THERMODYNAMIC AND HEAT TRANSFER STUDIES ON THERMOELECTRIC POWER GENERATION AND COOLING OPTIONS S.MANIKANDAN

Similar documents
Solutions for Full Length Test - 4

ईट ड 11/ ट

SOUTHERN REGIONAL POWER COMMITTEE

Comments, if any, may please be made in the enclosed format and mailed to the undersigned at the above address.

क न द र य म ह व भ ग भ स द भ- स ए ड -III/16: IS न म बभ ग षय म ह- आई एस : 2003 क परभप लन ललए एस ट आई Doc: STI/12406/3, October 2017

ईट ड 16/ ट

Doc: TED 7(743)W November 2009 Draft Indian Standard AUTOMOTIVE VEHICLES TUBES FOR PNEUMATIC TYRES SPECIFICATION (First Revision of IS 13098)

च च म ज च द य त कम पन च चमट ड प र व व क स, म क व कल सम ह, तह-७, र इवज व यर पदक प रवतय व त त मक वलव त पर क ष क प ठ यक रम

क न द र य म ह व भ ग भ स द भ- स ए ड -III/16: IS न म बभ ग षय म ह- आई एस : 1998 क परभप लन ललए एस ट आई Doc: STI/14587/3, October 2017

vlk/kj.k EXTRAORDINARY Hkkx II [k.m 3 mi&[k.m (i) PART II Section 3 Sub-section (i) izkf/dkj ls izdkf'kr PUBLISHED BY AUTHORITY

DOC: STI/10322(Part 5/Sec 3)/2, September 2016


(URL: F /KV Damoh/ / Date:

MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG, NEW DELHI

सम मनत यहद प ई ह त ल हदए गए प र चपक म म ख प रपक च म खत पक त पक अध हस त क ष प भ ज

File No.CEA-PS-13-22(13)/1/2018-PSPM Division

प र ख स ख य ववषय TED 27 (13009) W - II ववद य त पक व ट र व ह प पक व तथ 30 मम ट प अ पतम पक व म पक (AIS 041:2015 प अमभन अमभग रहण)


Session IV ESMAP Approach and Pilot Overview

Rajasthan Public Service Commission 2016

द क षण क ष तर य व त स म त

ETD 39 (10038 ) ETD 39 (10039 ) ETD 39 (10040 )

य पक प रच लन मस द प स ड 25(2700) तकन क स म त प स ड 25

ब जल स स रक ष ELECTRICAL SAFETY. Dr. H. K. Verma Distinguished Professor (EEE) Sharda University, Greater Noida

DESIGN, DEVELOPMENT AND CONTROL OF COPPER ROTOR INDUCTION MOTORS FOR ELECTRIC VEHICLE

INSTITUTE FOR PLASMA RESEARCH. An Aided Institute of Department of Atomic Energy, Government of India

प 7 म, ज र करन क त र ख.., व ट क न च, न न ल खत अ त: थ पत

LT ATUL KATARYA MEMORIAL SCHOOL. Affiliated to ICSE New Delhi (Affiliation No. HA023) Lt AtulKatarya Marg, Near Sheetla Mata Parisar, Gurgaon,

DPS International ( R.K.Puram) My Summer Companion (Class III ) Eco Trotters: Planet Pals Each Step Counts

व द य त स रक ष व द य त स च म डण रचन / आर खड प रम णपत र अभ य सक रम स म न यत द ण य ब बत.

ववषय ववद य त पक व ट र व ह ज म पक प वव (AIS 040:2015 प अमभन अमभग रहण )

MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG, NEW DELHI Phone: , , Extn 8406, ; Website:

Master of Engineering

ल ख षणस पन व य पकप रच लनमस द प स ड 3(12109)C

स त य; त, प रश सनक क य ष य,

भ रत य म नक ब य र य त क इ ज ननयरर ग व भ ग. एम.ई.ड.20/ट March 2018

इल क र क स लल ग प ख व वषक टट ( प न क ण)

DOCUMENT DESPATCH ADVICE. Technical Committee: Petroleum and Related Products Sectional Committee, PCD 3

Ñf"k funsóky;] vameku rfkk fudksckj izóklu] gsmks] iksvz Cys;j

Disclosure to Promote the Right To Information

DIRECT TORQUE CONTROL OF A THREE PHASE INDUCTION MOTOR USING HYBRID CONTROLLER. RAJESHWARI JADI (Reg.No: M070105EE)

भ रत य रज़वर ब क RESERVE BANK OF INDIA. RBI/ /103 DPSS.CO.PD No.1463/ / January 08, 2019

भ रत य म नक य र य र क इ ज ननयरर ग व भ ग य पक पररच लन म मस द रल ख र षण स ञ पन

Automotive Vehicles Safety Belts, Restraint Systems and Safety Belt Reminder Installation Requirements

EFFECTS OF INJECTION PARAMETERS ON FUEL SPRAY AND COMBUSTION CHARACTERISTICS OF A BIODIESEL FUELLED DIESEL ENGINE LAHANE SUBHASH VASUDEO

