WORLDWIDE REFINERY PROCESSING REVIEW. Fourth Quarter 2009

Similar documents
WORLDWIDE REFINERY PROCESSING REVIEW. Fourth Quarter 2017

Abstract Process Economics Program Report No. 203 ALKANE DEHYDROGENATION AND AROMATIZATION (September 1992)

IHS CHEMICAL High Olefins Fluid Catalytic Cracking Processes. Process Economics Program Report 195B. High Olefins Fluid Catalytic Cracking Processes

PEP Review ON-PURPOSE BUTADIENE PRODUCTION By Richard Nielsen with a Contribution by Russell Heinen (June 2011)

Maximizing Refinery Margins by Petrochemical Integration

ON-PURPOSE PROPYLENE FROM OLEFINIC STREAMS

Stephen Stanley Jose de Barros Fred Gardner Lummus Technology 1 st Indian Oil Petrochemical Conclave March 16, 2012 New Delhi

WORLDWIDE REFINERY PROCESSING REVIEW. Third Quarter Hydrotreating

WORLDWIDE REFINERY PROCESSING REVIEW. Third Quarter 2013

ADVANCES IN CATALYTIC PRODUCTION OF OLEFINS

Copyright Hydrocarbon Publishing Company, Inc. All Rights Reserved. TECHNOLOGY ADVANCES FOR PROCESSING OPPORTUNITY CRUDES

Innovative Solutions for Optimizing Refining & Petrochemicals Synergies. Jean-Paul Margotin

The Greener FCC Moving from Fuels to Petrochemicals

Abstract Process Economics Program Report 195A ADVANCES IN FLUID CATALYTIC CRACKING (November 2005)

Unit 4. Fluidised Catalytic Cracking. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna

ACO TM, The Advanced Catalytic Olefins Process

Report No. 35 BUTADIENE. March A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE I PARK, CALIFORNIA

KBR Technology Business

Abstract Process Economics Program Report 211A HYDROCRACKING FOR MIDDLE DISTILLATES (July 2003)

Utilizing the Flexibility of FCC Additives for Shale Oil Processing. Todd Hochheiser Senior Technical Service Engineer, Johnson Matthey

New Catalytic Process Production of Olefins

PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California

ADVANCES IN REFINERY CRACKING CATALYSTS AND PROCESSES II

ETHYLENE-PROPYLENE PROCESS ECONOMICS PROGRAM. Report No. 29A. Supplement A. by SHIGEYOSHI TAKAOKA With contributions by KIICHIRO OHYA.

Refinery / Petrochemical. Integration. Gildas Rolland

Process Economics Program

Integrating Refinery with Petrochemicals: Advanced Technological Solutions for Synergy and Improved Profitability

Special Report. Shale gas drives new opportunities for US downstream

Boron-Based Technology: An Innovative Solution for Resid FCC Unit Performance Improvement

Recycle and Catalytic Strategies for Maximum FCC Light Cycle Oil Operations

IHS CHEMICAL Light Hydrocarbon and Light Naphtha Utilization. Process Economics Program Report 297. Light Hydrocarbon and Light Naphtha Utilization

Chemical Technology Prof. Indra D. Mall Department of Chemical Engineering Indian Institute of Technology, Roorkee

Features of HS-FCC. Catalyst System. Optimized Reaction Conditions

Abstract PEP Review PROCESS ECONOMICS OF COAL-BASED OLEFINS PRODUCTION IN CHINA By R. J. Chang and Jamie Lacson (May 2012)

Investment Planning of an Integrated Petrochemicals Complex & Refinery A Best Practice Approach

CONVERT RESIDUE TO PETROCHEMICALS

Abstract Process Economics Program Report 43D MEGA METHANOL PLANTS (December 2003)

Abstract Process Economics Program Report No. 158A OCTANE IMPROVERS FOR GASOLINE (February 1992)

Optimization of Propylene Production Process from Fluid Catalytic Cracking Unit

INTRODUCTION Enabling Iran s Future Through Partnership and Technology

LLANO NOGALES, BERTA ARAMBURU LOPEZ-ARANGUREN

Fluid Catalytic Cracking Fcc In Petroleum Refining

Refinery & Petrochemical Integration- An IOCL Perspective

Catalytic Cracking. Chapter 6

Refining/Petrochemical Integration-A New Paradigm Joseph C. Gentry, Director - Global Licensing Engineered to Innovate

Catalysts for olefin processes. A range of performance catalysts and absorbents for use across the olefins value chain.

