Performance Analysis of Grid Connected Wind Energy Conversion System with a PMSG during Fault Conditions

Similar documents
Comparative Analysis of Integrating WECS with PMSG and DFIG Models connected to Power Grid Pertaining to Different Faults

Dynamic Analysis of Grid Connected Wind Turbine with a Permanent Magnet Synchronous Generator during Fault Conditions

Wind Energy Conversion System using Back to Back Power Electronic Interface with DFIG

Using energy storage for modeling a stand-alone wind turbine system

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM

Studies regarding the modeling of a wind turbine with energy storage

COMPARISON BETWEEN ISOLATED AND GRID CONNECTED DFIG WIND TURBINE

Model Predictive Control of Back-to-Back Converter in PMSG Based Wind Energy System

A Comparative Study of Constant Speed and Variable Speed Wind Energy Conversion Systems

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

Control Scheme for Grid Connected WECS Using SEIG

A Variable Speed Wind Generation System Based on Doubly Fed Induction Generator

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

Squirrel cage induction generator based wind farm connected with a single power converter to a HVDC grid. Lluís Trilla PhD student

Wind Generation and its Grid Conection

Neural network based control of Doubly Fed Induction Generator in wind power generation.

International Journal of Advance Research in Engineering, Science & Technology

Anupam *1, Prof. S.U Kulkarni 2 1 ABSTRACT I. INTRODUCTION II. MODELLING OF WIND SPEED

ASSESSING BEHAVOIR OF THE OUTER CROWBAR PROTECTION WITH THE DFIG DURING GRID FAULT

Statcom Operation for Wind Power Generator with Improved Transient Stability

Simulation and Analysis of a DFIG Wind Energy Conversion System with Genetic Fuzzy Controller

ENHANCEMENT OF ROTOR ANGLE STABILITY OF POWER SYSTEM BY CONTROLLING RSC OF DFIG

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011

Fuzzy based STATCOM Controller for Grid connected wind Farms with Fixed Speed Induction Generators

Wind Farm Evaluation and Control

Wind Power Plants with VSC Based STATCOM in PSCAD/EMTDC Environment

Study of DFIG based Wind Turbine for Reactive Power Generation Capability

Dynamic Response Analysis of Small Wind Energy Conversion Systems (WECS) Operating With Torque Control versus Speed Control

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

PERFORMANCE ANALYSIS OF SQUIRREL CAGE INDUCTION GENERATOR USING STATCOM

Possibilities of Distributed Generation Simulations Using by MATLAB

K. M. Aboras and A. A. Hossam El-din Ahmed H. H. Ali. Egypt-Japan University of Science and Technology

FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE

COMPARISON OF PID AND FUZZY CONTROLLED DUAL INVERTER-BASED SUPER CAPACITOR FOR WIND ENERGY CONVERSION SYSTEMS

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz

Matlab Modeling and Simulation of Grid Connected Wind Power Generation Using Doubly Fed Induction Generator

Modeling Of DFIG and Improving the LVRT Capability Of System Using Crowbar And Battery Energy Storage System

Performance Analysis of DFIG Based Wind Power Generation under Unbalanced Conditions

APPLICATION OF VARIABLE FREQUENCY TRANSFORMER (VFT) FOR INTEGRATION OF WIND ENERGY SYSTEM

Modelling and Simulation of DFIG based wind energy system

Performance of Low Power Wind-Driven Wound Rotor Induction Generators using Matlab

Coordinated Control of DFIG under Grid Fault Condition in Wind Energy Conversion System

Simulation Modeling and Control of Hybrid Ac/Dc Microgrid

Workshop on Grid Integration of Variable Renewable Energy: Part 1

ANALYSIS OF WIND AND PV SYSTEMS 4.1 Wind Energy Conversion Systems (WECS)

CONTROL AND PERFORMANCE OF A DOUBLY-FED INDUCTION MACHINE FOR WIND TURBINE SYSTEMS

Converteam: St. Mouty, A. Mirzaïan FEMTO-ST: A. Berthon, D. Depernet, Ch. Espanet, F. Gustin

CHAPTER 5 ACTIVE AND REACTIVE POWER CONTROL OF DOUBLY FED INDUCTION GENERATOR WITH BACK TO BACK CONVERTER USING DIRECT POWER CONTROL

Grid Stability Analysis for High Penetration Solar Photovoltaics

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System

Hybrid Energy Powered Water Pumping System

Design and Modelling of Induction Generator Wind power Systems by using MATLAB/SIMULINK