म नक भवन, 9 बह द रश ह फर म ग, नई दद ल

Technical Committee: Petroleum and their Related Products of synthesis or biological origin Sectional Committee, PCD 3

Government of India क ष एव ककस न कल य ण म त र लय, Ministry of Agriculture and Farmers Welfare (क ष, सहक ररत एव ककस न कल य ण षवभ ग)

ME Thermoelectric -I (Design) Summer - II (2015) Project Report. Topic : Optimal Design of a Thermoelectric Cooling/Heating for Car Seat Comfort

ट ईड 6/ TED 7/T

DEVELOPMENT OF COMPRESSED AIR POWERED ENGINE SYSTEM BASED ON SUBARU EA71 MODEL CHEN RUI

COMPUTATIONAL ANALYSIS OF TWO DIMENSIONAL FLOWS ON A CONVERTIBLE CAR ROOF ABDULLAH B. MUHAMAD NAWI

THE CORE BANKING SOFTWARE. Guide is Under Development. It will be soon available for online references.

Government of India क ष एव ककस न कल य ण म त र लय, Ministry of Agriculture and Farmers Welfare (क ष, सहक ररत एव ककस न कल य ण षवभ ग)

दय अन फ ध क स चन. Tender Ref. No.: SCIC/Tenders/2014/001, Date: 10 th Oct, 2014

E-BOOK. January Petroleum Conservation Research Association Sanrakshan Bhawan, 10, Bhikaji Cama Place, New Delhi, Delhi

Studying the Optimum Design of Automotive Thermoelectric Air Conditioning

भ रत य म नक य क इ ज नय र ग वभ ग फ़ न पर अन प कर : ; फ + : ; ईम ल

ANALYSIS OF OVERCURRENT PROTECTION RELAY SETTINGS OF A COMMERCIAL BUILDING NURUL SYAQIRAH BINTI MOHD SUFI UNIVERSITI MALAYSIA PAHANG

तकन क सममतत : ईट ड 14

Diagnostics of Rotor and Stator Problems in Industrial Induction Motors

Performance study on thermoelectric cooling and heating system with cascaded and integrated approach

नननवद क गज त क य य क न म

EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF SKEW GIRDER BRIDGES RAVINDRA SWAROOP. Department of Applied Mechanics. Submitted

INDUSTRY SALES REVIEW. July 2017

Government Of India Ministry of Power Central Electricity Authority New Delhi. Power Sector

STUDY OF EFFECTS OF FUEL INJECTION PRESSURE ON PERFORMANCE FOR DIESEL ENGINE AHMAD MUIZZ BIN ISHAK

Disclosure to Promote the Right To Information

File No.CEA-PS-13-22(13)/1/2018-PSPM Division

POTENTIALITY OF INTRODUCING ABSORPTION CHILLER SYSTEMS TO IMPROVE THE DIESEL POWER PLANT PERFORMANCE IN SRI LANKA A

/ Telefax : No: 1(2)2015-E/ Battery& Charger TVH/ Dated:

रलख रषण स चन /DOCUMENT DESPATCH ADVICE ट ईड 29/ट -11,TED 29/T PASSIVE SAFETY CRASH PROTECTION SYSTEMS SECTIONAL COMMITTEE, TED 29

Government of India क ष एव ककस न कल य ण म त र लय, Ministry of Agriculture and Farmers Welfare (क ष, सहक ररत एव ककस न कल य ण षवभ ग)

FINAL PROJECT RESEARCH PAPER

File No.CEA-PS-13-17(14)/2/2018-PSPM Division. CEA /PS/PSPM/07/07/2018/ Dated:

ट ईड 6/ TED 7/T

Application is to be sent to the undersigned in two sealed covers on or before 21st July 2018 by 1500 hrs. as under:

Numerical Simulation of the Thermoelectric Model on Vehicle Turbocharged Diesel Engine Intercooler

Government Of India Ministry of Power Central Electricity Authority New Delhi

Review On Thermoelectric Refrigeration: Materials, Applications And Performance Analysis

Disclosure to Promote the Right To Information

CKING OF NAPHTHA TO PRODUCE BENZENE, TOLUENE AND XYLENE (BTX)

Ph. No: Fax No: Website:

Remote Village Electrification

Disclosure to Promote the Right To Information

Government Of India Ministry of Power Central Electricity Authority New Delhi

PREDICTION OF REMAINING USEFUL LIFE OF AN END MILL CUTTER SEOW XIANG YUAN

Government Of India Ministry of Power Central Electricity Authority New Delhi. Executive Summary Power Sector February-16

SPECIFICATIONS OF SELF PROPELLED REAPER

Optimal Design and Analysis of Hybrid Energy Systems

Government Of India Ministry of Power Central Electricity Authority New Delhi. Power Sector

Exhaust Waste Heat Recovery of I. C. Engine by Thermoelectric Generator

THE ASIAN SCHOOL, BAHRAIN MONTHWISE DISTRIBUTION OF SYLLABUS FOR THE YEAR

Government Of India Ministry of Power. Central Electricity Authority. New Delhi

DOCUMENT DESPATCH ADVICE. Biodiesel, Diesel Fuel Blend ( B6 to B20) Specification

