SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA Faculty of Mechanical Engineering DESIGN OF HYBRID CAR

Similar documents
Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune)

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM

The Case for Plug-In Hybrid Electric Vehicles. Professor Jerome Meisel

Strategies for Sustainable Energy

JEE4360 Energy Alternatives

HYDROGEN. Turning up the gas. Jon Hunt. Manager Alternative Fuels TOYOTA GB CCS HFC 2019

Into the Future with E-Mobility

Azure Dynamics is a leading developer of highly efficient, cost-effective and environmentally friendly hybrid-electric ( HEV ) and electric ( EV )

Mathematical modeling of the electric drive train of the sports car

Efficiency Enhancement of a New Two-Motor Hybrid System

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader

Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World Driving Data

Energy Storage. Electrochemical Cells & Batteries

CHAPTER 8 TRANSPORTATION ENERGY TECHNOLOGIES

PROGRESS OF BATTERY SYSTEMS AT GENERAL MOTORS. Manfred Herrmann Roland Matthé. World Mobility Summit Munich October 2016

Optimal Control Strategy Design for Extending. Electric Vehicles (PHEVs)

2030 Battery R&D Roadmap for Hybridization and E-Mobility

The xev Industry Insider Report

Flywheel energy storage retrofit system

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

DOE OVT Energy Storage R&D Overview

THE FUTURE DIRECTION OF THE ELECTRIFIED VEHICLE UTILIZING OF BIG DATA

The Chances and Potentials for Low-Voltage Hybrid Solutions in Ultra-Light Vehicles

Modern Auto Tech Study Guide Chapter 38 Pages Hybrid Drive Systems 48 Points. Automotive Service

We will read an excerpt for a lecture by Prof. John Heywood, author of our text.

The xev Industry Insider Report

Electric cars: Technology

E-MOBILITY. BMW GROUP TECHNOLOGY WORKSHOPS. December 2017

Electric Mobility at Opel Strategy. Technology. The Ampera. Gerrit Riemer Adam Opel AG Director Future Mobility Mobilis 2012, Mulhouse

Ming Cheng, Bo Chen, Michigan Technological University

Components for Powertrain Electrification

A conceptual design of main components sizing for UMT PHEV powertrain

Hybrid4All: A low voltage, low cost, mass-market hybrid solution

Hybrid Wheel Loaders Incorporating Power Electronics

ANALYSIS OF THE IMPACT OF ELECTRIC VEHICLES ON PRIMARY ENERGY CONSUMPTION AND CARBON EMISSION ON NATIONAL LEVEL.

Electric Vehicles in Japan. Japan Automobile Research Institute FC-EV Research Division Norikazu OGINO

Toyota. Stephen Stacey - General Manager Arjan Dijkhuizen - Senior Engineer. Government & Technical Affairs Toyota Motor Europe TOYOTA MOTOR EUROPE

How do we make city buses cleaner and more comfortable?

Cathode material for batteries the safe bridge to e-mobility

Future Automotive Power-trains Does hybridization enable vehicles to meet the challenge of sustainable development?

Plug-in Hybrids: The Cars of the Future?

Plug-in Hybrid Systems newly developed by Hynudai Motor Company

Challenges on the Road to Electrification of Vehicles. Hrishikesh Sathawane Analyst Lux Research, Inc. October, 2011

Low e-coatings: Role of radiation loss

Energy 101 Energy Technology and Policy

Seoul, Korea. 6 June 2018

FUTURE OF TRANSPORTATION TECHNOLOGIES

Control of small gasoline genset

Energy Storage (Battery) Systems

AABC Europe 2017 Mainz, Germany Dr. Jörn Albers, Dr. Christian Rosenkranz Johnson Controls Power Solutions EMEA. Johnson Controls Power Solutions EMEA

Performance Evaluation of Electric Vehicles in Macau

COMPARISON OF ELECTRIC VEHICLE TO THE INTERNAL COMBUSTION ENGINE VEHICLE AND ITS FUTURE SCOPE

Plug-in Hybrid Vehicles Exhaust emissions and user barriers for a Plug-in Toyota Prius

Future Lithium Demand in Electrified Vehicles. Ted J. Miller

Energy Challenges and Costs for Transport & Mobility. 13th EU Hitachi Science and Technology Forum: Transport and Mobility towards 2050

Lithium-Ion Batteries for Electric Cars: Elena Aleksandrova Honda R&D Europe (Deutschland) GmbH Automobile Advanced Technology Research

The Hybrid and Electric Vehicles Manufacturing

Shri Vishnu Engineering College for Women: Bhimavaram (Autonomous) Department of Electrical and Electronics Engineering

Energy Storage Solutions for xev System. June 4th, 2015

2010 Advanced Energy Conference. Electrification Technology and the Future of the Automobile. Mark Mathias

Siemens Pioneer in Electric Mobility

Development of Motor-Assisted Hybrid Traction System

IPRO Spring 2003 Hybrid Electric Vehicles: Simulation, Design, and Implementation

EENERGY EFFICIENCY. German-Japanese Energy Symposium Lithium-Ion-Technology in mobile und stationary applications. February 10 th, 2011

Recent Developments in Electric Vehicles for Passenger Car Transport

Comparing the powertrain energy and power densities of electric and gasoline vehicles

Powertrain Evolution and Electrification

Toyota s Initiatives for Realizing Sustainable Mobility. September 5, 2008 Kazuo Okamoto Toyota Motor Corporation

Batteries generally classifies into two main groups: primary and secondary battery types. Primary batteries are

KREISEL ELECTRIC YETI 4x4. The electric power pack. From 0 to 60 kph in 2.6 seconds.

PHEV: HEV with a larger battery to allow EV operation over a distance ( all electric range AER)

Life Cycle Assessment (LCA) of Nickel Metal Hydride Batteries for HEV Application

The role of Hydrogen in Sustainable Mobility

Chris Pick. Ford Motor Company. Vehicle Electrification Technologies and Industry Approaches

Available online at ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering

Development of Engine Clutch Control for Parallel Hybrid

Objectives At the completion of this session, the delegates will understand and will be able to

Honda Clarity Fuel Cell HyLAW National Workshop, Budapest, 27. September 2018

PHYS Energy and Environmental Physics

Session-III: Mobile Applications (Automotive / Material Handling)

China International Automotive Congress Vehicle concepts, tailor made for e-propulsion. Shenyang, 13. September 2009

in E-mobility applications

Hybrid Vehicles. Electric and. Design Fundamentals. Iqbal Husain SECOND EDITION. Taylor & Francis Group, an informa business

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density.

Eco-Mobility 2025 plus Vienna, On the road to a sustainable mobility

On Economic and Environmental Prospects of Electric Vehicles. Amela Ajanovic Energy Economics Group Vienna University of Technology

The BEEST: An Overview of ARPA-E s Program in Ultra-High Energy Batteries for Electrified Vehicles

Focus on the Future Powertrain Strategies for the 21st Century

Advanced Batteries for. New Applications and Markets. Pb2013, Prague, 20 June Michel Baumgartner EU Affairs Manager

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles

CO 2 Pilot From hybrid vehicles eco-driving to automated driving

Recent Trends in Transportation Technology as Hybrid-Electric Vehicle: A Review

Providing Choices for Sustainable Mobility. Takehito Yokoo Toyota Motor Engineering & Manufacturing North America, Inc.

INNOVATION FROM THE PERSPECTIVE OF AN AUTOMOTIVE SUPPLIER

Since the necessity of the wireless and mobiles electronic devices, the estimation of state

The Future By TOYOTA. May 2012 UNION MOTORS LTD.

Hybrid Architectures for Automated Transmission Systems

Control and design considerations in electric-drive vehicles

Technické údaje Golf Variant 2017 Golf Variant

Transcription:

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA Faculty of Mechanical Engineering DESIGN OF HYBRID CAR Bachelor Thesis SjF-5230-58475 2011 Tomáš Nyitray

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Strojnícka Fakulta NÁVRH HYBRIDNÉHO AUTOMOBILU Bakalárska práca SjF-5230-58475 2011 Tomáš Nyitray

SLOVAK UNIVERSITY OF TECHNOLOGY Faculty of Mechanical Engineering DESIGN OF HYBRID CAR Bachelor thesis SjF-5230-58475 Study programme: Study field: Workplace: Thesis supervisor: Consultant: Automobiles, Ships and Combustion Engines 5.2.4 Motor Vehicles, rail vehicles, ships and planes Institute of automation, measurement and applied informatics doc. Ing. Ján Vlnka, PhD. Ing. Ján Krnáč Bratislava 2011 Tomáš Nyitray

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Strojnícka fakulta NÁVRH HYBRIDNÉHO AUTOMOBILU Bakalárska práca SjF-5230-58475 Študijný program: Študíjny odbor: Školiace pracovisko: Vedúci práce: Konzultant: Automobily, lode a spaľovacie motory 5.2.4 Motorové vozidlá, koľajové vozidlá,lode a lietadlá Ústav automatizácie, merania a aplikovanej informatiky doc. Ing. Ján Vlnka, PhD. Ing. Ján Krnáč Bratislava 2011 Tomáš Nyitray

