Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester

Similar documents
Material Science Research India Vol. 7(1), (2010)

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

Project Reference No.: 40S_B_MTECH_007

Automotive Technology

Ester (KOME)-Diesel blends as a Fuel

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

Rubber Seed Oil as an Alternative Fuel for CI Engine: Review

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel

Experimental Study of Linseed Oil as an Alternative Fuel for Diesel Engine

EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

Research Article Experimental Investigation of Performance and Emission Characteristics of Mahua Biodiesel in Diesel Engine

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

S S Ragit a *, S K Mohapatra a & K Kundu b. Indian Journal of Engineering & Materials Sciences Vol. 18, June 2011, pp

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends

Investigation of the Performance and Emission Characteristics of CI Engine Using Simarouba Biodiesel as Fuel

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 57-62(2015)

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

Performance, emission and combustion characteristics of fish-oil biodiesel engine

Performance and Emissions Study in Diesel Engines Using Cotton Seed Biodiesel

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Government Engineering College, Bhuj.

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

TO INVESTIGATE THE PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE USING MUSTARD OIL BIODIESEL AS FUEL

Effect of biodiesel and its blends with oxygenated additives on performance and emissions from a diesel engine

Performance and Emission Analysis on Single Cylinder Diesel Engine Using Dual Fuels

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

PERFORMANCE AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE WITH A ZIRCONIUM DIOXIDE-COATED PISTON AND NERIUM AND MAHUA METHYL ESTERS USED AS FUELS

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

Tamanu (Calophyllum Inophyllum) Biodieselasan Alternative Fuelfor CI Engine: Review

Experimental Investigation of Variable Compression Ratio Diesel Engine using Ziziphus Jujuba oil

Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

Operational Characteristics of Diesel Engine Run by Ester of Sunflower Oil and Compare with Diesel Fuel Operation

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BTE AND NOX IN A DIRECT INJECTION VCR DIESEL ENGINE RUNNING WITH RICE BRAN METHYL ESTER

EFFECT OF L-ASCORBIC ACID AS ADDITIVE FOR EXHAUST EMISSION REDUCTION IN A DIRECT INJECTION DIESEL ENGINE USING MANGO SEED METHYL ESTER

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

Study on Effect of Injection Opening Pressure on the Performance and Emissions of C I Engine Running on Neem Methyl Ester Blend as a Fuel

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

Mechatronics, Electrical Power, and Vehicular Technology

Experimental Investigation of Performance, Combustion and Emission characteristics of neat Lemongrass oil in DI Diesel engine

Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

The Effect of Bio-Fuel Blends and Fuel Injection Pressure on Diesel Engine Emission for Sustainable Environment

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Government Engineering College, Bhuj.

Keywords: Alternative fuels, Biodiesel, Blends, Diesel engine, Emissions, Karanja and Performance. 1. Introduction

Experimental Analysis of Cotton Seed oil Biodiesel in a Compression Ignition Engine

Assistant Professor, Dept. of Mechanical Engg., Shri Ram College of Engineering & Management, Banmore, Gwalior (M.P) 2

1. Introduction. Arun Pattanashetti 1, Praveen A. Harari 2, Ghadge S. S 3., Bhagwat V. A 4 ABSTRACT

Effect of Rubber Seed Oil and Palm Oil Biodiesel Diesel Blends on Diesel Engine Emission and Combustion Characteristics

THE EFFECT OF SUPERCHARGING ON PERFORMANCE AND EMISSION CHARACTERISTICS OF COMPRESION IGNITION ENGINE WITH DIESEL-ETHANOL-ESTER BLENDS

STUDY ON PERFORMANCE AND EMISSION CHARACTERISTICS OF A SINGLE CYLINDER DIESEL ENGINE USING EXHAUST GAS RECIRCULATION

EXPERIMENTAL INVESTIGATION OF A DIESEL ENGINE FUELED BY EMULSIFIED B20 BIODIESEL

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

Performance characteristics of Jatropha ethyl ester as diesel engine fuel at different compression ratios

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online):

COMBUSTION AND EMISSION CHARACTERISTICS OF DI COMPRESSION IGNITION ENGINE OPERATED ON JATROPHA OIL METHYL ESTER WITH DIFFERENT INJECTION PARAMETERS