Manak Bhavan, 9 Bahadur Shah Zafar Marg New Delhi TeleFax Website : :

Ph. No: Fax No: Website:

भ रत सरक र Government of India व य त म लय Ministry of Power उ तर प व य व य त स म त. North Eastern Regional Power Committee

Disclosure to Promote the Right To Information

Ph. No: Fax No: Website:

Transcription:

THERMODYNAMIC AND HEAT TRANSFER STUDIES ON THERMOELECTRIC POWER GENERATION AND COOLING OPTIONS S.MANIKANDAN CENTRE FOR ENERGY STUDIES INDIAN INSTITUTE OF TECHNOLOGY DELHI HAUZ KHAS, NEW DELHI-110016 OCTOBER 2017

Indian Institute of Technology Delhi (IITD), New Delhi, 2017

THERMODYNAMIC AND HEAT TRANSFER STUDIES ON THERMOELECTRIC POWER GENERATION AND COOLING OPTIONS by S.MANIKANDAN Centre for Energy Studies Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy to the INDIAN INSTITUTE OF TECHNOLOGY DELHI OCTOBER 2017

Certificate This is to certify that the thesis entitled Thermodynamic and Heat Transfer Studies on Thermoelectric Power Generation and Cooling Options being submitted by Mr. S.Manikandan to Indian Institute of Technology Delhi in fulfillment of the requirements for the award of the degree of Doctor of Philosophy is a record of bonafide research work carried out by him under my guidance and supervision at Centre for Energy Studies, Indian Institute of Technology Delhi. The results obtained herein have not been submitted in part or in full to any other University or Institute for the award of any degree to the best of our knowledge. Dr. S. C. Kaushik Professor Centre for Energy Studies Indian Institute of Technology Delhi Delhi Hauz Khas, New Delhi 110016 i

ACKNOWLEDGEMENTS It gives me immense pleasure to express my gratitude to all those who supported me during the course of my study. First and foremost, I would like to express my deep gratitude to my research supervisor, Prof. S. C. Kaushik, for providing me thorough guidance, motivation, encouragement and invaluable suggestions throughout my research work in spite of his busy academic and professional schedules. I am indebted to the Almighty for giving me such an intellectual and kind human being as guide or mentor. I thank the Indo US Science and Technology Forum (IUSSTF), Department of Science and Technology, Government of India for the Building Energy Efficiency Higher and Advanced Network (BHAVAN) fellowship, and express my gratitude to Prof. Ronggui Yang, Department of Mechanical Engineering, University of Colorado at Boulder, USA for his support and guidance during my BHAVAN internship. I would like to extend my sincere thanks to the chairman and all members of my SRC (Student Research Committee) for providing their valuable suggestions during the various evaluation stages of my research work. I am also grateful to Director, IIT Delhi and Head, Centre for Energy Studies for providing facilities and extending every possible support. Special thanks are due to Dr. S. K. Tyagi, Dr. Ranjana Hans, Mr. Rahul Rawat, Mr. Manoj Dixit, Ms. Ravita Lamba, Mr. O P Sharma, Mr. Rupinder Pal Singh, Mr. Saket Verma and all research colleagues for extending all kind of support from time to time during my period of study. Thanks are also due to other members of the solar thermal science laboratory, CES, IIT Delhi for their interactions with me during the research work. This thesis would be incomplete without an expression of my sincere and deep sense of gratitude to the reviewers, editors and production teams of the international journals in which my research papers are published for their careful reading, their valuable comments and suggestions which greatly improved the contents and quality of the research. I would also like to thank all the authors of the research papers and books which I have referred to and cited in the published papers and the present thesis. I wish to express my gratitude to my friends for providing their support that has helped me a lot in completing my research work. Their presence in my life inspires me to have positive thinking in times of distress and constantly striving for achieving new tough goals in life. ii

I would like to express my gratitude to my wife Anusuya Manikandan for her support, patience, cooperation and encouragement throughout the research span. I am obliged to my daughter Vishaka for sparing the valuable time I spent on this work which was actually her golden childhood time. Last but not least, I would like to thank my mother Smt. Krishna Bai, father Shri. Sundararaj, who always prayed for my success. I have strong belief that whatever I have achieved in my life is all because of their prayers and blessings. S.Manikandan iii