Asian Journal on Energy and Environment ISSN Available online at

Co-Ordination Control and Analysis of Wind/Fuel Cell based Hybrid Micro-Grid using MATLAB/Simulink in Grid Connected Mode

Transient Stability Improvement of a FSIG Based Grid Connected wind Farm with the help of a SVC and a STATCOM: A Comparison

Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG)

Combined Input Voltage and Slip Power Control of low power Wind-Driven WoundRotor Induction Generators

Wind Turbine Emulation Experiment

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

Doubly fed electric machine

Journal of American Science 2015;11(11) Integration of wind Power Plant on Electrical grid based on PSS/E

Effect of crowbar resistance on fault ride through capability of doubly fed induction generator

International Journal of Advance Research in Engineering, Science & Technology. Comparative Analysis of DTC & FOC of Induction Motor

Modelling and Simulation of DFIG with Fault Rid Through Protection

Battery Charger for Wind and Solar Energy Conversion System Using Buck Converter

APPLICATION OF STATCOM FOR STABILITY ENHANCEMENT OF FSIG BASED GRID CONNECTED WIND FARM

Synchronous Motor Drives

Design and Control of Lab-Scale Variable Speed Wind Turbine Simulator using DFIG. Seung-Ho Song, Ji-Hoon Im, Hyeong-Jin Choi, Tae-Hyeong Kim

International Journal of Advance Research in Engineering, Science & Technology

Simulation of Indirect Field Oriented Control of Induction Machine in Hybrid Electrical Vehicle with MATLAB Simulink

VECTOR CONTROL AND DIRECT POWER CONTROL METHODS OF DFIG UNDER DISTORTED GRID VOLTAGE CONDITIONS

Modelling of Wind Turbine System by Means of Permanent Magnet Synchronous Generator Manjeet Kumar 1, Gurdit Singh Bala 2

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK

Available online at ScienceDirect. Energy Procedia 42 (2013 ) Mediterranean Green Energy Forum MGEF-13

A New Control Algorithm for Doubly Fed Induction Motor with Inverters Supplied by a PV and Battery Operating in Constant Torque Region

CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM

Vector Control of wind conversion system based on a

COMPARISON OF DIFFERENT METHODS FOR EXCITATION OF SYNCHRONOUS MACHINES

PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER

Maximum Power Point Tracking in DFIG based Wind Energy Conversion System using HCS Algorithm

Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed

Fault Rid Through Protection of DFIG Based Wind Generation System

Integration of Large Wind Farms into Electric Grids

Chapter 2 Literature Review

Modeling and Simulation of BLDC Motor using MATLAB/SIMULINK Environment

SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC

Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC

Battery Energy Storage System addressing the Power Quality Issue in Grid Connected Wind Energy Conversion System 9/15/2017 1

Increasing the Battery Life of the PMSG Wind Turbine by Improving Performance of the Hybrid Energy Storage System

DUAL BRIDGE RECTIFIER FOR PMSG VARIABLE SPEED WIND ENERGY CONVERSION SYSTEMS

Grid Connected DFIG With Efficient Rotor Power Flow Control Under Sub & Super Synchronous Modes of Operation

Power Electronics & Drives [Simulink, Hardware-Open & Closed Loop]

ECEN 667 Power System Stability Lecture 19: Load Models

Sliding Mode Control of a Variable Speed Wind Energy Conversion System based on DFIG

Analysis of Low Voltage Ride through Capability of FSIG Based Wind Farm Using STATCOM

Combined Inertia and De-loading Frequency Response Control by Variable Speed Wind Turbines

ELECTRICAL POWER SYSTEMS 2016 PROJECTS

ENERGY STORAGE FOR A STAND-ALONE WIND ENERGY CONVERSION SYSTEM

Transcription:

International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-2, Issue-4, April 2013 Performance Analysis of Grid Connected Wind Energy Conversion System with a PMSG during Fault Conditions Sasi. C, G.Mohan Abstract Wind energy, among all of the renewable energy sources, has made rapid developments and significant inroads in electrical power systems. With the increased use of wind energy conversion systems (WECSs), several technologies have been developed. Since WECSs are more cost competitive, the comparison of different wind generator systems is the need of the hour. Permanent magnet generators employing these technologies have some significant advantages over conventional generators, such as no need of excitation, low volume and weight, high precision, and deletion of the gearbox. The aim of the paper is to analyse the performance of grid connected wind energy conversion system with a permanent magnet synchronous generator during fault conditions. The model includes a PMSG model, a pitch-angled controlled wind turbine model, power electronic converters and a power system model. A phase to phase fault is simulated on 132 KV bus of power system model and the measured results obtained from grid connection of the permanent magnet synchronous generator are presented followed by some conclusions. Index Terms Permanent Magnet Synchronous Generator, Power Electronic Converter. Nomenclature PMSG Permanent Magnet Synchronous Generator WECS Wind Energy Conversion System ω B Rotational speed of turbine P w Power from the wind Ρ Air density R Blade radius V ω Wind speed C p Power coefficient λ Tip speed ratio β Blade pitch angle J Moment of inertia Pa Accelerate mechanical power u Voltage R Resistance i Current ω Stator electrical frequency s Rotor slip L s Stator leakage inductance L r Rotor leakage inductance M Mutual inductance T e Electromagnetic torque Shaft Mechanic Torque T m Manuscript received on April, 2013. Sasi.C, Department of Electrical Engineering, Annamalai University, Cuddalore, India. Dr.G.Mohan, Department of Electrical Engineering, Annamalai University, Cuddalore, India. I. INTRODUCTION The renewable energy sources are one of the biggest concerns of our times. High prices of oil and global warming make the fossil fuels less and less attractive solutions. Wind power is a very important renewable energy source. It is free and not polluter unlike the traditional fossil energy sources. It obtains clean energy from the kinetic energy of the wind by means of the wind turbine. The wind turbine transforms the kinetic wind energy into mechanical energy through the drive train and then into electrical energy by means of the generator. A growing proportion of energy is being met all over the world by electricity. This trend will be increasing day by day as the demand for electricity is increasing. This demand will have an increased impact on developing countries because their industrial progress will be based on modern technological developments in power generation. During recent years, due to the depletion of fossil fuels and the environmental problems caused by the use of fossil fuels, renewable energy sources have become the most sought resources. Wind is one of the sources of renewable energy [1-3]. Wind power is converted to electricity by wind turbine generators. Various technologies have been developed in wind energy conversion systems (WECSs) as the result of the effort to further improve WECSs based on the permanent magnet generator (PMG). Induction generators are most widely used in WECSs. Although they are robust and inexpensive, the space-consuming capacitors are bulky and expensive [4 & 5]. Induction generators with step-up gearboxes have low efficiency at low speeds [6]. When compared to conventional generators, the PMGs have the advantages of being robust in construction, very compact in size, not requiring an additional power supply for magnetic field excitation, and requiring less maintenance. A variable-speed WECS including a PMSG offers advantages over the constant-speed approach, such as maximum power-point tracking capability and reduced acoustic noise at lower wind speeds [7 & 8]. This paper describes the operation and control of permanent magnet synchronous wind generators. The generator is connected to the power network by means of a fully controlled frequency converter, which consists of three phase rectifier, an intermediate dc circuit, and a PWM inverter. The whole system is connected to AC grid and a phase to phase fault is simulated on 132 KV line. Simulations have been conducted with the software MATLAB/Simulink to validate the model and the control schemes [9-10]. II. MODELING OF WIND TURBINE WITH PMSG The WECS considered for analysis consist of a PMSG driven by a wind turbine, three phase rectifier, an intermediate 356