PEP Review METHYL TERTIARY BUTYL ETHER PRODUCTION FROM STEAM CRACKER C 4 STREAM By Syed N. Naqvi (December 2012)

FUTURE REFINERY -- FCC'S ROLE IN REFINERY / PETROCHEMICAL INTEGRATION

Advances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process

GTC TECHNOLOGY WHITE PAPER

Synergies between Refining and Petrochemicals : Today and Tomorrow

CONTENTS 1 INTRODUCTION SUMMARY 2-1 TECHNICAL ASPECTS 2-1 ECONOMIC ASPECTS 2-2

Bio-Renewable Fuels: Green Diesel

On Purpose Alkylation for Meeting Gasoline Demand

Case Studies Using Grace Resid FCC Catalysts W. R. Grace & Co.

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

WORLDWIDE REFINERY PROCESSING REVIEW. Second Quarter 2014

Refining/Petrochemical Integration-A New Paradigm

Molecular Sieves Application Guide for the Natural Gas Industry Molecular Sieve Molecular Sieve Recommendations

Light Olefins Market Review. Bill Hyde, Senior Director Olefins and Elastomers Foro Pemex Petroquimica June 7, 2012

Presentation. Strategy of Octane Management at IOCL Mathura Refinery

Technip Stone & Webster Process Technology Offering in Refining

Production of Transportation Fuels by Co-processing Biomass-Derived Pyrolysis Oils in a Petroleum Refinery Fluid Catalytic Cracking Unit

AlkyClean Solid Acid Alkylation

Strategies for Metals Management in Resid FCC Units ERTC. November Dr. Vasilis Komvokis, Technology Manager

PERP/PERP ABSTRACTS Report Abstract. MTBE/ETBE Update: Technical and Commercial Effects of U.S. MTBE Phaseout PERP06/07S12.

PROCESS ECONOMICS PROGRAM

Maximizing FCC Light Cycle Oil Operating Strategies Introducing MIDAS -300 Catalyst for Increased Selectivity

Refining/Petrochemical Integration A New Paradigm. Anil Khatri, GTC Technology Coking and CatCracking Conference New Delhi - October 2013

Annex A: General Description of Industry Activities

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

Modernizing a Vintage Cat Cracker. Don Leigh HFC Rahul Pillai KBR Steve Tragesser KBR

Roles of Emerging FCC-based Technologies in Shifting to Petrochemicals Production

Refinery Units - Project References

Brief Summary of the Project

A New Refining Process for Efficient Naphtha Utilization: Parallel Operation of a C 7+ Isomerization Unit with a Reformer

GTC TECHNOLOGY. GT-BTX PluS Reduce Sulfur Preserve Octane Value - Produce Petrochemicals. Engineered to Innovate WHITE PAPER

PROCESS ECONOMICS PROGRAM

GCC CATALYST MARKET. (Saudi Arabia, UAE, Kuwait, Qatar, Bahrain) Prepared for XXXX

Fig:1.1[15] Fig.1.2 Distribution of world energy resources. (From World Energy Outlook 2005, International Energy Agency.)[16,17]

Addressing Tier 3 Specifications in a Declining Gasoline Market: Options for the Future

Propylene: Historically A Stepchild of Industry Now Becoming a Favorite Child. Presented By: Prem Cholia Jacobs Consultancy Houston Texas

OPPORTUNITY CRUDES: TO PROCESS OR NOT TO PROCESS?

DUR O LOK. DUR O LOK couplings are all-purpose, lightweight connectors designed to replace ANSI series flanges.