ABSTRACT The thermoelectric devices, which work on the principles of reversible Seebeck, Peltier and Thomson effects having advantages of simple in operation, reliable, noiseless and lightweight makes them suitable for power generation, cooling and heating applications. The performance of the thermoelectric devices are dependent on the dimensionless figure of merit (ZT) of the thermoelectric materials which have not improved significantly much since 1950. The commercially available Bismuth Telluride based thermoelectric devices have lower figure of merit. Moreover, most of reported research in the literature have investigated the thermoelectric devices based on the first law of thermodynamics. In this thesis, the thermoelectric generator and thermoelectric cooler devices have been studied based on the first and second law of thermodynamics to quantify the irreversibilities in the thermoelectric devices and it is found that the internal irreversibilities are higher than the external irreversibilities. The maximum power point tracking technique (MPPT) has been applied to the thermoelectric generator-cooler combined system to improve its performance and it was found that the MPPT technique will improve the system efficiency and cooling power of the combined system. The impact of Thomson effect on the performance and the optimum number of thermocouples in the first and second stage of the two stage thermoelectric generator and cooler have been studied. Thus obtained optimum number of thermocouples are different from the optimum number of thermocouples without considering the Thomson effect. The thermoelement geometry has been modified to improve the thermal performance of the thermoelectric devices and the transient heat transfer studies have proved that the annular shaped geometry of the thermoelement can perform better than the conventional flat geometry of the thermoelement. The modified current pulse operation of the thermoelectric cooler has been studied to improve the cooling power and coefficient of performance (COP) of the thermoelectric cooler simultaneously. The solar heat pipe based thermoelectric generator for power generation has been investigated. The solar photovoltaic cell operated thermoelectric cooler has also been experimentally studied and it is found that it can maintain 9 o C to 14 o C without and with loaded condition respectively inside the cold box and provided the COP of 0.294 under loaded condition. A user friendly computer software has been developed using MATLAB graphical user interface for the thermodynamic design of thermoelectric devices. The results and conclusions of the present studies are useful for the design and development of actual thermoelectric systems for power generation and cooling applications. iv

स र थर म इल क ट र क (त प व द य त) ड इस (उपकरण), ज कक प रतत त स ब क, प क ट ट यर और थ र मसन ससद त पर क र म करत ह तथ ऑपर शन र म सरल, व श सन य, श र र म रत और जन र म हटक ह न क क रण बबजल उत प दन, क सल ग (श तलन) और ह ट ग अन प रय ग क सलए उपय रत ह थर म इल क ट र क उपकरण क परफ रर म स थर म इल क ट र क पद थ क ग ण त त क आय र म रटहत आ कड (आय र म रटहत कफगर ऑफ़ र म रर ) (ज..) पर तनर र करत ह, क ट जसर म कक 1950 क ब द स बह त ज य द स ध र नह ह आ ह व य स तयक र प स उपलब ध बबस र मथ टय र इ ( ल र इ ) आध ररत थर म इल क ट र क ड इस क कफगर ऑफ़ र म रर कर म ह इसक अल, स टहत य र म उपलब ध अधधक श अन स ध न र म थर म इल क ट र क ड इस (उपकरण ) क ऊष र म गततक क पहल ऊज ससद त क आध र पर ज च क गई ह इस थ ससस र म, थर म इल क ट र क जनर र और थर म इल क ट र क क लर उपकरण क अध ययन उनर म उपक ट स थत इरर सस बबसल ज़ (अपरर त न यत ) क अन र म न लग न क सलए, ऊष र म गततक क पहल और द सर ससद त क आध र पर ककय गय ह और यह प य गय ह कक आ तररक इरर सस बबसल ज़ (अपरर त न यत ए ) ब ह य इरर सस बबसल ज़ (अपरर त न यत ओ ) स अधधक ह थर म इल क ट र क जनर र-क लर स य रत ससस र म (प रण ल ) क परफ रर म स स ध रन (ब हतर बन न ) क सलए अधधकतर म प र प इ कक ग (एर म.प.प..) तकन क क उपय ग ककय गय (ल ग क गई) ह और यह प य गय कक एर म.प.प.. तकन क स य रत ससस र म (प रण ल ) क दक षत और क सल ग (श तलन) र म स ध र कर ग थ र मसन इफ़ र (प रर ) क परफ रर म स (प रदश न) पर असर (प रर ) और द व -चरण (द -चरण) थर म इल क ट र क जनर र और क लर क पहल और द सर स ज (चरण) र म थर म कपटस क अन क लतर म (इष तर म) स ख य क अध ययन ककय गय इस प रक र प र प त थर म कपटस क अन क लतर म स ख य, बबन थ र मसन प रर श सर मल ककय ह ए प र प त थर म कपटस क अन क लतर म (इष तर म) स ख य स अलग ह थर म इल क ट र क ड इस क थर म ल (त प य) प रदश न (परफ रर म स) क ब हतर बन न क सलए थर म एसलर म (तत त ) ज र म (ज य सर मतत) क स श धधत ककय गय ह और ससए (क षणणक) ह (गर म ) हस त तरण न यह स बबत ककय (कर टदय ) ह कक थर म एसलर म (तत त ) क क ल आक र क ज र म (ज य सर मतत), प र पररक फ ल (सर मतल) ज य सर मतत स ब हतर प रदश न कर सकत ह थर म इल क ट र क क लर क क सल ग प र (शक ट रत) और प रदश न ग ण क (क एकफससए ) (स.ओ.प.) र म एक स थ स ध र करन क सलए थर म इल क ट र क क लर क स श धधत व द य त ध र पटस ऑपर शन क अध ययन ककय गय बबजल उत प दन क सलए स र गर म (त प य) प इप आध ररत थर म इल क ट र क जनर र क ज च क गई ह स र (स लर) फ ट इक स ल स च सलत थर म इल क ट र क क लर क र प रय ग त र मक र प स अध ययन ककय गय और प य गय ह कक यह ससस र म (प रण ल ) ठ ब रस क अ दर क त पर म न ल (र र) क उपक ट स थतत र म 9 0 C (ड ग र स क ट टसयस) तथ ल (र र) क अन पक ट स थतत र म 14 0 C तक बन ए रख सकत ह और ल (र र) क उपक ट स थतत र म 0.294 स.ओ.प. प रद न क थर म इल क ट र क उपकरण क थर म यन सर मक ड ज इन क सलए र म ल ब (MATLAB) ग र कफकल य जर इ रफ स क उपय ग करक एक य जर (उपय गकत ) क अन क ल क प य र स फ यर व कससत ककय गय ह त र म न अध ययन क पररण र म और तनष कर, बबजल उत प दन और क सल ग अन प रय ग क सलए स तव क थर म इल क ट र क ससस र म (प रण ल ) क ड ज इन और व क स क सलए उपय ग ह