Declaration of originality I declare, that I worked up this final work individually, using the literature mentioned in the last chapter. Čestné prehlásenie Vyhlasujem, že som záverečnú prácu vypracoval samostatne s použitím literatúry uvedenej v poslednej kapitole. Bratislava, 7. júna 2011... Vlastnoručný podpis

Acknowledgement I would like to express word of thanks to all who had helped me to to work out my bachelor thesis, especially to my supervisor Assoc. Prof. Ján Vlnka and consultants: Dipl. Ing. Jozef Šoltés, Ing. Ján Krnáč and Assoc. Prof. Neitus Lipták. I would like to also express a word of thanks to my opponent Ing. Peter Benkovský for all the consults that helped me to improve this bachelor thesis. I would like to thank all of them for help, willingness, technical guide and all the advices. Poďakovanie Chcel by som vyjadriť veľkú vďaku všetkým, ktorý mi pomáhali s vypracovaním mojej bakalárskej práce. Špeciálne by som sa chcel poďakovať mojmu vedúcemu práce doc. Ing. Ján Vlnka, PhD. a konzultantom: Dipl. Ing. Jozef Šoltés, Ing. Ján Krnáč a doc. Ing. Neitus Lipták, PhD. Taktiež by som chcel vyjadriť veľkú vďaku oponentovi tejto práce, Ing. Peter Benkovský, za všetky konzultácie, ktoré pomohli vylepšiť túto prácu. Všetkým by som sa chcel poďakovať za pomoc, ochotu, navigáciu a rady. Bratislava, 7. júna 2011 Tomáš Nyitray

Title: Design of hybrid car Keywords: Hybrid drivetrain, hybrid, efficiency, emissions, fuel consumption Abstract: This bachelor thesis considers solutions for hybrid drivetrain. In the beginning it explains the reasons why the innovative powertrains are needed. The advantages and disadvantage of drivetrains used in present time are described. Also the basic principles how hybrids combines this advantages are explained. In this study is also briefly described the historical development of hybrid vehicles. In next chapters hybrids are classified according to level of hybridization and drivetrain architecture. In this study are also considered the energy storage systems that are also compared according to several criterions like safety or environmental impact of storage systems. Also the basic principles of electric motors are described. The last chapters are concerning the basic principles for calculation of vehicle s fuel consumption. This calculations are later used in simulation where the series hybrid drivetrain is designed for Volkswagen Crafter.

Názov práce: Návrh hybridného automobilu Kľúčové slová: Hybridný pohon, hybrid, účinnosť, emisie, spotreba paliva Abstrakt: Táto bakalárska práca pojednáva o možných riešeniach hybridného pohonu. Úvodom sa snaží vysvtletiť dôvody prečo sú inovatívne pohony potrebné. Oboznamuje s výhodami a nevýhodami dnešných pohonov a vysvetľuje základné pricípy ako hybrid kombinuje jednotlivé výhody. V tejto štúdií je aj stručne opísaný historický vývoj hybridných vozidiel. Nasleduje ich delenie podľa stupňa hybridizácie a podľa usporiadania pohonu. V práci sú taktiež popísané používané zásobníky energie, ktoré sú neskôr porovnané z viacerých hľadísk, akými sú napríklad bezpečnosť, alebo dopad na životné prostredie. V tejto štúdií sú taktiež bližšie popísané pricípy práce elektromotorov. V posledných kapitolách sú vysvetlené základné princípy potrebné pre výpočet spotreby paliva. Tieto výpočty sú využité v simulácií, počas ktorej je navrhovaný hybridný sériový pohon pre vozidlo Volkswagen Crafter.

Obsah Contents 1. Prečo práve hybridy? Why hybrids?... 3 2. Základné vlastnosti HEV - Basic properties of HEVs... 5 2.1. Výhody a nevýhody spaľovacieho motora Advantages and disadvantages of ICE... 5 2.2. Výhody a nevýhody elektromotora Advantages and disadvantages of electric motor... 7 2.3. Ako teda hybridy kombinujú výhody a nevýhody jednotlivých motorov? How do hybrids combine the advantages and disadvantages of each engine?... 10 3. História hybridných elektrických vozidiel History of hybrid electric vehicles... 11 4. Rozdelenie hybridov podľa úrovne hybridizácie Division of HEVs according to level of hybridization... 15 4.1. Mild hybridy - Mild hybrids... 16 4.2. Full hybrid Full hybrids... 17 4.3. Plug-in hybridy Plug-in hybrids... 20 4.4. Range extendery Range extenders... 22 5. Rozdelenie hybridov podľa usporiadania pohonu Classification of HEVs according to drivetrain architecture... 25 5.1. Sériový hybrid Series hybrid... 25 5.2. Paralelný hybrid Parallel hybrid... 26 5.3. Sériovo-paralelný hybrid Series-parallel hybrid... 29 6. Zásobníky energie (ZE) Energy Storage Systems (ESS)... 30 6.1. Zapečatené olovo-kyselinové batérie Sealed lead-acid batteries... 35 6.2. Nickel-Cadmium (NiCd) batérie NiCd batteries... 35 6.3. Nickel-metal hydride (NiMH) batérie Ni-MH batteries... 36 6.4. Lithium-ion (Li-ion) batérie Li-ion batteries... 36 6.5. Ďalšie typy batérií Another types of batteries... 37 6.6. Ultrakondezátory Ultracapacitors... 39 1

6.7. Vodíkové palivové články Hydrogen fuel cells... 39 6.8. Zotrvačník Flywheel... 42 6.9. Ostatné zdroje energie Another energy sources... 42 6.10. Bezpečnosť alternatívnych pohonov Safety of alternative drivetrains... 43 6.11. Vplyv na životné prostredie Environmental impact... 44 7. Elektromotor - Electric motor... 46 7.1. Jednosmerný elektromotor DC electric motor... 47 7.2. Striedavý elektromotor AC electric motor... 49 7.2.1. Synchrónny elektromotor Synchronous AC electric motor... 49 7.2.2. Asynchrónny elektromotor Asynchronous AC electric motor... 50 7.3. Kombinácia viacerých elektromotorov - Combination of more el. motors... 51 8. Výhody kúpy hybridného vozidla Advantages of buying a hybrid vehicle... 52 9. Simulácia vozidiel Vehicle simulation... 54 9.1. QuasiStatic Simulation Toolbox (QSS TB)... 55 9.2. Súčasti knižnice QSS toolboxu Elements of the QSS toolbox... 55 9.2.1. Modelovanie bežného vozidla Conventional vehicle modelling... 56 9.2.2. Jazdný cyklus Driving cycle... 57 9.2.3. Vozidlo - Vehicle... 58 9.2.4. Spaľovací motor Combustion engine... 59 9.2.5. Zdroj energie Energy source... 61 9.3. Modelovanie pohonu VW Crafter Modelling of VW Crafter drivetrain... 62 9.4. Modelovanie sériového hybridného pohonu pre VW Crafter Modelling of series hybrid drivetrain for VW Crafter... 63 9.5. Záver z modelovania pohonu Conclusion from drivetrain modelling... 66 10. Záver - Conclusion... 67 11. Použitá literatúra - Resources... 69 2

1. Prečo práve hybridy? Why hybrids? Základným problémom pre vývoj vozidiel budúcich generácií je vyčerpateľnosť zdrojov fosílnych palív. Vývoj cestných vozidiel sa preto orientuje na využívanie elektrickej energie, alebo sa energia získava z chemickej reakcie vodíka a kyslíka v palivových článkoch. The basic problem for the development of the next generation vehicles is the exhaustible resources of fossil fuels. Development of road vehicles is therefore orientated to the usage of electric energy or energy which is obtained from the chemical reaction of hydrogen and oxygen in fuel cells. Fig. 1.1: Prediction of change in drivetrain architecture development [1] Conv. Veh. - conventional vehicles, HEV - hybrid electric vehicles, PHEV - plug-in hybrid electric vehicles, FCV - fuel cells vehicles, BEV - battery electric vehicles Predpoveď zmeny vývoja spôsobu pohonu vozidla Conv. Veh. - bežné vozidlá so spaľovacím motorom, HEV - vozidlá s hybridným elektrickým pohonom, PHEV - hybridné vozidlá s pripojením na elektrickú sieť, FCV - vozidlá s pohonom na palivové články, BEV - elektrické vozidlá so zásobníkom energie v podobe batérií 3

V tejto štúdií sa budeme venovať problematike hybridných elektrických vozidiel (ďalej len HEV). Ako je viditeľné z predošlej predpovede, HEV sú prvou fázou zmeny pohonných systémov. Je potrebné uvedomiť si, že v súčasnosti je obrovský problém s vypúšťaním CO2 emisií, ktoré spôsobujú globálne otepľovanie. Z fig. 1.2 vyplýva, že necelých 16% celkovo vypúšťaných emisií pochádza z cestnej dopravy. In this study we be described the problem of hybrid electric vehicles (HEV).As we can see from the previous prediction HEVs are the first phase in process of changing the drivetrain architecture. It is necessary to realize that at the present time there is a huge problem with CO2 emissions that causes the greenhouse gas effect. From fig. 1.2 we can see that approximately 16% of CO2 emissions come from road transport. Fig. 1.2: Overall CO 2 emissions - Celkové vypúšťanie CO 2 emisií [2] Kvôli vysokým emisiám vozidiel Veľká Británia zaviedla daň z emisií, ktorej odstupňovanie vidíme v tab 1.3 Due to this fact there exists in the UK an emissions road tax. The grading scale is shown in tab 1.3 4