Performance Analysis of Grid Connected Wind Energy Conversion System with a PMSG during Fault Conditions dc circuit, and a PWM inverter. Fig.1 shows a schematic of the power circuit topology of a variable speed wind turbine system that will be discussed in this paper. Since the wind is the intermitted source of energy, the output voltage and frequency from generator will vary for different wind velocities. The variable output ac power from the generator is first converted into dc using the rectifier. The available dc power is fed to the grid at the required constant voltage and frequency by regulating the modulation index of the inverter. phase synchronous reference frame in which the q-axis is 90 ahead of the d-axis with respect to the direction of rotation. The electrical model of PMSG in the synchronous reference frame is given as: di dt v Ri L d d d q pwriq (6) Ld Ld Ld di q dt v Ri L pw q q d r pwrid (7) Fig. 1 Wind Energy Conversion System The mechanical power available from a wind turbine 2 3 P 0.5R V, w C p (1) 2 V 2 0.17 0.022 5.6 e 1 C p (2) (3) B where P w is the extracted power from the wind, ρ is the air density, R is the blade radius and V ω is the wind speed. C p is called the power coefficient and is given as a nonlinear function of the parameters tip speed ratio λ and blade pitch angle β. The calculation of the performance coefficient requires the use of blade element theory. ω B is the rotational speed of turbine. Usually C p is approximated as [11]-[12], 2 3 C p (4) where α, β and γ are constructive parameters for a given turbine. The torque developed by the windmill is C 3 2 p V T 0.5 ur (5) t The power coefficient Cp v/s Curves for various values of pitch angles increasing by step of 2 deg are shown in Fig.2. The dashed line represents Cp for pitch angle 0 degree. It is clear from Fig. 2 that as the value of λ increases, maximum value of Cp decreases. Fig.3 shows wind turbine characteristics for w=1p.u. and pitch angle increasing by step of 2 deg. It shows power P (pu), λ and Cp curves v/s wind speed in m/s. The total numbers of turbines were five. Fig. 3 Wind Turbine Characteristics T e 1.5p i L i i (8) q dq d q where all quantities in the rotor reference frame are referred to the stator., Ld - q and d axis inductances R - resistance of the stator windings iq, id - q and d axis currents vq, vd - q and d axis voltages ωr - angular velocity of the rotor λ - flux amplitude induced by the permanent magnets in the stator phases p - number of pole pairs Te - electromagnetic torque. The and Ld inductances represent the relation between the phase inductance and the rotor position due to the saliency of the rotor. The inductance measured between phase a and b (phase c is left open) Lab is given by: L L cos 2 Lab Ld q d e (9) 3 where θe represents the electrical angle. Mechanical system for the model is: dw dr r 1 Te Fwr Tm (10) J d dt w r where J - combined inertia of rotor and load F - combined viscous friction of rotor and load θ - rotor angular position Tm - Shaft mechanical torque. (11) Fig. 2 Cp v/s λ Curves for Various Values of Pitch Angles 357

Table 1. Design Parameters of PMSG Design Parameters PMSG P nom (VA) 2 x 10 6 X d (p.u) 1.3050 X d (p.u) 0.2520 Xq (p.u) 0.4740 X q (p.u) 0.2430 T d (p.u) 0.0681 T q (p.u) 0.0513 R r (p.u) 0.0060 Table 1 shows design parameters of PMSG. Fig.4 to Fig.7 shows PM synchronous generator characteristics. Fig.4 shows mechanical power applied to the Permanent Magnet generator. Generator rotor speed is shown in Fig.5. Phasor currents I a, I b, I c flowing into the stator terminals in pu based on the generator rating are shown in Fig.6. Fig.7 presents phasor voltages (phase to ground) Va, Vb, Vc at the Wind Turbine Permanent magnet synchronous generator terminals in pu based on the generator rating. Fig. 5 Generator Rotor Speed International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-2, Issue-4, April 2013 III. POWER SYSTEM MODEL WITH CONVERTER CONTROL SYSTEM A 10 MW wind farm is connected to a 33-kV distribution system exports power to a 220-kV grid [13], A-B fault at 104 ms for duration 50 ms is simulated at 132 KV line. The wind speed is maintained constant at 15 m/s. The control system of the DC-DC converter is used to maintain the speed at 1 pu. The reactive power produced by the wind turbine is regulated at 0 Mvar. A. Grid-side Converter Control The GSC is used to control the power flow in order to keep the DC-link voltage constant. The control strategy is based on the control of the DC bus voltage which kept constant and the control of line currents in order to regulate the power delivered by the stator circuits to the grid. For this, a filter was designed and implemented between the inverter and the grid. Measurement systems measuring the d and q components of AC positive sequence currents to be controlled as well as the DC voltage V dc. An outer regulation loop consisting of a DC voltage regulator. The output of the current I dgc _ ref for the current regulator (I dgc = current in phase with grid voltage which controls active power flow). An inner current regulation loop consisting of a current regulator. The current regulatory controls the magnitude and phase of the voltage generated by converter C grid (V gc ) from the I dgc_ref produced by the DC voltage regulator and specified I q_ref reference. The current regulator is assisted by feed forward terms which predict the C grid output voltage. AC voltage regulator and VAR regulator is also there. The converters data for one turbine of Grid Side Coupling Inductor L= 0.15p.u., R= 0.003p.u., Line Filter Capacitor (Q=50) is 150000 var, Nominal DC Bus Voltage is 1100V, DC Bus Capacitor is 0.09F and Boost Converter Inductance L=0.0012H,R=0.005Ohm. The maximum value of this current is limited to a value defined by the converter maximum power at nominal voltage. When I dgc_ref and I q_ref are such that the magnitude is higher than this maximum value the I q_ref component is reduced in order to bring back the magnitude to its maximum value. V dc_ref DC Voltage V dc Regulator + I dgc_ref Fig. 6 Stator Phasor Currents I abc I c - Current - Regulator Current I dc V c Measurement I qgc + I q_ref Fig. 8. Voltage and Current regulator of Converter Fig. 7 Stator Phasor Voltage The control parameters for one turbine, DC Bus Voltage Regulator Gains K p is 1.1 and,k i is 27.5, Grid Side Converter VAR Regulator gain [K i ] is 0.05, Grid Side Converter Voltage Regulator Gain [K i ] is 2, Grid Side Converter Current Regulator Gains K p is 1and K i is 50, Pitch Controller Gain [K p ] is 15, Pitch Compensation Gains K p is 1.5 and K i is 6, 358