CONTENTS Certificate Acknowledgements Abstract Contents List of Figures List of Tables Nomenclature i ii iv v xi xix xxi CHAPTER 1: GENERAL INTRODUCTION 1 1.1 Background 1 1.2 Thermal Modelling of Thermoelectric devices 6 1.3 Choice of Thermoelectric materials 9 1.4 Scope and Objectives of the Thesis 12 1.5 Organization of the Thesis 13 CHAPTER 2 : THERMODYNAMIC ANALYSIS AND MAXIMUM POWER POINT TRACKING IN THERMOELECTRIC GENERATOR-COOLER COMBINED SYSTEM 19 2.1 Introduction 19 2.2 Thermodynamic basis of TEC and TEG 22 2.2.1 Thermoelectric Cooler 24 2.2.2 Thermoelectric Generator 34 2.2.3 Thermoelectric generator-cooler combined 37 system 2.3 Results and discussion 42 v

2.3.1 Thermoelectric cooler 42 2.3.2 Thermoelectric generator 48 2.3.3 TEG TEC combined system 54 2.4 Conclusions 60 CHAPTER 3 : STUDY OF THOMSON EFFECT IN SINGLE AND TWO STAGE THERMOELECTRIC GENERATOR AND THERMOELECTRIC COOLING SYSTEMS ON PERFORMANCE 63 3.1 Introduction 63 3.2 Thermodynamic studies of two stage TEG and TEC 65 3.2.1 Thermodynamic modelling of two stage 65 thermoelectric generator 3.2.2 Thermodynamic modelling of two stage 73 thermoelectric cooler 3.2.3 Development of user friendly computer 78 software TESimulator for design and analysis of thermoelectric devices 3.3 Results and discussion 86 3.3.1 Two stage irreversible thermoelectric 86 generator 3.3.2 Two stage irreversible thermoelectric cooler 91 3.4 Conclusions 95 CHAPTER 4 : EFFECT OF THERMOELEMENT GEOMETRY ON PERFORMANCE OF SINGLE STAGE 97 vi

THERMOELECTRIC GENERATOR AND THERMOELECTRIC COOLING SYSTEMS 4.1 Introduction 97 4.2 Thermal modelling of annular TEG and TEC 98 4.2.1 Heat Transfer modelling of annular 99 thermoelectric generator 4.2.2 Heat Transfer modelling of annular 106 thermoelectric cooler 4.3 Results and discussion 113 4.3.1 Annular thermoelectric generator 113 4.3.2 Annular thermoelectric cooler 119 4.4 Conclusions 125 CHAPTER 5 : TRANSIENT HEAT TRANSFER ANALYSIS AND THERMAL PERFORMANCE OF THE THERMOELECTRIC GENERATOR AND THERMOELECTRIC COOLING SYSTEMS 127 5.1 Introduction 127 5.2 Thermal modelling of annular TEG and TEC 129 systems 5.2.1 Heat Transfer studies of annular 129 thermoelectric generator 5.2.2 Heat transfer studies of annular 136 thermoelectric cooler 5.3 Results and Discussion 142 5.3.1 Annular thermoelectric generator 142 vii

5.3.2 Annular thermoelectric cooler 149 5.4 Conclusions 155 CHAPTER 6 : TRANSIENT PULSE OPERATION OF THE THERMOELECTRIC COOLER FOR BUILDING SPACE COOLING APPLICATION 157 6.1 Introduction 157 6.2 Thermal modelling of TEC 159 6.3 Results and discussion 166 6.4 Conclusions 176 CHAPTER 7 : SOLAR OPERATION OF THERMOELECTRIC 179 GENERATOR AND PV-THERMOELECTRIC COOLING SYSTEMS 7.1 Introduction 179 7.2 Thermal modelling of Solar annular TEG 181 7.2.1 Thermal modelling of Solar annular 182 thermoelectric generator 7.3 Solar Photovoltaic-Thermoelectric cooler system: 187 Experimental study 7.4 Results and discussion 191 7.4.1 Solar annular thermoelectric generator 191 7.4.2 Solar Photovoltaic Thermoelectric cooler 199 7.5 Conclusions 203 CHAPTER 8 : OVERALL CONCLUSIONS AND RECOMMENDATIONS 205 8.1 Conclusions 205 8.2 Contributions 206 viii

