbine. Project Proposal Prash Ramani, Marcos Rived TA: Katherine O Kane

INTRODUCING THE LEAD CRYSTAL BATTERY

Transcription:

Factory Data: MOSFET Controls Supercapacitor Power Dissipation By ROBERT CHAO, President and CEO, Advanced Linear Devices Recently revealed independent testing data shows that SAB MOSFET arrays designed into supercapacitor applications of two or more cells can reduce leakage current. By reducing leakage current, the MOSFETs automatically balance the voltage in each supercapacitor cell and ensure its long life and reliability. Additionally, reducing leakage current is an effective way to control power dissipation in supercapacitor cells, which is important for applications like energy harvesting and long-life primary battery based circuits that require the utmost efficiency. Supercapacitor voltage needs to be controlled to less than its rated voltage; without control overvoltage will cause damage to the supercapacitor cells which will subsequently result in failure. Without control, the failure may happen quickly or may take several weeks or even months but it will happen. When MOSFETs are used to reduce leakage, the supercapacitor voltage can be balanced automatically. Using MOSFETs when stacking supercapacitor cells used in series, as this applies to as few as two or over 100 cells, there are also additional benefits. A MOSFET balancing circuit lowers component count, reducing cost, saves board space and power dissipation compared to both resistor-and op amp-based voltage balancing circuits. A supercapacitor manufacturer CapXX recently conducted testing to evaluate the SAB MOSFET functionality. The figure below demonstrates the use of Advanced Linear Devices ALD910023 array in a series stack that results in voltage balance.

Figure 1: Courtesy CapXX In Figure 1, the graph shows that overvoltage has been mitigated; it is simultaneously balancing the supercapacitor and controlling that voltage for four different sets of samples. Below is a graph showing leakage current for two CAP-XX GS208 supercapacitors used in a module and the resulting reduction in leakage current when an ALD 910023 MOSFET is integrated into the circuit. (Green line).

Figure 2: Courtesy CapXX Figure 2, shows that the leakage current when controlled by the SAB MOSFET s is actually reduced and in some cases to less than zero. For energy harvesting applications this is an important development. The MOSFET is actually saving leakage current rather than dissipating power. Additionally, there are significantly fewer problems in the supercapacitor module because the energy is not trickling out. Any energy that is not saved will hurt the ability to capture, store and discharge power when it is required. In many cases, energy harvesting applications are capturing very small amounts of energy over time. If this energy is spent in balancing the voltage of supercapacitors, there would be very little left to discharge from the supercapacitor. Previously, when balancing supercapacitors, resistor or op-amp based circuits will always burn extra power. For applications requiring energy efficiency, the goal is to reduce this added power to as low as possible. Designers who have been balancing supercapacitor before with op amps and resistors, experience added power burn to achieve the desired results. These added power dissipation could, for certain applications, significantly affect the effectiveness of the supercapacitor circuit or its use. The SAB MOSFET, in contrast, does not burn any additional power. That s important in energy harvesting because the whole intent of capturing the energy is to hold it in place until it needs to be delivered in some way. If a backup power system relies on an energy

harvesting scheme, than it is important that the supercapacitors dissipate as little power as possible, so that it can hold a charge for as long as needed and maximize the energy capture function. The two Figures above, together show that SAB MOSFETs balance supercapacitors, protecting them from over voltage and also reduce power dissipation at the same time, this is a key benefit of using a SAB MOSFET. Currents are always passing through any supercapacitor. It is often called leakage current because it is internal to the supercapacitor and is often not controlled. However, leakage current is actually a form of power dissipation. As an example, charge current can be measured in amperes, whereas, leakage current is only micro amperes. It is 100 times or 1,000 times less current. Nevertheless, it operates on a different scale. This charged current can discharge in a second whereas leakage current may be small but it can dissipate over thousands or even millions of seconds between charging and discharging events. Regardless, the magnitude of the leakage current integrated over a long period of time can be just as high as discharge current in a short burst. If there are multiple supercapacitors designed in a series, each one will have different leakage or power dissipation rates that will cause a voltage imbalance. The leakage current is what causes the supercapacitors voltage imbalance. When an application requires more voltage than a single 2.7 volt cell can provide, several supercapacitors are stacked in series to meet the required voltage. An essential part of ensuring long operational life for these stacks is to balance each cell to prevent leakage current from causing damage to other cells through over-voltage. MOSFETS offer the smallest, simplest solution because they enable supercapacitors to be stackable and scalable. Applications for supercapacitor stacks are rapidly growing, but the problem of leakage current and overvoltage is not well known. Designers need a clear path forward to address this potential problem. The use of supercapacitors are gaining momentum as replacements for rechargeable batteries and onetime use batteries in backup power systems because of the unlimited amount of charge and discharge cycles in comparison to batteries with a limited life cycle. An example of backup power systems highlights the designers need for higher reliability and demonstrates why supercapacitors offer such great promise. Backup power supply for a mission-critical computer terminal is where power availability is essential. If the power goes out, a backup power system must provide enough juice to store vital information in memory before all the power is gone. Batteries used in backup power systems have a limited lifespan because they die after a few hundred or few thousand charge/discharge cycles. If a battery fails after two or three years, then the backup power supply won t retain information during power loss. Supercapacitors offer a clear advantage with hundreds of thousands of charge/discharge cycles. They are ideal for either buffering or replacing batteries because they can reliably supply backup power for the entire service life of a system. SAB MOSFETs, by way of comparison, would outlast even the supercapcitors it balances by an order of magnitude.

For more information on how and why SAB MOSFETs protect supercapacitors from over-voltage, refer to this article New method uses MOSFETs to balance Supercaps in a series stack, in Electronic Products published December 18,2014: http://www.electronicproducts.com/discrete_semiconductors/transistors_diodes/new_method_uses_ MOSFETs_to_balance_Supercaps_in_a_series_stack.aspx?terms=ALD%20SAB%20MOSFET # # #