Testing Catalyst Additives for Sulfur Reduction in Cat-Naphtha

Strategies for Maximizing FCC Light Cycle Oil

DUR O LOK couplings are all-purpose, lightweight connectors designed to replace standard ANSI flanges.

The Petrochemical Industry From Middle Eastern Perspective?

Unit 1. Naphtha Catalytic Reforming. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna

Zeolite Catalyst. Methanol. Propylene. Petrochemical Research & Technology پژوهش و فناوري پتروشیمی

Opportunity in Map Ta Phut Retrofit Knowledge Sharing Session. February 18, 2016

FCC UNIT FEEDSTOCK FLEXIBILITY IN MOL S DANUBE REFINERY

Chapter 11 Gasoline Production

Fundamentals of Petroleum Refining Refinery Products. Lecturers: assistant teachers Kirgina Maria Vladimirovna Belinskaya Natalia Sergeevna

Abu Dhabi International Downstream Summit 2017 Downstream optimization: role of technology, integration and industrial gases. Dr.Ch.

PRESENTATION TO FOURTH IEA-IEF-OPEC SYMPOSIUM ON ENERGY OUTLOOKS

QATAR PROJECT LIST TABLE 4 PRINCIPAL GTL PLANTS AROUND THE WORLD HISTORY OF THE GTL INDUSTRY FIGURE 1 GTL PRODUCTION OPTIONS,

IHS CHEMICAL PEP Report 29J. Steam Cracking of Crude Oil. Steam Cracking of Crude Oil. PEP Report 29J. Gajendra Khare Principal Analyst

Unipar Oxo Alcohols Plant. Start Up: August, 1984 Location: Mauá - São Paulo - Brasil. Nameplate Capacity:

Co-Processing of Green Crude in Existing Petroleum Refineries. Algae Biomass Summit 1 October

Transcription:

WORLDWIDE REFINERY PROCESSING REVIEW Monitoring Technology Development and Competition in One Single Source Fourth Quarter 2009 HYDROCARBON PUBLISHING COMPANY Translating Knowledge into Profitability SM P.O. Box 661 Southeastern, PA 19399 (U.S.A.) Phone: (610) 408-0117/ Fax: (610) 408-0118 Review@Hydrocarbonpublishing.com

Review 3.1 MARKET/TECHNOLOGY TRENDS & OPPORTUNITIES 3.1.1 Introduction 3.1.2 Market Conditions and Outlook 3.1.2.1 Propylene Demand and Growth 3.1.2.2 Product Pricing 3.1.2.3 Propylene Capacity and Source Distribution 3.1.2.4 Expansion 3.1.3 Technology Competition, Directions, and Future Prospects 3.1.3.1 FCC Process and Catalyst 3.1.3.1.1 Process Configuration and Operating Conditions 3.1.3.1.2 Catalyst and Additive Systems 3.1.3.1.3 Recovery 3.1.3.2 On-purpose Techniques 3.1.3.2.1 Cracking Heavier Olefins 3.1.3.2.2 Metathesis 3.1.3.2.3 Propane Dehydrogenation 3.1.3.2.4 Methanol-to-Olefins (MTO) 3.1.3.3 Trends in R&D 3.2 STATE-OF-THE-ART TECHNOLOGY 3.2.1 Introduction 3.2.2 FCC Technologies 3.2.2.1 Commercial Processes 3.2.2.1.1 Axens 3.2.2.1.2 KBR 3.2.2.1.2.1 MAXOFIN 3.2.2.1.2.2 Advanced Catalytic Olefins (ACO) 3.2.2.1.3 Lummus Technology 3.2.2.1.3.1 Selective Component Cracking 3.2.2.1.3.2 Indmax FCC (I-FCC) 3.2.2.1.4 Nippon Oil Corp./Saudi Aramco 3.2.2.1.5 Petrobras 3.2.2.1.5.1 Double Riser FCC 3.2.2.1.5.2 Downflow Reactor 3.2.2.1.6 Shell Global Solutions 3.2.2.1.7 Sinopec 3.2.2.1.7.1 Deep Catalytic Cracking 3.2.2.1.7.2 Flexible Dual-riser Fluid Catalytic Cracking 3.2.2.1.7.3 FCC Process for Producing Clean Gasoline and Propylene 3.2.2.1.7.4 MIP-CGP 3.2.2.1.7.5 Maximizing Iso-Olefins 3.2.2.1.7.6 Catalytic Pyrolysis Process 3.2.2.1.8 UOP 3.2.2.2 Commercial Catalysts and Additives 3.2.2.2.1 Albemarle 3.2.2.2.1.1 AFX 3.2.2.2.1.2 Additives 3.2.2.2.2 BASF Catalysts 3.2.2.2.2.1 Maximum Propylene Solution (MPS) i