8.3 Recommendations for further work 207 APPENDIX-A: APPENDIX-B: Thermodynamic modelling of ideal, endoreversible and exoreversible thermoelectric generator systems Parametric constants for calculating the junction temperatures and optimum currents of two stage TEG and TEC 209 217 REFERENCES 221 ABOUT THE AUTHOR 235 ix

LIST OF FIGURES Fig. No. Title of the Figure Page No. 1.1 Schematic of thermoelectric cooler 6 1.2 Cross section view of a thermo-element 6 1.3 Power factor and thermal conductivity of materials 10 2.1 Types of thermodynamic thermoelectric systems 20 2.2(a) Reversed heat engine 24 2.2(b) Thermoelectric cooler 24 2.3(a) Heat engine 34 2.3(b) Thermoelectric generator 34 2.4 V-I characteristics of thermoelectric generator 39 2.5 DC/DC converter configuration 41 2.6 Temperature profile of TEG and TEC for exoreversible and 41 irreversible case 2.7(a) Cooling power of thermoelectric cooler for different ΔTc for 43 exoreversible case 2.7(b) Cooling power of thermoelectric cooler for different ΔTc for 43 irreversible case 2.8(a) COP of thermoelectric cooler for different ΔTc for exoreversible 43 case 2.8(b) COP of thermoelectric cooler for different ΔTc for irreversible 43 case 2.9(a) Exergy efficiency of thermoelectric cooler for different ΔTc for 45 exoreversible case 2.9(b) Exergy efficiency of thermoelectric cooler for different ΔTc for 45 irreversible case 2.10(a) Cooling power vs. COP of irreversible thermoelectric cooler for 45 different ΔTc 2.10(b) Cold exergy vs. exergy efficiency of irreversible thermoelectric 45 cooler for different ΔTc 2.11 Internal and external irreversibilities in different thermodynamic modes of thermoelectric cooler 47 xi

2.12(a) Cooling power vs exergy efficiency of thermoelectric cooler with variable total heat transfer area 2.12(b) Cooling power vs exergy efficiency of thermoelectric cooler with variable contact resistance 2.13(a) Power output of thermoelectric generator for different ΔTg for exoreversible case 2.13(b) Power output of thermoelectric generator for different ΔTg for irreversible case 2.14(a) Energy efficiency of thermoelectric generator for different ΔTg for exoreversible case 2.14(b) Energy efficiency of thermoelectric generator for different ΔTg for irreversible case 2.15(a) Exergy efficiency of thermoelectric generator for different ΔTg for exoreversible case 2.15(b) Exergy efficiency of thermoelectric generator for different ΔTg for irreversible case 2.16 Irreversibilities in different thermodynamic modes of thermoelectric generator 2.17(a) Power output and exergy efficiency of thermoelectric generator for variable heat transfer area 2.17(b) Power output and exergy efficiency of thermoelectric generator for variable contact resistance 2.18(a) Power output of TEG and Cooling Power of TEC with duty cycle of the DC/DC converter 2.18(b) COP of TEC and combined system efficiency with duty cycle of the DC/DC converter 2.19(a) Cooling power of TEC and System efficiency with duty cycle 47 47 49 49 49 49 51 51 52 52 52 54 54 56 2.19(b) 2.20(a) of converter with different ΔTg Cooling power of TEC and System efficiency with duty cycle of converter with different ΔTc Influence of heat source temperature of TEG on the cold exergy output and combined system exergy efficiency 56 58 xii

2.20(b) Influence of heat source temperature of TEC on the cold exergy 58 output and combined system exergy efficiency 3.1 Two stage thermoelectric generator 66 3.2 Two stage thermoelectric cooler 73 3.3 TESimulator Installer 81 3.4 Main window of the TESimulator 81 3.5 TEGSimulator window 82 3.6 Selection of operating conditions 83 3.7 Flowchart for the thermodynamic design of thermoelectric 84 cooler using TESimulator 3.8 Screenshot on the operation of TECSimulator 85 3.9 Export figure option in TESimulator 85 3.10 Power output vs. current of a two stage exoreversible 87 thermoelectric converter 3.11(a) Power output vs. energy efficiency of a two stage exoreversible 87 thermoelectric generator 3.11(b) Power output vs. exergy efficiency of a two stage irreversible 87 thermoelectric generator 3.12(a) Power output vs. number of thermocouples in the first stage of 88 the irreversible TTEG 3.12(b) Exergy efficiency vs. number of thermocouples in the first 88 stage of the irreversible TTEG 3.13(a) Comparison of power output and exergy efficiency of the 89 TTEG with and without Thomson effect 3.13(b) Comparison of irreversibilities in a TTEG with and without 89 Thomson effect 3.14(a) Cooling power of a two stage exoreversible thermoelectric 91 cooler 3.14(b) COP of a two stage exoreversible thermoelectric cooler 91 3.15 Cooling power vs. exergy efficiency of a two stage irreversible 92 thermoelectric cooler 3.16(a) Cooling power of an irreversible TTEC vs. number of thermocouples in the first stage 93 xiii