Experimental studies for the role of piston rings face profiles on performance of a diesel engine fueled with diesel and jatropha based biodiesel

Effect of Jatropha Biodiesel Blend with Diesel Fuel on Performance of Four Stroke Single Cylinder Diesel Engine

Influence of Injection Timing on the Performance of Dual Fuel Compression Ignition Engine with Exhaust Gas Recirculation

Mahua Biodiesel as an Alternative Fuel for CI Engine: Review

Feasibility Study of Soyabean Oil as an Alternate Fuel for CI Engine at Variable Compression Ratio

Inturi Vamsi et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 5, ( Part -4) May 2015, pp.

Effect of Compression Ratio in a Direct Injection Compression Ignition Engine Fuelled with Methyl Ester of Neem Oil: Experimental Study

STUDY ON ENTREPRENEURIAL OPPORTUNITIES IN BIODIESEL PRODUCTION FROM WASTE COCONUT OIL AND ITS UTILIZATION IN DIESEL ENGINE

Synergetic effect on engine performance, combustion, emission by using additised biodiesel

Effect of Direct Water Injection on Performance and Emission Characteristics of Diesel Engine Fueled with Bio Diesel and Hydrogen

A Study of Performance and Characteristics of Diesel Engine using Mixture of Waste Milk Scum oil and Pongamia Pinnata oil as a Bio-Diesel

Experimental analysis of a Diesel Engine fuelled with Biodiesel Blend using Di-ethyl ether as fuel additives

Transcription:

ISRN Renewable Energy Volume 2013, Article ID 540589, 7 pages http://dx.doi.org/10.1155/2013/540589 Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester S. K. Acharya and S. P. Jena Department of Mechanical Engineering, SOA University, Bhubaneswar, Odisha, India Correspondence should be addressed to S. K. Acharya; saroj.acharya76@gmail.com Received 8 June 2013; Accepted 18 August 2013 Academic Editors: V. Makareviciene, P. C. Pullammanappallil, and P. Tsilingiris Copyright 2013 S. K. Acharya and S. P. Jena. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of liquefied petroleum gas (LPG) is experimented with to improve the performance of a dual fuel compression ignition (CI) engine running on Karanja oil methyl ester (KOME) blends. is used as a reference fuel for the dual fuel engine results. During the experimentation, the engine performance is measured in terms of brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC), and exhaust emission is measured in terms of carbon monoxide (CO), hydrocarbon (HC), and oxides of nitrogen (NO x ). Dual fuel engine with LPG showed a reduction in NO x and smoke emission; however, it suffers from high HC and CO emission, particularly, at lower loads due to poor ignition. Comparison of performance and emissions is done for diesel and blends of KOME. Results showed that using KOME blends (10% and 20%) has improved the CI engine performance with a reductioninhcandcoemissions. 1. Introduction The depleting reserves of petroleum and concern over high levels of pollutants in vehicular exhaust have motivated the researchers towards searching for alternative energy sources with renewable nature and less polluting effect [1]. The use of alternative gaseous fuel in CI engines in dual fuel mode is increasing due to their clean combustion compared to conventional liquid fuels as well as their relatively increased availability at attractive prices [2, 3]. For substituting petroleum fuels used in internal combustion engines, fuel of bio-origin provides a feasible solution to the twin crises of fossil fuel depletion and environmental degradation. Several researchers are actively pursuing utilization of nonedible oils for the production of biodiesel worldwide because of its cleaner burning nature [4, 5]. Chemically, biodiesel is referred to as the mono-alkyl-esters of long-chain-fatty acids derived from renewable lipid sources. The principal advantages of biodiesel is that it suppresses the formation of sulphur dioxide, CO, HC, and PM emissions during the combustion process due to low sulphur, low aromatics, and the presence of oxygen-containing compounds. In addition, biodiesel has good ignition ability in engine due to its relatively high cetane number compared to that of conventional diesel fuel [6, 7]. It is found that the lower concentrations of biodiesel blends improve the thermal efficiency. As the parameters at which the engines are operating, a blend up to 20% of biodiesel with diesel works well without any modification in the engine [8, 9]. The potential benefits of using LPG in diesel engines are both economical and environment friendly [10]. With reduced energy consumption, the dual fuel engine shows a significant reduction in smoke density, NO x,andimproved BTE [11]. Intake air throttling at low loads improves the brake thermal efficiency, and HC emission deteriorates with increase in percentage of LPG substitution [12]. In the present study, the effect of biodiesel blends over the performance and emission characteristics of a diesel engine in dual fuel mode was experimentally investigated with the variation of LPG flow rate. 2. Experimentation The aim of the study is to establish a combination of biodiesel blends with gaseous fuel in dual fuel mode and to study