Tab. 1.3: CO 2 road tax in Great Britain - CO 2 cestná daň vo Veľkej Británii CO 2 (g/km) Up to 100 101-110 111-120 121-130 131-140 141-150 151-165 Tax ( /year) no 20 30 90 110 125 155 CO 2 (g/km) 166-175 176-185 186-200 201-225 226-255 Over 255 Tax ( /year) 180 200 235 245 425 435 Donedávna bola Toyota Prius jediným automobilom, ktorý vypúšťal menej ako 100 g CO2/km a bol schopný prepraviť 5 osôb. Toyota Prius (best known HEV) was recently the only vehicle that emits less than 100 g CO2/km and is able to transport 5 passengers. 2. Základné vlastnosti HEV - Basic properties of HEVs Väčšina používaných dopravných prostriedkov v dnešnej dobe využíva na pohon buď spaľovací motor, alebo elektromotor. Elektromotor využívajú napr. vlaky, električky, trolejbusy, atď. Oba spôsoby pohonu majú svoje výhody no aj nevýhody. HEV sa snažia ich kombináciou eliminovať jednotlivé nevýhody, a tým pádom znížiť spotrebu energie a zvýšiť celkovú efektívnosť pohonu vozidla. Most of the vehicles at present are using combustion engines or electric motors. Electric motors are used for example by trains, trams, trolleys, etc. Both motor systems have their advantages and also disadvantages. HEVs are trying to eliminate those disadvantages causing reducing of fuel consumption and to increase efficiency by using a combination of ICE and electric motor. 2.1. Výhody a nevýhody spaľovacieho motora Advantages and disadvantages of ICE Nevýhodou spaľovacích motorov (SM) je spaľovanie fosílnych palív, ktorých zásoby sú vyčerpateľné a taktiež vypúšťanie skleníkových plynov. Disadvantage of ICE is combustion of fossil fuels, whose stocks are finite while another disadvantage is the greenhouse gas effect of combustion. 5

Účinnosť SM sa rapídne zhoršuje, ak pracuje v nevhodných podmienkach. Takými sú napríklad príliš nízke rýchlosti, alebo naopak príliš veľké zaťaženie motora. The efficiency of ICE is significantly worse if the engine is working under unsuitable conditions. These are e.g. low speed or too large a load on the engine. Fig. 2.1: Efficiency of ICE Účinnosť spaľovacieho motora [3] Výhodou spaľovacích motorov však je vybudovaná infraštruktúra, najmä sieť čerpacích staníc. Ďalšou výhodou SM je hustota energie v zásobníkoch vo vozidle [kwh/kg]. Advantage of ICE is its built-up infrastructure, mainly the network of petrol stations. Another advantage of ICE is the energy density of on-board energy carriers [kwh/kg]. Fig. 2.2: Net energy density of several on-board energy carriers [4] Priemerná hustota energie v niektorých zásobníkoch vo vozidle 6

Na fig. 2.2 môžeme vidieť porovnanie hustoty energie. Podľa Johna M. Germana z Americkej motorovej divízie spoločnosti Honda [5]: 10 galónov benzínu váži iba približne 28 kg, ale obsahuje 303 kwh energie. Pre porovnanie moderná lead-acid (olovokyselinová) batéria, ktorá tiež váži 28 kg, ponúka iba niečo okolo 1.1 kwh. Táto značná prevaha kvapalných palív, uchovať energiu, zaistila prevahu spaľovacích motorov pre uplynulých 100 rokov, aj napriek ich relatívne nízkej účinnosti. In figure 2.2 we can see the comparison of energy densities. According to Mr. John M. German from American Honda Motor Company [5]: 10 gallons of gasoline weights only about 28 kg, but contains about 330kWh. By comparison, a modern lead-acid battery weighing the same 28 kg provides only about 1.1 kwh. This overwhelming energy advantage of liquid fuel has ensured the dominance of the internal combustion engine for the past 100 years, despite its relatively low efficiency. 2.2. Výhody a nevýhody elektromotora Advantages and disadvantages of electric motor Výhodou elektromotoru je, že využíva na pohon elektrickú energiu, ktorú dokážeme získavať z obnoviteľných zdrojov. Elektromotor môže navyše pôsobiť ako brzda, čiže rekuperáciou získať energiu z brzdenia. Zvyšuje sa tak energetická hospodárnosť vozidla. Na fig. 2.3 môžeme zjednodušene vidieť tento fenomén. Elektromotor obráti smer otáčania a stáva sa generátorom (dynamom), ktorý ukladá energiu v batériách vozidla. The main advantage of the electric motor is its usage of electric energy, which we can obtain from renewable sources. In addition an electric motor can act as a brake and therefore regenerate energy. This phenomenon increases the vehicle energy efficiency. In figure 2.3 we can see simplified version. The electric motor reverses direction, becoming a generator (dynamo) which then stores the energy in the vehicle s battery. 7

Fig. 2.3: Regenerative braking Regeneračné brzdenie [6] Regeneračné brzdenie dokáže získavať približne 30-40% z energie využitej na brzdenie. Elektromotor má na rozdiel od SM lepšiu účinnosť, ktorá sa pohybuje okolo 90%. Nevýhodami elektromotora sú najmä zásobník energie, doba nabíjania a infraštruktúra dobíjacích staníc. Zásobníky energie budú bližšie popísané v 6. kapitole. Doba nabíjania sa z 20% na 80% kapacity batérie pri dojazde približne 120-160 km pohybuje okolo pol hodiny. Regenerative braking can regenerate 30-40 %of energy used for braking. The electric motor has an efficiency of about 90%, which is much greater than efficiency of ICE. Disadvantages of electric motors include mainly the energy storage system, charging time and charging station infrastructure. The energy storage system will be further described in 6 th chapter. Charging time for the range of approximately 120-160 km from 20% to 80% of battery capacity is 1.5 hours. 8

Dnešné elektromobily nie sú určené na dlhé trate, ale sú navrhnuté ako mestské vozidlá. Na Slovensku existuje zatiaľ 1 dobíjacia stanica v Košiciach. Podľa východoslovenských elektrární [7]: V roku 2011 chce VSE vybudovať verejné nabíjacie stanice tak, aby sa dalo prejsť vozidlom na elektrický pohon z Košíc do Bratislavy. Unfortunately, today's electric cars are not designed for long distances, but only as urban vehicles. In Slovakia there is just one charging station, in Košice. According to VSE (power plant company in east Slovakia) [7]: in 2011, VSE wants to build public charging stations so that electric car can drive from Košice to Bratislava. Podľa portálu www.zive.sk [8]: Na realizáciu myšlienky, treba vybudovať dve stanice v oblasti Zvolena a Nitry, okrem toho jednu v Košiciach a jednu v Bratislave. Napríklad v Rakúsku existuje vyše 1200 dobíjacích staníc. According to www.zive.sk [8]: To realize this idea stations in Nitra and Zvolen needs to be built, in addition to that one in Košice and one in Bratislava. In Austria for example, there exists over 1200 charging stations. Fig 2.4: Road from Bratislava to Kosice Cesta z Bratislavy do Košíc [9] Distance from Bratislava to Košice: Vzdialenosť z Bratislavy do Košíc: Estimated trip time: Predpokladaná dĺžka cesty: Fuel consumption spotreba [ICE/SM]: 407 km 407 km 5 hours 36 minutes 5 hodín 36 minút 48.74 EUR 9

2.3. Ako hybridy kombinujú výhody a nevýhody jednotlivých motorov? How do hybrids combine the advantages and disadvantages of each engine? - Spaľovací motor pracuje v ideálnych otáčkach a elektromotor vyrovnáva dynamické zmeny jazdy. - Combustion engine can work under ideal conditions and the electric motor will compensate the dynamic changes. - Takýmto riešením pohonu získame zníženie spotreby a taktiež emisií. - With this solution the overall consumption and emissions can be decreased. - Spaľovací motor nemá krútiaci moment do 200 otáčok za minútu a pri týchto otáčkach je veľmi neefektívny. - Combustion engine has no torque up to 200 rpm, and is therefore inefficient under those conditions. - Elektromotor má však krútiaci moment od nulových otáčok, a preto pri rozbehu pracuje iba elektromotor a SM sa pridáva neskôr vo vyšších rýchlostiach. - The electric motor has torque from zero rpm and therefore during acceleration only the motor is operating, with the ICE added later at high speeds. - Batérie môžeme dobíjať pomocou SM, regeneratívnym brzdením, a taktiež niektoré hybridy môžeme dobíjať z elektrickej siete, čím výrazne usporíme finančné prostriedky. - Batteries can be recharged by ICE, by regenerative braking and also some hybrids can be recharged from the electricity grid decreasing the cost of the stored energy. 10