3.16(b) Exergy efficiency of an irreversible TTEC vs. number of 93 thermocouples in the first stage 3.17(a) Cooling power and energy efficiency in the TTEC with and 93 without Thomson effect 3.17(b) Irreversibilities in the TTEC with and without Thomson effect 93 4.1(a) Schematic of ATEG 99 4.1(b) Cross section view of ATEG 99 4.2(a) Schematic of ATEC 106 4.2(b) Cross section view of ATEC 106 4.3 Effect of theta and Sr in the dimensionless power output of 114 ATEG 4.4 Effect of theta and Sr in the Energy efficiency of ATEG 115 4.5 Effect of theta and Sr in exergy efficiency of ATEG 115 4.6 Effect of theta and Sr in irreversibilities of ATEG 116 4.7 Effect of RL/Ro and Sr in the power output of ATEG 117 4.8 Effect of RL/Ro and Sr in the Energy efficiency of ATEG 117 4.9 Effect of RL/Ro and Sr in dimensional irreversibilities of ATEG 118 4.10 Effect of RL/Ro and Sr in exergy efficiency of ATEG 118 4.11 Effect of theta and Sr on the dimensionless cooling power of 120 ATEC at maximum energy efficiency condition 4.12 Effect of theta and Sr on the Energy efficiency of ATEC at 120 maximum energy efficiency condition 4.13 Effect of theta and Sr on the exergy efficiency of ATEC at 122 maximum energy efficiency condition 4.14 Effect of theta and Sr on the irreversibilities of ATEC at 122 maximum energy efficiency condition 4.15 Effect of theta and Sr on the dimensionless cooling power 123 output of ATEC at maximum cooling power condition 4.16 Effect of theta and Sr on the Exergy efficiency of ATEC at 124 maximum cooling power condition 5.1(a) Annular thermoelectric generator 129 5.1(b) Cross section view of annular thermoelectric element 129 5.2 Annular thermoelectric cooler system 136 xiv

5.3 Temperature difference between the hot and cold side of ATEG and FTEG for variable heat input 5.4 Power output and energy efficiency of ATEG and FTEG for variable heat input 5.5 Temperature difference between the hot and cold side of ATEG and FTEG for variable operating current 5.6 Time variation on energy efficiency of ATEG for variable current 5.7 Power output and energy efficiency of ATEG and FTEG for variable current 5.8 Variation in temperature difference between hot and cold junction of ATEG and FTEG for variable heat transfer coefficient 5.9 Power output and energy efficiency of ATEG and FTEG for different heat transfer coefficient 5.10 Cold and hot side temperature of annular and flat thermoelectric cooler 5.11 Cold side temperature of annular and flat thermoelectric cooler for different cooling power 5.12 Cold side temperature of annular and flat thermoelectric cooler for different current 5.13 Hot and cold side temperature of annular and flat thermoelectric cooler for different heat transfer coefficient 5.14 Cold side temperature of the annular and flat thermoelectric cooler for higher values of heat transfer coefficient 5.15 Cold side temperature of annular and flat thermoelectric cooler for different length of thermoelement 6.1 Schematic representation of the thermoelectric cooler for building space cooling application 6.2 Input variables and cold side temperature profile of normal pulse operation and modified pulse operation of TEC 6.3 Variation of cold side temperature and COP of TEC with hot side heat transfer coefficient at steady state 143 143 145 145 146 147 147 149 150 151 152 153 153 161 166 167 xv

6.4 Variation on cooling power and COP of TEC as a function of 167 steady state current 6.5 Cold side temperature of TEC with modified pulse operation 169 6.6 Average cooling power and COP as a function of pulse cooling 169 load. 6.7(a) Cold side temperature vs. the pulse current ratio with constant 170 average cooling power 6.7(b) Cold side temperature vs. the pulse current ratio with constant 170 average cold side temperature 6.8 Variation in COP and the average cold side temperature of the 171 thermoelectric cooler with pulse current ratio 6.9 Variation of average cooling power and COP of TEC with 172 current pulse ratio and pulse cooling power 6.10 Cold side temperature of TEC for different pulse width 173 6.11 Variation of average cooling power, COP and average cold side 174 temperature with different pulse width 6.12 Schematic of rectangular, ramp up and exponential rise pulse 175 6.13 Cold side temperature of TEC for different pulse shapes 175 6.14 COP and average cooling power of TEC for different pulse 176 shapes 7.1(a) Solar heat pipe annular thermoelectric generator system 183 7.1(b) Cross section view of solar heat pipe flat thermoelectric 183 generator 7.2 Schematic of solar annular thermoelectric generator 183 7.3 Thermal network of solar annular thermoelectric generator 183 7.4 Block diagrammatic representation of Solar PV-TEC system 190 7.5 Experimental setup of Solar-PV thermoelectric cooler system 190 7.6(a) Pyranometer 190 7.6(b) Solar Photovoltaic panel 190 7.7 Power output of solar thermoelectric generator with solar radiation. Dashed line with square ticks for SATEG and the continuous line for SFTEG systems. 192 xvi