2 ISRN Renewable Energy Table 1: Engine specifications. Manufacturer Kirloskar Bore 80 mm Stroke length 110 mm Cubic capacity 553 cc RPM 10 BHP 5 hp Compression ratio 16.5 : 1 Dynamometer type Hydraulic Cycle 4 strokes Injection pressure 180 bar the performance and emission characteristics of the engine with LPG as the gaseous fuel. 2.1. Experimental Setup. The engine used in this study is a Kirolskar made single cylinder, four stroke, water cooled diesel engine. The specifications of the engine are given in Table 1. Two separate fuel tanks are attached to the setup to store diesel and blends of biodiesel. The engine is coupled with a hydraulic dynamometer to measure the operating load. The engine is modified to dual fuel mode by attaching a vaporizer in between the LPG tank and LPG passage in the intake manifold. The inlet manifold of the engine is elongated by3feet,andthegasnozzleisdrilledintothemanifold.the flow of LPG is controlled by a needle valve. The pressure of the gas at inlet of vaporizer is measured by a pressure gauge. AVL 444 gas analyzer is attached to the exhaust to measure the emission parameters. The measurement range and accuracy of the gas analyzer are given in Table 2. A pressurized closed circuit water cooling system is used to cool the engine. A digital type platform weighing machine having an accuracy of1mgisusedtomeasurelpgflowratebyweightdifference method with an uncertainty of 1.2%. The layout diagram of the experimental setup is shown in Figure 1. Initiallythe engine is tested using standard diesel at all loads to determine theengineperformanceandemissioncharacteristics.the sameprocedureisrepeatedindualfuelmodewithincrease in LPG flow rate for all loads. The mass fraction of LPG (Z) is calculated by Z= m LPG m LPG +m pilot fuel 100%. (1) 2.2. Production of Karanja Oil Methyl Ester. Karanja oil methyl ester (KOME) is prepared in the laboratory from neat Karanja (Pongamia pinnata) vegetable oil. The extracted vegetable oil is obtained from a local oil mill. For neat Karanja oil, the free fatty acid (FFA) is more than 5%. So the FFA is reduced by acid catalyzed esterification using methanol in the presence of sulphuric acid (H 2 SO 4 )followed by transesterification using methanol in the presence of potassium hydroxide (KOH). After separation of glycerol, the ester is washed with water to remove unreacted methoxide. It is then heated to remove the water traces to obtain the clean 6 5 1 3 8 2 (1) Air filter (2) Vaporizer (3) Pressure gauge (4) Fuel control value (5) LPG tank (6) Weighing machine 4 7 10 9 11 (7) Engine (8) tank (9) Biodiesel tank (10) Burette (11) Gas analyzer (12) Exhaust muffler Figure 1: Experimental layout diagram. biodiesel. The Karanja oil methyl ester known as biodiesel, thus, produced by this process is totally miscible with diesel in any proportion [9]. 3. Results and Discussion The variations of performance and emission parameters with LPG flow rate are discussed in this section. As previous researches indicated that blends of biodiesel up to 20% show betterperformanceaswellasimprovedemissioncharacteristics, while with higher blends the reduction in calorific value hampers the performance of the engine [9]. The properties of thefuelsareshown in Table 3. 3.1. Brake Specific Fuel Consumption. Brake specific fuel consumption of the dual fuel mode is recorded with diesel and blends of biodiesel. A comparison of BSFC at 70% load for diesel and blends of KOME up to 20% was presented in Figure 2. Itisobservedthatbyincreasingload BSFC decreases, as with increase in load cylinder pressure and temperature increases, which improves the combustion process resulting in decrease in BSFC. The BSFC increases with increasing percentage of LPG substitution at part loads may be due to incomplete combustion of the gaseous fuel, while at higher loads BSFC improves with the increase of LPG substitution. On the other hand, BSFC gradually decreases with the increase in percentage of blend. This may beattributedtothepresenceofadditionalmolecularoxygen present in biodiesel which improves the combustion process. A comparison of BSFC with increase in load is done at 4 g/min flow rate of LPG was shown in Figure 3.Itisobserved that the BSFC decreases with increase in load. 20% blend of KOME () shows lowest BSFC followed by 10% blend of KOME () and diesel over the whole load range. As the LPG flow rate was kept constant so and show a more improved BSFC than diesel. 12