3. História hybridných elektrických vozidiel History of hybrid electric vehicles V roku 1900 Ferdinand Porsche, pracujúci pre spoločnosť Lohner Coach, vyvinul Mixte. Sériový hybrid s pohonom všetkých kolies ktorý bol vybavený párom elektromotorov a SM s výkonom 2.5 koní, ktorý predlžoval dojazd vozidla na jedno nabitie na 65 km. Mixte bol vystavený prvý krát na autosalóne v Paríži v roku 1901 a neskôr prekonal niekoľko rakúskych rýchlostných rekordov. Ferdinand Porsche, ako jazdec, s ním dokonca vyhral v roku 1901 Exelberg rally. Vozidlo malo maximálnu rýchlosť 50 km/h a výkonom 5.22 kw po dobu 20 minút [10]. In 1900, while employed at Lohner Coach Factory, Ferdinand Porsche developed the Mixte. This four wheel drive series-hybrid vehicle included a pair of electric motors driven by a 2.5 horse power Daimler internal combustion engines to extend operating range, so the Mixte could travel nearly 65 km on battery alone. This vehicle was presented in the Paris Auto Show in 1901. The Mixte broke several Austrian speed records, and also won the Exelberg Rally in 1901 with Porsche himself driving. It had a top speed of 50 km/h and a power of 5.22 kw over 20 minutes [10]. Fig. 3.1: The Mixte [11] 11

Novší funkčný prototyp hybridu bol postavený Vicotrom Wouk-om. Prácou na vývoji hybridov v 60-70-tych rokoch 19. storočia mu priniesla prezývku Krstný otec hybridov. Wouk umiestnil prototyp hybridného pohonu s 16 kw elektrickým motorom do Buicku Skylark 1972 [10]. A more recent working prototype of the HEV was built by Victor Wouk. Wouk's work with HEVs in the 1960s and 1970s earned him the title "The Godfather of the Hybrid". Wouk installed a prototype hybrid drivetrain with a 16 kilowatts electric motor into a 1972 Buick Skylark [10]. Fig. 3.2: Buick Skylar 1972 [12] Regeneratívne brzdenie, ktoré je základom väčšiny moderných hybridov, bolo vyvinuté elektronickým inžinierom Davidom Arturom približne v roku 1978. Použitím bežných komponentov vo vozidle Opel GT, ktoré malo vynikajúcu spotrebu 3.1 l/100 km. Plány na túto prestavbu, taktiež ako aj novšie verzie, sú stále dostupné na stránke časopisu Mother Earth News. Existuje aj verzia, ktorá dosiahla spotrebu len 2.8 l/100 km [10]. The regenerative braking system, the core design concept of most production hybrid electric vehicles, was developed by electrical engineer David Arthurs around 1978, using offthe shelf components and an Opel GT. The vehicle exhibited 3.1 l/100 km fuel efficiency. Plans for it (as well as somewhat updated versions) are still available through the Mother Earth News web site. They also own a 1980 version achieving about 2.8 l/100 km fuel consumption [10]. 12

Využívanie hybridnej technológie v automobiloch sa rozšírilo až v neskorých 90-tych rokoch. Prvým hybridom vyrábaným vo veľkých sériách sa stala Toyota Prius, ktorá prišla na trh v Japonsku v roku 1997. Bola nasledovaná Hondou Insight, ktorá sa začala predávať v roku 1997 v Japonsku a USA. Prius sa začal predávať celosvetovo až v roku 2000. Prvá generácia Toyoty Prius mala spotrebu približne 5 l/100 km [10]. Automotive hybrid technology became widespread in the late 1990s. The first mass-produced hybrid vehicle was the Toyota Prius, launched in Japan in 1997, followed by the Honda Insight, launched in 1999 in the United States and Japan. The Toyota Prius was launched in Europe, North America and the rest of the world in 2000. The first generation of Toyota Prius sedans has an estimated fuel economy of 5 l/100 km [10]. Fig. 3.3: Toyota Prius first generation prvá generácia Toyoty Prius [13] Prvá dvojdverová generácia Hondy Insight dosahovala spotrebu približne 3.7 l/100 km [10]. The two-door first generation Insight has an estimated fuel economy of 3.7 l/100 km [10]. Fig. 3.4: Honda Insight first generation prvá generácia Hondy Insight [14] 13

Najpredávanejším hybridom na trhoch v USA a v Japonsku je Toyota Prius, ktorej bolo na celom svete doposiaľ predaných dva milióny kusov do 30. septembra 2010. Celosvetové prvenstvo drží spoločnosť Toyota Motor Company s viac ako tromi miliónmi predaných vozidiel. Nasleduje spoločnosť Honda, s predajom viac ako 300 000 vozidiel a spoločnosť Ford, s predajom viac ako 140 000 hybridov [10]. As the top selling hybrid in both the U.S. and Japanese markets, the Toyota Prius reached global cumulative sales of 2.0 million as of September 30, 2010. Worldwide, Toyota Motor Company is the leader with more than 3.0 million hybrids sold by February 2011, followed by Honda Motor Co., Ltd. with more than 300 thousand vehicles, and Ford Motor Corporation with more than 140 thousand hybrid electric vehicles [10]. Fig. 3.5: U.S. HEVs sales by models - Predaj HEV v USA podľa modelov[15] 14

4. Rozdelenie hybridov podľa úrovne hybridizácie Division of HEVs according to level of hybridization Hybridy môžeme rozdeliť podľa viacerých kritérií. Najčastejšie sa hybridy delia buď podľa úrovne hybridizácie, čiže aký je pomer medzi elektrickým pohonom a pohonom SM, alebo podľa spôsobu usporiadania pohonu. Podľa úrovní hybridizácie delíme hybridy na tieto skupiny: Hybrids can be classified according to several criteria. Hybrids are divided either by level of hybridization (HEVs are divided in portion of use of electric motor and internal combustion engine) or by selection of drivetrain architecture. Basic divisions of HEVs according to level of hybridization are: Mild hybridy 90% SM - 10% EM Mild hybrids 90% ICE - 10% EM Full hybridy 60% SM - 40% EM Full hybrids 60% ICE - 40% EM Plug-in hybridy 40% SM - 60% EM Plug-in hybrids 40% ICE - 60% EM Range extendery 10% SM - 90% EM Range extenders 10% ICE - 90% EM Porovnanie účinností Efficiency comparison [16] ICE pohon iba na SM/only ICE drives vehicle, Mild mild hybrid, Full full hybrid, Plug plug-in hybrid, Range range extender, EM elektrické vozidlo/electric vehicle účinnosť efficiency ICE Mild Full Plug Range EM SM pri pohone ICE during drive 0.2 0.235 0.3 0.3 - - SM ako generátoru ICE acting as generator - 0.3 0.32 0.32 0.45 - Regen. brzdenie Regenerative braking - 1.25 1.4 1.4 1.5 1.5 SM s regen. brzdením ICE with regen. brake 0.2 0.25 0.34 0.34 0.57 - EM s regen. brzdením EM with regen. brake - 1.13 1.26 1.26 1.35 1.35 Celková spotreba overall consumption ICE Mild Full Plug Range EM l / 100 km* 9.42 8.12 6.40 6.96 3.16 - km / EUR* 7.43 9.92 14.82 42.76 126.17 106.15 *za predpokladu že/assumed - USD/EUR=1.4, cena benzínu je/cost of gas 1.43 EUR/l, 1 gallon= 10kWh, cena elektrickej energie je/electrical cost 0.63 EUR/gallon (1 kwh=0.0631 EUR) 15

4.1. Mild hybridy - Mild hybrids Pri tomto type hybridov slúži elektromotor a rôzne ďalšie systémy podporujúco k hlavnému SM. Typickým systémom je Start/Stop systém. Pri státí na križovatke sa SM vypne a pri stlačení plynového pedálu sa opäť naštartuje. Ďalej to je napríklad využívanie energie z brzdenia, ktorá neskôr slúži na pridanie výkonu pri predbiehaní, alebo jazde pri nízkych otáčkach. Nanešťastie, mild hybridy neponúkajú možnosť jazdy iba na elektrický pohon. In this type of hybrid the electric motor and other systems supports the ICE. The typical system is the Start/Stop system. When standing at a crossroads, the internal combustion engine switches off and starts up again when the gas pedal is pressed. Furthermore, it is also storing energy from braking, which is later used to add power when overtaking or driving at low speeds. Unfortunately, mild hybrids do not offer the possibility of running purely on electric power. Fig. 4.1: Honda CR-Z [17] Hybridy navrhujeme dvoma základnými spôsobmi. Prvým je, že pri súčasnej spotrebe zvýšime výkon a druhým, že pri súčasnom výkone znižujeme spotrebu. Honda CR-Z si vybrala prvú cestu. Hybrids can be designed in two ways. First is that while fuel consumption remains the performance will increase and second that performance remains and fuel consumption decreased. Honda CR-Z chose the first way. 16

4.2. Full hybrid Full hybrids Najväčšou zmenou oproti mild hybridom je, že full hybrid ponúkajú jazdu čisto na elektrickú energiu. Prvenstvo v tejto skupine drží Toyota Prius, ktorá ovláda trh s hybridmi. V USA sa od roku 2000 predalo viac ako milión kusov. A big difference from the mild hybrid is that full hybrids offer a full electric range. The global leader in this group is the Toyota Prius, which controls the market with hybrids. In the U.S. since 2000, more than one million such vehicles have been sold. Fig 4.2: Toyota Prius [18] Úžasné je, že s takýmto vozidlom môžeme jazdiť na dlhé trasy bez potreby nabitia batérií. Stačí iba priebežne tankovať a batéria sa nabíja pri brzdení, ale aj počas prevádzky SM. V mestách, kde často uviazneme v zápchach, sa prejavia výhody elektromotoru umiestneného v hybride. Spotreba v meste je omnoho nižšia, ako spotreba klasických vozidiel iba so spaľovacím motorom. Full hybridy môžeme využívať ekonomicky a ekologicky. Amazing that full hybrids can travel over long distances without need to charge batteries. Enough is refilling of the tank and batteries will be charged during regenerative braking or when ICE is switched on. Advantage of hybrids fully reflects in the cities, where vehicles often get stuck in traffic jams and benefits of electric motor will reveal. Consumption in the city is much lower than the consumption of conventional ICE. Full hybrids can be used economically and ecologically. 17