7.8 Electrical energy efficiency of solar thermoelectric generator with solar radiation. Dashed line with square ticks for SATEG and the continuous line for SFTEG systems 7.9 Electrical exergy efficiency of solar thermoelectric generator with solar radiation. Dashed line with square ticks for SATEG and the continuous line for SFTEG systems 7.10 Thermal exergy efficiency of solar thermoelectric generator with solar radiation 7.11 Variation in power output of solar thermoelectric generator with number of thermocouples 7.12 Variation in electrical energy efficiency of solar thermoelectric generator with number of thermocouples 7.13 Variation in electrical energy efficiency and thermal energy efficiency of solar thermoelectric generator with number of thermocouple 7.14 Variation in electrical energy efficiency and thermal energy efficiency of solar annular thermoelectric generator with water temperature 7.15 Temperature profile of solar thermoelectric cooler without load conditions 7.16 Temperature profile of the solar thermoelectric cooler with load condition for evening condition 7.17 Solar radiation and input power to the solar thermoelectric cooler 7.18 Temperature profile of the thermoelectric cooler with load under morning condition 7.19 Temperature difference between the hot, cold side and water temperature and cold side temperature of thermoelectric cooler 192 194 194 195 196 197 198 199 200 201 202 202 xvii

LIST OF TABLES Table. No. Title of the Table Page No. 1.1 FOM of Skeutterudite thermoelectric materials. 11 1.2 FOM of Clathrate and alkali thermoelectric materials. 11 1.3 FOM of nano thermoelectric materials. 11 2.1 Impedance relations of DC/DC converter 40 2.2 Comparison of performance parameters of exoreversible and 48 irreversible thermoelectric cooler for ΔTc of 10K 2.3 Comparison of irreversibilities in endoreversible, 48 exoreversible and irreversible thermoelectric cooler 2.4 Comparison of performance parameters of exoreversible and 53 irreversible thermoelectric generator for ΔTg of 150K 2.5 Impact of MPPT in exoreversible combined system for ΔTc 59 of 10K and ΔTg of 150K 2.6 Impact of MPPT in irreversible combined system for ΔTc of 59 10K and ΔTg of 150K 2.7 Comparison between the exoreversible and irreversible 59 combined system with MPPT 3.1 Plot markers for different operating conditions for the 86 thermoelectric devices 3.2 Optimum number of thermocouples for the maximum power 90 output, energy/exergy efficiency in an irreversible TTEG with ΔTg of 150 K and TH of 450 K 3.3 Optimum number of thermocouples for maximum cooling 94 power, maximum energy and exergy efficiency in an irreversible TTEC with ΔTc of 20K and TC of 280K 4.1 Expressions for IQc and Ienergy of ATEC 110 4.2 Comparison of the results of this study with results of Shen 119 et al. (2015) when θ=1.5, RL/Ro=2 and ZTm=0.4532 4.3 Results of the analysis when θ=1.034 and Z * Teff=0.6018 for maximum energy efficiency condition 124 xix

4.4 Results of the analysis when θ=1.034 and Z * Teff =0.6018 for 125 maximum cooling power condition 5.1 Material and physical properties of the thermoelectric 130 generator (Bi2Te3) 5.2 Material and physical properties of the thermoelectric cooler 136 (Bi2Te3). 5.3 Comparison of power output and energy efficiency of flat and 148 annular thermoelectric generator 5.4 Comparison of COP of flat and annular thermoelectric cooler 155 for different cooling load 6.1 Properties of the thermoelectric cooler 160 7.1 Geometrical and physical properties of evacuated tube solar 185 collector. 7.2 Properties of thermoelectric material 186 7.3 Specifications of solar thermoelectric cooler 189 7.4 Comparison of maximum performance parameters of SATEG and SFTEG system at solar radiation of 1000 W/m 2 and Twater of 308 K. 198 xx

NOMENCLATURE h Heat transfer coefficient (W/m 2 K) i number of nodes m mass (kg) r Radius (m) t time (s) x ratio of number of thermocouples in first stage to second stage A Area (m 2 ) COP Coefficient of Performance D Density (kg/m 3 ) Ex Exergy (W) I Current (A) Irr Irreversibilities (W) K Thermal conductance (W/K) L length (m) M Total number of thermoelectric couples in two stage TEG and TEC N Total number of thermoelectric modules P Electrical Power (W) Q Heat transfer rate (W) R Electrical Resistance (Ω) S Entropy (W/K) T Temperature (K) U Overall heat transfer coefficient (W/m 2 K) V Voltage (V) Z Figure of merit (K -1 ) Greek Letters α Seebeck coefficient (V/K) k Thermal conductivity (W/mK) ρ Electrical resistivity (Ωm) σ Electrical conductivity (S/m) xxi

Δ Difference θ Dimensionless temperature ƞ Energy efficiency Ψ Exergy efficiency φ Angle τ Thomson coefficient (V/K) Subscripts o Environment state 1 hot junction of thermoelectric device 2 cold junction of thermoelectric device c Cooler dl Infinitesimal length dr Infinitesimal radial length dt Infinitesimal time en Endoreversible ex Exoreversible gen Generation g Generator in Input ir Irreversible m Interstage/ mean n n-type material out Output p p-type material r Cooler C Cold side of thermoelectric device H Hot side of thermoelectric device I Ideal Superscripts n Incremental time xxii