Performance Analysis of Grid Connected Wind Energy Conversion System with a PMSG during Fault Conditions Maximum Pitch Angle is 27 deg and Maximum Rate of Change of Pitch Angle is 10 (deg/s). The pitch angle is kept constant at zero degree until the speed w r reaches desired speed of the tracking characteristic w d. Beyond w d, the pitch angle is proportional to the speed deviation from desired speed. The control system is illustrated in the Fig. 9. + W r Pitch Angle Maximum - W d Pitch Angle Gain Pitch angle 0 Fig. 9. Pitch Angle control system Fig. 12. DC Output Voltage IV. SIMULATION RESULTS All the modeling is done in Matlab Simulink with simulation type discrete having sample time 2x10-6 secs. In this section the measurement results for the grid connection of the permanent magnet synchronous generator using the power electronic converter described above are presented. Phasor voltages V a, V b, V c flowing into the grid-side converter in pu based on the generator rating are shown in Fig.10, while Fig.11 presents phasor currents I a, I b, I c flowing into the grid-side converter in pu based on the generator rating. As shown in Fig.12, DC voltage oscillates at t=0.104 due to phase to phase fault on 132KV line. During the voltage sag the control systems try to regulate DC voltage system and DC voltage is recovered after sometime. Fig. 13. Voltage at 440V Bus Fig. 14. Voltage at 132KV Bus Fig. 10. Phasor Voltages at Grid Side Converter Fig. 15. Currents at 440V Bus Fig. 11. Phasor Currents at Grid Side Converter Voltages and current at different locations of power system are presented in Fig.13 to Fig.16. The system voltages and currents oscillate due to fault, but they return to their normal behavior quickly. The magnitude (%) relative to fundamental at various harmonic frequencies at different buses B1, B2, B3 and B4 is presented as bar graph in Fig. 17 to Fig. 20. 359

International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-2, Issue-4, April 2013 Fig. 16. Currents at 220KV Bus Fig. 17. Magnitude (%) Relative to Fundamental v/s frequency at Bus B1 Table 2 and Table 3 show voltage/current THDs at different buses B1, B2, B3 and B4. It is seen that values of THDs are much smaller. The wind turbine generator power is shown in Fig.21. The reactive power of wind turbine generator is presented in Fig.22. The control system regulates the reactive power to 0 MVAR. Fig. 20. Magnitude (%) Relative to Fundamental v/s frequency at Bus B4 Table 2. Voltage THDs at Different buses B1, B2, B3 and B4 Output Voltage THD (% Relative to Fundamental) B1 0.32 B2 0.065 B3 0.058 B4 0.01 Fig. 21. Output Power Table 3. Current THDs at Different buses B1, B2, B3 and B4 Fig. 18. Magnitude (%) Relative to Fundamental v/s frequency at Bus B2 Output Current THD (% Relative to Fundamental) B1 4.33 B2 3.03 B3 0.09 B4 0.05 Fig. 19. Magnitude (%) Relative to Fundamental v/s frequency at Bus B3 Fig. 22. Output Reactive Power 360