ISRN Renewable Energy 3 Table 2: Measurement range and accuracy of AVL 444 gas analyzer. Measured quality Measuring range Resolution Accuracy CO 0 10% vol. 0.01% vol. <0.6% vol: ±0.03% vol. 0.6% vol: ±5% of ind value CO 2 0 20% vol. 0.1% vol. <10% vol: ±0.5% vol. 10% vol: ±5% vol. HC 0 20000 ppm vol 2000 : 1 ppm vol. <200 ppm vol: ±10 ppm vol. >2000:10ppmvol. 200 ppm vol: ±5% of ind. val. O 2 0 22% vol. 0.01% vol. <2% vol: ±0.1% vol. 2% vol: ±5% vol. NO 0 00 ppm vol. 1 ppm vol. <0 ppm vol: ± ppm vol. 0 ppm vol: ±10%ofind.val. Engine speed 400 00 min 1 1 min 1 ±1% of ind. val. Oil temperature 30 125 C 1 C ±4 C Lambda 0 9.999 0.001 Calculation of CO, CO 2,HC,O 2 Table3:Fuelproperties. Fuel Sp.gravity Kinematic viscosity (cst) at 40 C Flashpoint( C) Calorific value (MJ/kg) Cetane number Standard diesel 0.832 1.9 64 42.21 45 55 KOME 0.885 4.5249 187 36.12 0.837 2.1831 72 41.582 0.843 2.4164 79 40.911 LPG 0.562 105 46.200 <3 BSFC (kg/kw hr) 0.58 0.56 0.54 0.52 0.5 0.48 0.46 0.44 0.42 0.4 Figure 2: Comparison of variation of BSFC with percentage of substitution of LPG. 3.2. Brake Thermal Efficiency. Brake thermal efficiency (BTE) ofallthepilotfuelsareobservedindualfuelmode.the comparison of BTE for diesel and at was shown in Figure 4. Itisfoundthatandgive better BTE at all loads as compared to standard diesel. This may be attributed to extra oxygen content of biodiesel blends which improves the combustion process tending to increase in BTE of the engine. But with increase in substitution of LPG the BTE gradually falls for all the pilot fuels at part load conditions, because at low loads less pilot fuel is impinged into the cylinder, and due to the excess air and low cylinder temperature, lean amount of fuel mixture escapes into the exhaust. While for diesel, BTE increases at higher load up to 35% of LPG substitution. At higher load the increase in average gas temperature has the effect of reducing the fuel ignition delay resulting in an improved BTE. A comparison of BTEwithincreaseinloadforallthepilotfuelat4g/minflow rateoflpgwasshowninfigure 5.ItisobservedthattheBTE increases with increase in load, while blends of and give better BTE at all loads as compared to standard diesel. This may be attributed to extra oxygen content of biodiesel blends which improves the combustion process tending to increase in BTE of the engine. 3.3. HC Emissions. HC emissions consist of fuel that is completely unburned or partially burned. Typically, HC emissions are serious problems at light loads for diesel engines. The comparison of HC emissions of all the pilot fuels in dual fuel mode was shown in Figure 6. Indualfuelmodewith increase in substitution of LPG, the HC emission increases. This may be due to reduction in fresh air with increase in LPG flow rate which results in incomplete combustion of the richer mixture. HC emission level decreases with the increase