Full hybridy ponúkajú taktiež aj druhú možnosť, čiže zlepšenie dynamických vlastností vozidla pri nižších emisiách. Takýmito športovými vozidlami sú napríklad Ferrari 599 HY-Kers a Porsche 918 Spyder. Full hybrids also offer a second option, the improving of the dynamic properties of the vehicle, with lower emissions. Such as sport vehicles are Ferrari 599 HY-KERS and Porsche 918 Spyder. Fig. 4.3: Porsche 918 Spyder [19] Ferrari HY-Kers vzniklo na základe modelu 599 GTB Fiorano. Pozostáva z lítiovo-iónových batérií, dvanásťvalcového benzínového agregátu, elektrického motora a sedemrýchlostnej prevodovky s dvojitou spojkou HY-Kers. Vozidlo okrem klasického dvanásťvalca poháňa aj elektromotor s výkonom 74 kw. Vozidlo využíva systém KERS na krátkodobé zvýšenie výkonu, a zároveň pri nízkych rýchlostiach elektromotor výrazne znižuje spotrebu a emisie až o 35 percent. Umiestnením batérií do podlahy, sa znížilo ťažisko. Ferrari HY-Kers is based on model 599 GTB Fiorano. It consists of lithium-ion batteries, a twelve cylinders petrol engine, electric motor and HY-Kers seven-gear dual-clutch transmission. In addition to classical engine drives the vehicle also an electric motor with 74 kw. The vehicle uses a KERS system to increase short-term performance and also at low speeds, the fuel consumption is significantly reduced by this system. This system also reduces emissions by 35%. Batteries are situated in the floor and therefore the centre of gravity is lower. 18

Fig 4.4: Ferrari HY-Kers [20] Porsche 918 Spyder kombinuje spaľovací motor V8 s výkonom vyše 500 kw a trojicu elektromotorov, so súčtom výkonov 160 kw. Spotreba je 3 l/100 km a emisie 70 g/km CO2. Vďaka uhlíkovej samonosnej karosérií váži toto Porsche len 1 490 kg. Porsche 918 Spyder combines a V8 engine with 500 kw power and a trio of electric motors with 160 kw. The vehicle has a consumption of 3 litres per 100 km and emissions of 70 g/km CO2. Thanks to its carbon monocoque car weighs only 1,490 kg. Fig. 4.5: Porsche 918 Spyder: 1. Control electronics, 2. Electric motor, 3. Li-Ion battery, 4. High rpm V8 engine, 5. Dual-clutch robotized transmission PDK, 6. Electric motor, 7. Control electronics [21] Porsche 918 Spyder: 1. Riadiaca elektronika, 2. Elektromotor, 3. Li-Ion batéria, 4. Vysokootáčkový motor V8, 5. Dvojspojková robotizovaná prevodovka PDK, 6. Elektromotor, 7. Riadiaca elektronika [21] 19

4.3. Plug-in hybridy Plug-in hybrids Plug-in hybridy môžeme, na rozdiel od full-hybridov, nabíjať z elektrickej siete. Vďaka tejto možnosti majú plug-in hybridy väčšie zásobníky energie a menší SM. CO2 emisie a spotreba sú nižšie ako u full-hybridoch. Rozdiely medzi full-hybridmi a plug-in hybridmi popisujú fig 4.6 a 4.7. Plug-in hybrids can be recharged from the electric grid. Due to this possibility plug-in hybrids have bigger on-board energy carriers and also a smaller ICE. CO2 emissions and fuel consumption are less than in full-hybrids. Differences between full- and plug-in HEVs are described in fig. 4.6 and 4.7. Fig. 4.6: Standard hybrid: 1. Refueling: Visits to the gas stations are reduced, but still required. 2. Energy storage: Gasoline is main source of energy, slightly augmented by batteries. 3. Propulsion: Driving switches frequently between engine and motor. [22] Štandardný hybrid: 1. Tankovanie: Návštevy čerpacích staníc sú zredukované, ale stále potrebné. 2. Zásobník energie: Hlavným zdrojom energie je benzín a vedľajším energia z batérií. 3. Pohon: Pohon sa prepína často medzi spaľovacím motorom a elektrickým motorom. [22] 20

Fig. 4.7: Plug-in hybrid: 1. Refueling: Minimal trips to gas station. Batteries charged at home or work. 2. Energy storage: Fuel is stored as electricity in batteries, with back-up gas tank. 3. Propulsion: Drives mostly on electric power until batteries become depleted. [23] Plug-in hybrid: 1. Tankovanie: Minimálne návštevy čerpacích staníc. Batérie sú nabíjané doma alebo v práci. 2. Zásobník energie: Palivo je uložené ako elektrická energia v batériách so záložným palivom v nádrži. 3. Pohon: Vozidlo jazdí najmä na elektrickú energiu, pokiaľ sa energia z batérií nevyčerpá. [23] Toyota Prius Plug-in kombinuje 75 kw spaľovací motor a synchrónny elektromotor s permanentnými magnetmi s výkonom 60 kw. Vozidlo je vybavené 5.2 kwh Li-ion batériami. Prius možno úplne nabiť za 1 a pol hodiny zo štandardnej 230 V siete. S plne nabitou batériou sa dojazd, čisto na elektrickú energiu, predĺžil na 20km. [24] Toyota Prius Plug-in combines a 75 kw ICE and a synchronous electric motor with permanent magnets with an output of 60 kw. The vehicle has 5.2 kwh Li-ion batteries. Prius can be fully recharged in 1 and a half hour from a standard 230 V electric grid. With a fully charged battery operating range is purely on electricity extended to 20km. [24] 21

Prius Plug-in Hybrid ponúka o 30 % nižšiu kombinovanú spotrebu paliva v porovnaní s modelom Prius 2,6 l/100 km. Emisie CO2 sú 59 g/km. Prius Plug-in Hybrid offers 30% lower combined fuel consumption in comparison with the Prius - 2.6 l/100 km. CO2 emissions are 59 g/km. Fig. 4.8: Toyota Prius plug-in hybrid [25] 4.4. Range extendery Range extenders Range extender je takmer elektrické vozidlo. Druhý pomocný motor k elektromotoru môže byť malý spaľovací motor, wankelov motor, dieselova turbína, stirlingov motor atď. Jeho úlohou je najmä predĺžiť dojazd. Typickým predstaviteľom range extenderov je Chevy Volt. Pohon pozostáva z trakčného elektromotora so špičkovým výkonom 111 kw, (resp.63 kw pri 4800 otáčkach za minútu), generátora s výkonom 55kW, trojici spojok a planétového súkolia. Range extenders are nearly electric vehicle. The second auxiliary motor to the electric motor can be a small ICE, Wankel engine, diesel turbine, Stirling engine etc. Its role is mainly to extend the operating range. A typical range extender representative is Chevy Volt. The power unit consists of a traction motor with maximum power 111 kw, resp.63 kw at 4800 rpm and a motorgenerator with 55 kw output power together with a trio of clutches and planetary gear set. 22

Chevy Volt môže pracovať v štyroch operačných módoch. Prvé dva využívajú iba elektrickú energiu a ďalšie dva využívajú spaľovací motor k dobíjaniu batérií. V poslednom móde sa podieľa na pohone aj SM. Chevy Volt can drive in four different operating modes. In the first two modes it uses only electric energy stored in the batteries. The next mode uses ICE for recharging of batteries. In the last mode, ICE drives the vehicle. Fig. 4.9: Chevy Volt kinematic architecture - Usporiadanie pohonu pre Chevy Volt [26] Chevy Volt je vybavený 16 kwh Li-ion batériami, ktoré mu umožňujú dojazd 60 km čisto na elektrickú energiu. Keď sa energia z batérií vyčerpá, spaľovací motor pôsobí ako generátor a predĺži dojazd na 500 km. Chevy Volt has 16 kwh Li-ion batteries that offers a full electric range of 60 km. When the batteries are discharged, the internal combustion engine acts as a generator and extended the vehicle range to 500 km. Fig. 4.10: Chevy Volt [27] 23

Ďalším reprezentantom range extenderov je športový sedan Fisker Karma. Fisker Karma je sériový hybrid vybavený 20 kwh Li-ion batériami, ktoré umožňujú dojazd 80 km na elektrickú energiu. V prednej časti vozidla je umiestnený SM s výkonom 160 kw, ktorý je spojený s generátorom, ktorý dobíja batérie umiestnené uprostred vozidla. V zadnej časti vozidla je dvojica trakčných elektromotorov s výkonom 2 x 150 kw, ktoré poháňajú zadnú nápravu. Another representative of the range extenders is the Fisker Karma sport sedan. Fisker Karma is a serial hybrid that has 20 kwh Li-ion batteries with a full electric range of 80 km. In the front of the vehicle is located an ICE with an output of 160 kw, which is connected to a generator that directly recharges the batteries, which are placed in the middle of the vehicle. In the rear are dual electric drive motors with an output of 2 x 150 kw which drives the rear axle. Fig. 4.11: Fisker Karma [28] 24