3.2.2.2.2.2 Additive 3.2.2.2.3 JGC Catalysts & Chemicals 3.2.2.2.4 Grace Davison 3.2.2.2.4.1 ProtAgon 3.2.2.2.4.2 NEXUS 3.2.2.2.4.3 NACER 3.2.2.2.4.4 Additives 3.2.2.2.5 Instituto Mexicano del Petróleo (IMP) 3.2.2.2.6 Indian Oil Corp. (IOC) 3.2.2.2.7 INTERCAT 3.2.2.2.8 Sinopec 3.2.2.2.8.1 Conventional FCC Catalysts 3.2.2.2.8.2 FCC Catalysts for Heavy Feeds 3.2.2.2.8.3 DCC Catalysts 3.2.2.2.8.4 CPP Catalysts 3.2.2.2.8.5 Additives 3.2.3 Light Olefin Recovery, Separation, and Purification 3.2.3.1 Propane-Propylene Splitter for FCCU 3.2.3.1.1 Shaw Group 3.2.3.1.2 UOP 3.2.3.2 Propylene Recovery from Refinery Offgas 3.2.3.2.1 Advanced Extraction Technologies 3.2.3.2.2 Air Products and Chemicals 3.2.3.2.2.1 Cryogenic System 3.2.3.2.2.2 Dephlegmator 3.2.3.2.3 Black & Veatch 3.2.3.2.4 Costain Oil, Gas & Process 3.2.3.2.4.1 Light Olefin Recovery 3.2.3.2.4.2 LPG Recovery 3.2.3.2.5 Linde BOC Process Plants 3.2.3.2.6 Shaw 3.2.3.3 Butene Recovery and Separation 3.2.3.3.1 Snamprogetti 3.2.3.3.2 Uhde 3.2.4 Cracking of Heavier Olefins to Propylene 3.2.4.1 Asahi Kasei Chemicals 3.2.4.2 ExxonMobil 3.2.4.2.1 Mobil Olefins Interconversion (MOI) 3.2.4.2.2 Propylene Catalytic Cracking (PCC) 3.2.4.3 KBR 3.2.4.4 Linde/Lurgi Öl Gas Chemie 3.2.4.5 Sinopec 3.2.4.6 UOP/Total Petrochemicals 3.2.5 Metathesis 3.2.5.1 Axens 3.2.5.2 Lummus Technology 3.2.6 Propane Dehydrogenation 3.2.6.1 Linde/BASF 3.2.6.2 Lummus Technology 3.2.6.3 Snamprogetti/Yarsintez 3.2.6.4 Uhde 3.2.6.5 UOP 3.2.7 Methanol-to-Olefins 3.2.7.1 ExxonMobil 3.2.7.2 JGC Corp./Mitsubishi Chemicals ii