4 ISRN Renewable Energy 2 18 BSFC (kg/kw hr) 1.8 1.6 1.4 1.2 1 BTE (%) 16 14 12 10 8 6 0.8 4 0.6 0.4 0 +4g/min of LPG Figure 3: Comparison of BSFC with increase in percentage of load. 100 2 80 +4g/min of LPG Figure 5: Comparison of BTE with increase in percentage of load. 90 80 70 20 BTE (%) 19.5 19 18.5 18 17.5 17 16.5 16 HC (PPM) 40 30 20 10 15.5 15 Figure 4: Comparison of variation BTE with percentage of substitution of LPG. Figure 6: Comparison of variation HC emission with percentage of LPG substitution. in biodiesel blends. The decreased trend of HC emissions compared to diesel fuel might be due to presence of oxygen molecules in biodiesel which helped in complete combustion. At 4 g/min flow rate of LPG, the observation showed that HC emission gradually decreases with increase in load. It may be due to the low engine temperature and lean mixture as part

ISRN Renewable Energy 5 70 800 65 700 55 0 HC (PPM) 45 40 NO x (PPM) 0 400 35 30 300 25 20 0 +4g/min of LPG Figure 7: Comparison of HC emission with increase in percentage of load. 100 200 Figure 8: Comparison of variation of NO x emission with percentage of LPG substitution. loads affects the combustion of air fuel mixture and few of it escapes into the exhaust. While at higher load with increase in peak cylinder temperature, proper combustion takes place which reduces the HC emission. The result was illustrated in Figure 7. The HC emission was highest for diesel followed by and. 3.4. NO x Emissions. NO x is the most harmful gaseous emissions from engines. NO x formation rate strongly depends upon in-cylinder gas temperature. Hence, the fuel distribution within the cylinder and its combustion process affect the NO x formation. Generally NO x forms at the high temperature burned gas regions. The comparison of variations of NO x emissionwithlpgsubstitutionwasshowninfigure 8. The NO x emission decreases with the increase in LPG flow rate. This may be attributed to reduction in fresh air and high self ignition temperature of LPG, which increases the ignition delay resulting into reduced peak cylinder temperature. On the other hand, NO x emission increases with increase in blend percentage of biodiesel because oxygen content of biodiesel provides high local temperature which improves combustion process. The variation of NO x emission with load at 4 g/min of LPG flow rate for diesel, and, was shown in Figure 9. Itwasobservedthatshowsthe highest NO x emission followed by and standard diesel. 3.5. CO Emissions. Generally, CO emission from the engine occurs due to partial oxidation of the fuel mixture. As it is well known that the rate of CO formation is a function of unburned fuel and mixture temperature during combustion, since both factors control the fuel decomposition and oxidation. The variations of CO emission with LPG substitution were shown in Figure 10. Itisobservedthatwithincrease in substitution of LPG, initially the CO emission decreases up to 25% of substitution for all the three pilot fuels. But withfurtherincreaseinlpgflowratethecoemission increases; may be due to reduction in fresh oxygen leads to partial oxidation of the fuel mixture. With the increase in proportion of blend, CO emission is found to be decreasing. This shows that maybe due to presence of extra oxygen in blends as compared to neat diesel proper oxidation of the blends results in lower CO emission. At 4 g/min flow rate of LPG the observation shows that CO emission gradually decreases by increasing load. It may be due to the low engine temperature and lean mixture at part loads, the whole air fuel mixturedoesnotburncompletelyandfewofitescapesinto the exhaust. The CO emission was highest for diesel followed by and. The result was shown in Figure 11. 4. Conclusion In the present work, an experimental investigation has been conducted to examine the effects of induction of LPG into the engine manifold (just adjacent to inlet valve) with KOME as the pilot fuel. From the analysis of the experimental data, it is observed that BSFC and BTE improved for the CI engine with and as compared with diesel. While at part load, the BSFC increases as well as BTE decreases with increase in LPG substitution, but an improvement was observed for both the parameters at higher loads. The HC and CO emissions were increased in dual fuel mode. But blends