5. Rozdelenie hybridov podľa usporiadania pohonu Classification of HEVs according to drivetrain architecture Jedna z najčastejších možností klasifikovania hybridov, je založená na konfigurácií pohonu vozidla. HEV teda môžeme rozdeliť na tri základné skupiny: One of the most common ways to classify HEVs is based on configuration of the vehicle drivetrain. HEVs can be divided into 3 major groups: Hybridy so sériovým usporiadaním Hybridy s paralelným usporiadaním Hybridy so sériovo-paralelným usporiadaním Series hybrids Parallel hybrids Series-parallel hybrids Prvé dve usporiadania sú relatívne jednoduché. Sériovo-paralelné usporiadanie ponúka viac možností pohonu vozidla. The first two architectures are relatively simple. Series-parallel architecture offers more possibilities for driving the vehicle. 5.1. Sériový hybrid Series hybrid V sériovom usporiadaní je spaľovací motor využívaný iba na vytváranie elektrickej energie v generátore. Vozidlo je poháňané elektromotorom. Energia získaná z generátora je ďalej prenášaná buď do zásobníka energie, alebo priamo do elektromotora. Toto usporiadanie je typické pre range extendery, ktoré využívajú SM výlučne na dobíjanie zásobníka energie. Takýmto vozidlom je napr. Fisker Karma. In series drivetrain architecture the ICE is used only to generate electricity in a generator, while the vehicle is propelled by its electric motor. Energy from generator is transferred either to the energy storage system or directly to the motor. This arrangement is typical for range extenders, which uses the ICE only for recharging batteries. The Fisker Karma is representative of serial drivetrain architecture. 25

Fig. 5.1: Series drivetrain architecture: ICE internal combustion engine, EGM electric generator motor, BMS battery management system, SDU safety disconnect unit, CEU control electronics unit, EDM electric drive motor Sériové usporiadanie pohonu: ICE spaľovací motor, EGM generátor elektrickej energie, Energy Source zdroj energie, BMS systém manažmentu batérií, SDU jednotka bezpečného odpojenia, CEU jednotka kontrolnej elektroniky, EDM elektromotor slúžiaci na pohon(trakčný elektromotor) [29] 5.2. Paralelný hybrid Parallel hybrid V paralelnom usporiadaní oba motory, spaľovací motor aj elektromotor, poskytujú výkon na pohon vozidla. Z tohto dôvodu môžu byť oba motory menšie, čím môžeme dosiahnuť nižšiu spotrebu a lepšiu účinnosť. Hybrid s paralelným usporiadaním zvyčajne používa prevodovku z obyčajných vozidiel. Podľa toho, kde sa prevodovka v usporiadaní nachádza, delíme hybridy s paralelným usporiadaním na pred-prevodovkové a po-prevodovkové paralelné hybridy. In parallel drivetrain architecture both the ICE and the EM provide power to drive the vehicle. For this reason, both motors can be smaller, so we can achieve lower consumption and improvement in efficiency. HEVs with parallel drivetrain architecture usually uses the same transmission as is used in conventional vehicles. Depending on where the transmission is hybrids with parallel drivetrain architecture can be divided into pre-transmission and post-transmission parallel HEVs. 26

V pred-prevodovkovom usporiadaní je prevodovka umiestnená na hlavnom hriadeli pohonu po jednotke, ktorá spája krútiace momenty zo SM a elektromotoru. Toto usporiadanie využívajú najmä mild hybridy. In the pre-transmission architecture the transmission is located on the main drive shaft behind the unit that connects the torques from the ICE and electric motor. This arrangement is mainly used for mild hybrids. Fig. 5.2: Pre-transmission parallel drivetrain architecture: Trans - transmission Pred-prevodovkové usporiadanie paralelného hybridného pohonu: Trans prevodovka [30] V po-prevodovkovom usporiadaní je prevodovka umiestnená na hlavnom hriadeli za jednotkou, kde sa spája krútiacu moment zo spaľovacieho motoru a elektromotoru. CVT prevodovka môže byť použitá na ďalšie zlepšenie účinnosti spaľovacieho motoru. V tomto usporiadaní môžeme pomocou spojky odpojiť spaľovací motor a jazdiť čisto na elektrickú energiu, a preto toto usporiadanie využívajú full hybridy. In post-transmission drivetrain architecture transmission is located on the main drive shaft after the unit where torques from the ICE and electric motor are coupled. A CVT (continuous variable transmission) gearbox can be used to improve the efficiency of the ICE. In this arrangement, we can disconnect ICE by clutch and run purely on electricity. This drivetrain architecture is used mainly in full-hybrids. 27

Fig. 5.3: Post-transmission parallel drivetrain architecture Po-prevodovkové usporiadanie paralelného hybridného pohonu [31] Ďalšou možnosťou využitia paralelného usporiadania je poháňať jednu nápravu pomocou SM, a druhú pomocou elektromotoru. Toto riešenie umožňuje jednoduchú konštrukciu, a je vhodné najmä na prerábanie klasických vozidiel iba so spaľovacím motorom na hybridné vozidlá. Another possibility of parallel drivetrain architecture is to drive one axle by combustion engine and the second by an electric motor. This solution offers a pretty simple reconstruction and is suitable for construction of a hybrid electric vehicle from a conventional one. Fig. 5.4: All wheel parallel drivetrain architecture for hybrid electric vehicle Hybridné paralelné usporiadanie s pohonom všetkých kolies [32] 28

5.3. Sériovo-paralelný hybrid Series-parallel hybrid V sériovo-paralelnom usporiadaní hybridného pohonu môže vozidlo jazdiť ako sériový hybrid, paralelný hybrid, alebo kombinovať obe možnosti. Navrhovanie tohto typu pohonu závisí na prítomnosti dvoch elektromotorov a ich prepojení so SM. Mechanické spojenie väčšinou zabezpečuje planétový prevod, ako môžeme vidieť na fig. 5.4. In the series-parallel configuration of the hybrid drivetrain, the vehicle can operate as a series hybrid, a parallel hybrid or a combination of both. The design of this type of hybrid depends on the presence of two electric motors and their connection with an ICE. The mechanical connection is usually accomplished by planetary gear set as we can see in fig. 5.4. Fig. 5.5: Toyota Prius drivetrain design with planetary gears Hybridný pohon Toyoty Prius s využitím planétového prevodu [33] Takto navrhnutý hybridný pohon nám ponúka viacero možností využívania jednotlivých motorov. Ako je vidieť na fig. 4.9, spoluprácou troch spojok a planétového prevodu môžeme získať až štyri operačné módy. Každý mód je určený pre iný typ jazdy, a správnym výberom sa zlepšuje účinnosť vozidla. This drivetrain offers us more possibilities for using each motor. As we can see in fig. 4.9 if we use three clutches and planetary gear set it offers us four operating modes. Each mode is suitable for a different type of driving, and by selecting the right one the efficiency of the vehicle is improved. 29

Tento typ usporiadania pohonu využívala donedávna iba Toyota Prius. Najnovší model Chevy Volt taktiež využíva toto usporiadanie. Na tab. 5.6 môžeme vidieť operačné módy THS (Toyota Hybrid System). This type of drivetrain was recently used only in Toyota Prius. Only the new Chevy Volt model also uses this type of drivetrain. In tab. 5.6 we can see the operating conditions of the THS (Toyota Hybrid System). Backward Cúvanie Forward low speed (V<V 1) Jazda pri nízkych rýchlostiach (V<V 1) Engine Start Štart motoru (SM) Forward normal (V 1<V<V 2) Jazda pri normálnych rýchlostiach Forward over speed (V>V 2) Jazda pri vysokých rýchlostiach * If Motor 1 is switched on Ak je Motor 1 činný SM / ICE Motor 1 Motor 2 Off Off/Motor* Motor Off Off/Motor* Motor On Generator Motor On Generator Motor On Motor Generator Tab. 5.6: Engine and Motor operating conditions of THS Operačné podmienky SM a elektromotorov pri rôznych módoch THS 6. Zásobníky energie (ZE) Energy Storage Systems (ESS) Hybridné vozidlá využívajú na pohyb kombináciu viacerých typov motorov. Každý motor však získava energiu iným spôsobom, a preto potrebujú rôzne zásobníky energie (ZE). Pre elektrický pohon, najčastejšie využívaný v hybridných vozidlách, slúžia ako zásobníky energie batérie, ultrakondezátory, palivové články, alebo zotrvačník s generátorom. Hybrid electric vehicles use more types of motors to propel the vehicle. Each motor gets energy different way and therefore need another type of energy storage system (ESS). Most of hybrids use as a second motor the electric motor. For electric motor energy can be stored either in batteries, ultracapacitors, fuel cells or in flywheel that is in combination with generator. 30