3.2.7.3 Lurgi Öl Gas Chemie 3.2.7.4 Lummus Technology/SYN Energy Technology 3.2.7.5 Sinopec 3.2.7.6 UOP/HYDRO 3.2.8 Technology Summary 3.2.8.1 Summary of Commercially Available Processes 3.2.8.2 Summary of Commercially Available Catalyst and Additives 3.3 PLANT OPERATIONS AND PRACTICES 3.3.1 Production of Light Olefins in the FCCU 3.3.1.1 Increasing Propylene Production 3.3.1.2 Balancing Propylene Production with FCC Fuel Products 3.3.1.3 Increasing Isobutane and Isobutylene Production 3.3.1.4 Factors Influencing the Propylene-to-butylene Production Ratio 3.3.2 Managing Revamp Costs for Producing and Recovering Higher Yields of FCC Propylene 3.3.3 Holistic Approach to FCC Gas Plant Optimization for Improved Propylene Recovery 3.3.4 Control Issues for Propylene-Propane Separators 3.3.5 Polymer-Grade Propylene Compositions 3.3.6 Processes Used to Purify FCC Propylene 3.3.7 Integrated Refinery/Olefins Plant 3.3.8 Energy and GHG Emissions Considerations for Alternatives 3.4 REFINING R&D ALERT! 3.4.1 Introduction 3.4.2 FCC Technologies 3.4.2.1 Process 3.4.2.1.1 Multiple Reaction Zones 3.4.2.1.1.1 Patents 3.4.2.1.2 Dual Risers 3.4.2.1.2.1 Patents 3.4.2.1.2.2 Research 3.4.2.1.3 Downflow Reactor 3.4.2.1.3.1 Patents 3.4.2.1.4 Process Configuration (Recycle), Integration, and Control 3.4.2.1.4.1 Patents 3.4.2.1.5 Cracking Naphtha to Enhance Propylene 3.4.2.1.5.1 Patents 3.4.2.1.6 Biofeeds 3.4.2.1.6.1 Patents 3.4.2.1.7 Miscellaneous 3.4.2.1.7.1 Patents 3.4.2.1.7.2 Research 3.4.2.2 Catalyst 3.4.2.2.1 Pore Structure 3.4.2.2.1.1 Patents 3.4.2.2.2 ZSM-5 3.4.2.2.2.1 Patents 3.4.2.2.2.2 Research 3.4.2.2.3 Zeolite 3.4.2.2.3.1 Patents 3.4.2.2.3.2 Research 3.4.2.2.4 Phosphorous-modified ZSM-5 3.4.2.2.4.1 Patents 3.4.2.2.4.2 Research 3.4.2.2.5 Metal Phosphate 3.4.2.2.5.1 Patents iii

3.4.2.2.6 Metal Oxide 3.4.2.2.6.1 Patents 3.4.2.2.7 Oxygen Lattice 3.4.2.2.7.1 Patents 3.4.2.2.8 Cracking Naphtha to Enhance Propylene 3.4.2.2.8.1 Patents 3.4.2.2.9 Direct Conversion of Butane to Propylene 3.4.2.2.9.1 Patents 3.4.2.2.9.2 Research 3.4.3 Light Olefin Recovery, Separation, and Purification 3.4.3.1 Propane-Propylene Splitter 3.4.3.1.1 Distillation/fractionation 3.4.3.1.1.1 Patents 3.4.3.1.1.2 Research 3.4.3.1.2 Absorption 3.4.3.1.2.1 Patents 3.4.3.1.2.2 Research 3.4.3.1.3 Membrane 3.4.3.1.3.1 Patents 3.4.3.1.3.2 Research 3.4.3.2 Propylene Recovery from Offgas 3.4.3.2.1 Patents 3.4.3.2.2 Research 3.4.4 Cracking of Heavier Olefins to Propylene 3.4.4.1 Patents 3.4.4.2 Research 3.4.5 Metathesis 3.4.5.1 Process 3.4.5.1.1 Patents 3.4.5.2 Catalyst 3.4.5.2.1 Patents 3.4.5.2.2 Research 3.4.6 Propane and Butane Dehydrogenation 3.4.6.1 Process 3.4.6.1.1 Patents 3.4.6.2 Catalyst 3.4.6.2.1 Patents 3.4.6.2.2 Research 3.4.7 Methanol-to-Olefins 3.4.7.1 Process 3.4.7.1.1 Patents 3.4.7.2 Catalysts 3.4.7.2.1 Patents 3.4.7.2.2 Research 3.5 REFERENCES iv