6 ISRN Renewable Energy NO x (PPM) 0 4 400 3 300 2 200 1 100 0 0 +4g/min of LPG Figure 9: Comparison of NO x emission with increase in percentage of load. 100 CO (%) 0.055 0.05 0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01 80 +4g/min of LPG Figure 11: Comparison of CO emission with increase in percentage of load. CO (%) 0.055 0.05 0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01 Figure 10: Comparison of variation of CO emission with percentage of LPG substitution. of KOME have shown reduced HC and CO emissions in dual fuel mode as compared with diesel. The NO x emission was reducedindualfuelmodeforallthethreepilotfuels,while with increase in blend percentage of KOME an increase in NO x emission was observed. Higher blends of KOME have higher viscosity, which affects the atomization of the pilot fuel. Further improvement of the performance and emissions characteristicsindualfuelmodewithhigherblendscanbe possible by increasing the injection pressure. References [1] M. Y. E. Selim, M. S. Radwan, and H. E. Saleh, Improving the performance of dual fuel engines running on natural gas/lpg by using pilot fuel derived from jojoba seeds, Renewable Energy,vol.33,no.6,pp.1173 1185,2008. [2] I. D. Bedoya, A. A. Arrieta, and F. J. Cadavid, Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance, Bioresource Technology,vol.100,no.24,pp.6624 6629, 2009. [3] G.A.Rao,A.V.S.Raju,K.G.Rajulu,andC.V.M.Rao, Performance evaluation of a dual fuel engine ( + LPG), Indian Science and Technology, vol.3,no.3,pp.235 238, 2010. [4] C. C. M. Luijten and E. Kerkhof, Jatropha oil and biogas in a dual fuel CI engine for rural electrification, Energy Conversion and Management,vol.52,no.2,pp.1426 1438,2011. [5] S. H. Yoon and C. S. Lee, Experimental investigation on the combustion and exhaust emission characteristics of biogasbiodiesel dual-fuel combustion in a CI engine, Fuel Processing Technology,vol.92,no.5,pp.992 1000,2011. [6] D. Agarwal, S. Sinha, and A. K. Agarwal, Experimental investigation of control of NO x emissions in biodiesel-fueled compression ignition engine, Renewable Energy,vol.31,no.14,pp. 2356 2369, 2006. [7] A. Murugesan, C. Umarani, R. Subramanian, and N. Nedunchezhian, Bio-diesel as an alternative fuel for diesel engines-a review, Renewable and Sustainable Energy Reviews,vol.13,no. 3,pp.653 662,2009.

ISRN Renewable Energy 7 [8] A. S. Ramadhas, S. Jayaraj, and C. Muraleedharan, Dual fuel mode operation in diesel engines using renewable fuels: rubber seed oil and coir-pith producer gas, Renewable Energy,vol.33, no. 9, pp. 2077 2083, 2008. [9] S. Jindal, Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Karanj methyl ester, International Journal of Sustainable Energy, vol. 30, supplement 1, pp. S91 S105, 2011. [10] C. V. Sudhir, V. Desai, Y. Suresh Kumar, and P. Mohanan, Studies on influence of injection timing and diesel replacement on LPG-diesel dual-fuel engine, in Proceedings of the Internal Combustion Engine and Rail Transportation Divisions Fall Technical Conference (ICERT 03), pp. 161 166, September 2003. [11] D. H. Qi, Y. Z. Bian, Z. Y. Ma, C. H. Zhang, and S. Q. Liu, Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas- blended fuel, Energy Conversion and Management, vol.48,no.2,pp. 0 9, 2007. [12] M.P.Poonia,A.Bhardwaj,A.S.Jethoo,andU.Pandel, Experimental investigation on engine performance and exhaust emissions in an LPG diesel dual fuel engine, International Environmental Science and Development, vol.2,no.6,pp.418 422, 2011.

Energy International Rotating Machinery Wind Energy The Scientific World Journal Structures Industrial Engineering Petroleum Engineering Solar Energy Submit your manuscripts at Fuels Engineering Advances in Power Electronics International High Energy Physics Photoenergy International Advances in Combustion Nuclear Energy Renewable Energy International Advances in Science and Technology of Tribology Nuclear Installations Aerospace Engineering