Zásobníky energie musia poskytovať dostatočnú zásobu energie (kwh) s adekvátnym výkonom (kw). Taktiež musíme uvažovať nad životnosťou a cenou týchto zásobníkov energie. ESS is determined to provide sufficient energy storage (kwh) capacity and adequate peak power (kw) ability. In addition, appropriate cycle life and hardware cost have to be considered. Fig. 6.1: Energy/Power ratio of vehicle demand and ESS capability [34] HEV-Hybrid electric vehicles, PHEV-plug-in hybrid vehicles, EV-electric vehicles, (Lead acid, Ni-MH, Li-ion)-types of batteries Pomer energie a výkonu potreby vozidla a možností zásobníkov energie HEV- hybridné elektrické vozidlo, PHEV- plug-in hybrid, EV- elektrické vozidlo, (Lead acid, Ni-MH, Li-ion)- typy batérií Potreba energie pre vozidlo je rozličná najmä pre hybrid a elektromobil. Tento pomer sa dá vysvetliť na jednoduchom príklade. Špičkový výkon elektromotora v elektromobile je 100 kw a jeho dojazd je 300 km. Po dosadení do vzorca získame, že spotreba energie je 89 kwh. Power demand is very different for hybrids and electric vehicles. This difference can be shown on simple example. Peak power of electric motor in electric vehicle is 100 kw and range is 300 km. After defining into the equation we can get that energy consumption is 89 kwh. 31

Samozrejme v tejto rovnici vystupuje viacero neznámych, no po dosadení hodnôt približných pre elektromobily dostaneme tento pomer 0.89 (89kWh/100kW), alebo menší, pre dlhší dojazd. Kritériom pri navrhovaní zásobníka energie pre elektromobil je teda viac kapacita energie ako kapacita výkonu. Pre aplikáciu v elektromobile je cieľom vyvinúť batérie, ktoré budú mať vysokú hustotu energie a akceptovateľnú hustotu výkonu. Of course, in this equation there are more unknowns but after using the average values for electric vehicles we can get the energy/power ratio as 0.89 (89kWh/100kW), or smaller, for longer range. The main criterion for sizing an electric vehicle is energy rather than power capability. For electric vehicle application the objective should be to develop batteries with high energy density and acceptable power density. Na rozdiel od elektromobilu, full hybrid nepotrebuje taký veľký dojazd, hoci potrebuje podobný výkon. Príkladom môže byť Toyota Prius ktorej elektromotor má špičkový výkon 30 kw a dojazd 20 km. Výsledný pomer energie a výkonu je 0.2 (6kWh/30kW). Môžeme vidieť, že hybridy potrebujú uchovať veľký výkon, avšak pri relatívne malom množstve energie. Hoci sa v dnešných komerčných hybridoch nevyskytujú ultrakondenzátory majú veľký potenciál, keďže ich životnosť cyklus je vyše 500 000 cyklov. [34] In comparison with electric vehicles full hybrids do not need such a large range even though they need similar power. We can take for example Toyota Prius which have electric motor with peak power 30 kw and range 20 km. Final ratio between energy and power is 0.2 (6kWh/30kW). We can see that hybrids need to store high power but with relatively small amount of energy. Even thought not used in commercialized vehicles yet, ultracapacitors have the potential to be used in a HEV due to its much longer life cycle that passes 500 000. [34] V ďalších odsekoch budú popisované viaceré typy zásobníkov energie In sections more energy storage systems will be described. 32

Requirements on energy storage systems are: - Energy density and power density as high as possible - Weight as low as possible - Recharging as quick as possible - Lifetime as many cycles (charging and discharging) as possible Požiadavky na zásobníky energie sú: - Maximálna možná hustota energie a hustota výkonu - Minimálna hmotnosť zásobníkov - Rýchle nabíjanie - Čo najviac cyklov nabíjania a vybíjania zásobníkov energie Type of accumulator Energy density Power density Life time Price Wh/kg Wh/l W/kg W/l cycles years EUR/kW Lead-acid 30-50 70-120 150-400 350-1000 50-1000 3-5 100-150 NiCd 40-60 80-130 80-175 180-300 >2000 3-10 225-350 NiMH 60-80 150-200 200-300 400-500 500-1000 5-10 225-300 Li-ion 90-120 160-200 300 300 1000 5-10 275 Molten salt 85-100 150-175 155 255 800-1000 5-10 225-300 Desired value 80-200 135-300 75-200 250-600 600-1000 5-10 90-135 Tab. 6.2: Comparison of parameters of different types of batteries Porovnanie parametrov rôznych typov batérií [35] Napäťové články delíme na batérie, ktoré sa nedajú nabíjať a akumulátory, ktoré pracujú na princípe vratnej chemickej reakcie. Tento proces nie je 100% vratný, a preto majú limitovaný počet nabíjacích cyklov a aj životnosť. Akumulátory sú tiež nazývané batérie. Voltage cells are divided into batteries which are not rechargeable and accumulators with reversible chemical processes. This process is not 100% reversible and therefore it has limited number of recharging cycles - lifetime. Accumulators are also called batteries. 33

Batérie pracujú na princípe rôznych elektrických potenciálov medzi materiálmi. Dve elektródy majú rôzny el. potenciál, čo medzi nimi vytvára napätie. Ponorením elektród do elektrolytu získavame napäťový článok. Elektrolyt je tuhá, alebo tekutá substancia, ktorá umožňuje prechod iónov medzi elektródami. Od elektródy z nižším el. potenciálom ku elektróde s vyšším el. potenciálom. Batteries work on principle of different electric potentials between different materials. Two electrodes made of diff. materials have difference in el. potential what creates voltage between them. When electrodes are dept into electrolyte we get the voltage cell. Electrolyte is liquid or solid substance which allows travelling of ions from electrode lower el. potential to electrode with higher el. potential. Neviazané ióny vytvárajú vnútorný elektrický okruh, a ak pripojíme na elektródy vodiče, môžeme začať odoberať elektrický prúd. Keď všetky ióny prejdú cez elektrolyt, napäťový článok je vybitý, a musíme zapojiť vonkajší elektrický prúd na vytvorenie nových neviazaných iónov. Napätie vnútri článku je zvyčajne medzi 1-4 V. Toto napätie nezáleží na rozmeroch elektród, ale iba na použitom materiály. [36] These travelling ions create inside current circuit and if we connect electrodes with outer conductor the electric current starts to flow. If all the ions passed through electrolyte the cell is discharged and we have to recharge it with applying an outer electric current that creates new travelable ions. Voltage of one voltage cell is usually 1-4 V. This voltage doesn t depend on dimensions of electrodes, only on used material. [36] Ak chceme vyššie napätie, musíme zapojiť viacero článkov do série. If we want higher voltage then we have to connect more cells in series. Ak chceme vyššiu kapacitu, musíme zapojiť viacero napäťových článkov paralelne. If we want higher capacity then we have to connect more cells in parallel connection. 34

6.1. Zapečatené olovo-kyselinové batérie Sealed lead-acid batteries Tieto batérie sú momentálne najčastejšie používané napríklad na pohon elektrických bicyklov a to najmä vďaka ich nízkej cene za Wh. Sú pevné a odolné, najmä ak sú používané správne. Vlastné vybíjanie týchto batérií, za mesiac kedy neboli používané, je veľmi malé ~5%. Tieto batérie taktiež nemajú pamäťový efekt ako napr. NiCd. Problémom týchto batérií je nízka hustota energie a výkonu. Taktiež môžu pôsobiť nepriaznivo na životné prostredie, ak nie sú správne zrecykované. These SLA batteries are currently most common batteries used to power bicycles, mainly due to its low cost per Watt-hour. They are very robust and durable when used properly. The self-discharge rate of this batteries is also very low ~5% per month if not used. The SLA batteries don t have the memory effect like NiCd batteries. Problems with Sealed lead-acid batteries include low energy and power densities and potential environmental impact if not recycled properly. 6.2. Nickel-Cadmium (NiCd) batérie NiCd batteries NiCd batérie ponúkajú až o 50% zvýšenú výkonnosť v porovnaní s olovo-kyselinovými. Majú taktiež dlhšiu životnosť od 1500 až do 3000 cyklov (20-25 rokov) a ponúkajú veľmi rýchle nabíjanie. Nabiť ich môžeme v priebehu 10 minút. Majú taktiež veľký rozsah pracovných teplôt od -50 do 50 C. Na druhej strane, sú však drahšie ako olovokyselinové a musia byť pravidelne vybíjané kvôli pamäťovému efektu. NiCd batteries provide increase in performance about 50% in comparison with lead-acid bat. Their lifetime varies from 1500 up to 3000 cycles (20-25 years) and allows fast recharging in less than 10 minutes. Range of working temperatures is from -50 to 50 C. On the other hand they are more costly than lead-acid one and must be periodically discharged because of memory effect. 35