Performance Analysis of Grid Connected Wind Energy Conversion System with a PMSG during Fault Conditions V. CONCLUSION As the level of penetration of the wind power is increasing, it is necessary to analyze and evaluate the impacts of the wind power to the power system. Interconnecting wind power influences the performance of the power system in the light of stability, reliability, and quality. The paper presents the complete model of the variable speed wind turbine with PMSG connected to AC grid through converters with control system. At the same time, the paper addresses control schemes of the wind turbine in terms of pitch angle and AC and DC voltage regulation, VAR regulation and current regulation of converters. The pitch angle control is actuated in high wind speeds and uses wind speed signals and electric power as the inputs. The simulation results show that in event of transient fault, the output reactive power is regulated at 0 MVAR and the control system also brings DC voltage to 1100V. The results obtained indicate that the variations in currents and voltages at different locations in power system model. They return to normal behavior after experiencing oscillations for much less time. REFERENCES [1] N. Yamamura, M. Ishida, T. Hori, A simple wind power generating system with permanent magnet type synchronous generator, Proceedings of IEEE International Conference on Power Electronics and Drive Systems, Vol. 2, pp.849-854, 1999. [2] K. Tan, S.Islam, Optimum Control strategies in energy conversion of PMSG wind turbine system without mechanical sensors, IEEE Transactions on Energy Conversion, Vol. 19, pp. 392-399, 2004. [3] B.S.Borowy, Z.M.Salameh, Dynamic response of a stand-alone wind energy conversion system with battery energy storage to a wind gust, IEEE Transactions on Energy Conversion, Vol. 12, pp. 73-78, 1997. [4] A.B.Raju, K.Chatterjee, B.G.Fernandes, A simple maximum power point tracker for grid connected variable speed wind energy conversion system with reduced switch count power converter, IEEE Power Electronics Specialist Conference, Vol. 2, pp. 748-753, 2003. [5] M.Chinchilla, S.Arnaltes, J.C.Burgos, Control of permanent-magnet generators applied to variable-speed windenergy systems connected to the grid, IEEE Transactions on Energy Conversion, Vol. 21, pp. 130-135, 2006. [6] S.M.Barakati, M.Kazerani, J.D.Aplevich, Maximum power tracking control for a wind turbine system including a matrix converter, IEEE Transactions on Energy Conversion, Vol. 24, pp. 705-713, 2009. [7] N.Yamamura, M.Ishida, T.Hori, A simple wind power generating system with permanent magnet type synchronous generator, IEEE International Conference on Power Electronics and Drive Systems, Vol. 2, pp. 849-854,1999. [8] H.Polinder, F.F.A. Vander Pijl, G.J.Devilder, P.Tavner, Comparison of direct-drive and geared generator concepts for wind turbines, IEEE Transactions on Energy Conversion, Vol. 21, pp. 725-733, 2006. [9] J.G. Slootweg, S. W. H. de Haan, H. Polinder, and W. L. Kling, Aggregated Modelling of Wind Parks with Variable Speed Wind Turbines in Power System Dynamics Silulations, in Proc. 14th Power Sys. Comp. Conf., Sevilla, Spain, Jun. 2002. [10] Z. Ren, Z. Yin, W. Bao, Control Strategy and Simulation of Permanent Magnet Synchronous Wind Power Generator, International Conference on Energy and Environment Technology, Guilin, China, October 16-October 18, 2009, vol. 1, pp.568-571. [11] Perdana, O.Carlson, and J.Persson, Dynamic Response of Grid Connected Wind Turbine with Doubly Fed Induction Generator during Disturbances, Nordic Workshop on Power Industrial Electron, Trondhemin,pp 1-7,2004. [12] M.A.Mayosky, and G.I.E. Cancelo, Adaptive Control o of Wind Energy Conversion System Using Radial Basis Neural Network, Neural Network Proceeding, IEEE World Conference on Computational Intelligence, Vol. 2, 4-9,May 1998. [13] Sasi.c and G.Mohan, Power quality improvement of grid connected wind energy conversion system during transient fault, International Journal on Energy Conversion, Vol. 1, No. 1, pp. 28-34, Jan 2013. Sasi.C (1981) received Bachelor of Engineering in Electrical and Electronics Engineering (2002), Master of Engineering in Power System Engineering (2008) and he is working as Assistant Professor in the Department of Electrical Engineering, Annamalai University, Annamalai nagar, Tamilnadu, India. He is currently pursuing Ph.D degree in Electrical Engineering from Annamalai University. His research interests are in power Systems, renewable source of energy, and filter design., Department of Electrical Engineering, Annamalai University, Annamalainagar-608002, Tamilnadu, India. Dr.G.MOHAN (1963) received B.Tech in Instrument Technology (1986), Master of Engineering in Power System Engineering (1999) and Ph.D in Electrical Engineering (2010) from Annamalai University, Annamalainagar. He is working as Professor in the Department of Electrical Engineering, Annamalai University, Annamalainagar. His research interests are in Power Systems, and Renewable source of Energy, Department of Electrical Engineering, Annamalai University, Annamalainagar 608002, Tamilnadu, India. 361