6.3. Nickel-metal hydride (NiMH) batérie NiMH batteries Pred pár rokmi boli práve tieto batérie najpoužívanejšie v elektromobiloch aj hybridoch. Špecifickú energiu (Wh/kg) majú štvornásobnú v porovnaní s olovokyselinovými, a približne dvojnásobne väčšiu ako NiCd. Tieto batérie sú šetrné k životnému prostrediu, keďže obsahujú málo toxické materiály ktoré sú ľahko recyklovateľné. Nevýhodou je ich cena, a taktiež produkovanie veľkého množstva tepla počas nabíjania môžu dokonca vybuchnúť. Potrebujú taktiež zložitejšie nabíjacie prístroje. Few years ago this batteries were most widely used to power electric vehicles and hybrids. Its specific energy (Wh/kg) is four times higher than lead-acid one and approximately two times higher than NiCd one. These batteries are more environment friendly as they contains very mild toxic materials that can be easily recycled. Disadvantage of this batteries is its cost and also large amount of heat generated during charging the can even explode. They also need more complicated and expensive chargers. 6.4. Lithium-ion (Li-ion) batérie Li-ion batteries V dnešnej dobe sú jedny z najčastejšie používaných batérií. Môžeme ich nájsť v notebookoch, mobilných telefónoch, fotoaparátoch a aj vo vozidlách. Majú vysokú hustotu energie, čím sa stávajú ľahšie a menšie v porovnaní s batériami s rovnakými parametrami. Nemajú pamäťový efekt, a taktiež majú vlastné vybíjanie len ~2-10% za mesiac. Nevýhodou je ich cena. 36 In present days Li-ion are one of the most used batteries. If can find them as batteries in laptops, cameras, cell phones and also in vehicles. They have high energy density what makes them lighter and smaller in comparison with another batteries that have same parameters. They doesn t have memory effect and also have small self-discharging only ~2-10% per month. Disadvantage is their price.

6.5. Ďalšie typy batérií Another types of batteries V posledných rokoch sa vo vozidlách začínajú presadzovať aj ďalšie dva typy batérií. LiFePO4 a Li-Pol batérie. Prvé menované ponúkajú nižšiu cenu pri trochu nižšej hustote energie ako Li-ion. Využívala ich aj prvá elektrická formula postavená na Slovensku študentmi na Strojníckej fakulte Slovenskej technickej univerzity v roku 2010. Li-Pol (Lithium- Polymer) batérie zasa ponúkajú momentálne najvyššiu hustotu energie. Využíva ich napríklad elektromobil Škoda Octavia Green E Line (s kapacitou 26 kwh). In recent years, another two types of batteries occurs in vehicles. It s LiFePO4 and Li-Pol batteries. First mentioned battery offers lower price with a bit smaller energy density like Li-ion batteries. They were also in the first formula electric built in Slovakia by students from Faculty of Mechanical Engineering at Slovak University of Technology in 2010. Li-Pol (Lithium-Polymer) batteries offer on the other hand biggest energy density and are used in electric vehicle Škoda Octavia Green E Line (capacity of 26 kwh). Najnovšie vyvinutými batériami sú Li-air (Lithium-vzduch)batérie. Anóda, teda kladný pól, je dnes vyrábaný z grafitu. Grafit je na svojom maxime. Kremík, však dokáže prijať až 10-krát viac Lithia ako grafit. Problémom je, že je príliš krehký materiál. Pri bežnom požívaní dochádza k zmršťovaniu a rozťahovaniu anódy. Nanešťastie, po niekoľkých cykloch zmršťovania a rozťahovania sa kremík rozpadne. Newly developed batteries are Liair (Lithium-air) batteries. Anode (positive electrode) is nowadays made of graphite. Graphite is on its maximum. Silicon on the other hand can take up to 10 times more Lithium. The problem is that it is too brittle material. In normal use occurs shrinking and stretching on the anode. Unfortunately after several cycles of contraction and expansion the silicon material will collapse. 37

Cieľom posledného výskumu bolo vytvoriť do kremíkovej anódy póry. Týmito pórmi vedci docielili, že kremík má priestor na deformáciu a nedochádza k jeho rozpadu. Čo je však ešte zaujímavejšie, táto technológia nie je vôbec zložitá a ani nákladná. Princípom je reakcia kremíka a fluóru. Kremík ponoríme do hydrofluorového rozpúšťadla a výsledkom reakcie sú mikropóry. The aim of the latest survey was to create pores in the silicon anode. Scientists with these pores causes that silicon has room for deformations and material won t collapse. What is even more interesting is that the technology is not complicated or costly. The principle is the reaction of silicon and fluorine. Silicon is plunged into hydrofluoric solvent and results of reaction are micropores. Fig. 6.3: Comparison of specific energy of several battery types [37] Porovnanie špecifickej energie niekoľkých typov batérií Fig. 6.4: Li-air battery batérie Lithium-vzduch [37] 38

6.6. Ultrakondezátory Ultracapacitors Ultrakondenzátory sú taktiež nazývané elektro-chemické dvojvrstvové kondezátory, alebo aj superkondenzátory. Majú až tisíc krát väčšiu hustotu energie v porovnaní s bežnými kondenzátormi. Ich úlohou je uchovať rýchlo dostupnú energie s vysokou hustotou výkonu, aby pokryli špičkovú spotrebu. Takou je napríklad predbiehanie alebo jazda pri veľkom zaťažení. V porovnaní s batériami však majú nižšiu hustotu energie. Ich dlhá životnosť a malé zníženie kapacity počas státisícov cyklov dáva veľké predpoklady využitia tejto technológie v budúcnosti. Vznikol už aj koncept, kde ultrakondenzátory so zotrvačníkom pracujú ako zásobník energie. Ultracapacitors are also called electrochemical double layer capacitors or supercapacitors. They have thousand times higher energy density in comparison with common capacitors. Their task is to store rapidly available energy with high power density that will cover the peak power consumption. Such consumption is for example overtaking or drive under high load. In comparison with batteries ultracapacitors have lower energy density. Their long lifetime and small degradation (of capacity) over hundreds of thousands of cycles makes this technology predicted to be used in future. There has been also a concept using ultracapacitors with flywheel as an energy storage system. 6.7. Vodíkové palivové články Hydrogen fuel cells Táto technológia je stará už viac ako sto rokov. Cieľom tejto technológie je získanie elektrickej energie z reakcie kyslíka a vodíka. Tieto články pracujú na podobnom princípe ako batérie. Rozdiel elektrických potenciálov však nie je vytváraný použitím rôznych materiálov pre elektródy, ale privádzaním dvoch rôznych plynov. 39 This technology is more than hundred years old. Task of this technology is to obtain electric energy from chemical reaction of hydrogen and oxygen. This cells works on similar principle as batteries. Difference of electric potentials is not created by using different materials of electrodes but supplying two different gasses.

Fig. 6.5: Hydrogen fuel cell - Vodíkový palivový článok [38] Energia nie je uchovávaná v článku, ale je dodávaná z paliva, čiže vodíka a kyslíka. Môžeme povedať, že proces v palivovom článku je opačná reakcia ako elektrolýza vody. Napĺňanie zásobníka vodíkom trvá omnoho kratšie, ako nabíjanie batérií. Taktiež účinnosť palivových článkov je takmer dvojnásobná v porovnaní so spaľovacím motor. Pracovná teplota palivového článku je vyššia, ako pri batériách, čiže produkujú odpadkové teplo, ktoré na druhej strane môže byť využité na vykurovanie vozidla, s ktorým majú elektromobily problém. Energy is not stored in the cell but is supplied from the fuel (oxygen and hydrogen). We can say that process inside fuel cell is like reversed electrolysis of water. Refueling of hydrogen storage system is done in much shorter time than charging of batteries. Also the efficiency of fuel cells is almost twice as for ICE. Working temperature of fuel cell is higher than for batteries which results in production of waste heat. On the other side we can use it for heating of interior of vehicle which electric vehicles has problem with. Výhodou palivových článkov je to, že produkujú iba vodnú paru a neprodukujú CO2 a NOx emisie. Majú tiež väčšiu hustotu energie ako batérie. Advantage of fuel cells is production of water vapor and no CO2 and NOx emissions. Fuel cells have also higher energy density than batteries. 40

Vodík uchováva veľa energie na kg preto, že je najľahším chemickým prvokom. Neuchováva však veľa energie na liter, a preto ho musíme uskladňovať v tlakových nádobách. Jedným z najväčších problémov palivových článkov je uskladňovanie vodíka. Ďalším je napríklad bezpečnosť pri haváriách. Predstava výbuchu pretlakovanej nádoby s vysoko reaktívnym vodíkom vo mne osobne vyvoláva veľký strach. Taktiež slabinou palivových článkov je pomalá dynamická odpoveď na dopyt energie. Podľa experimentu, pri počiatočnom štarte trvá 90 sekúnd kým palivový článok dosiahne potrebný stav. Pri každej ďalšej zmene to trvá ďalších šesťdesiat sekúnd. Práve preto sa palivové články používajú v kombinácií s batériami. Hydrogen stores lot of energy per kg because it iss the lightest chemical element. On the other side it is not storing lot of energy per liter and therefore we have to store it in the pressure vessels. One of the biggest problems concerning fuel cells is storing of hydrogen. Another one is safety during the car accidents. The vision of explosion of pressure vessel full of hydrogen that is very reactive evokes in me really big fear. Also another weakness of fuel cells is their slow dynamic response to power demand. According to one experiment, at initial start-up it takes 90 seconds for the fuel cells to reach the steady state. Whenever there is a change of electric power demand it takes another 60 seconds. Therefore fuel cells are used in combination with batteries. Fig. 6.6: Hybrid fuel cells system for elevator [39] Hybridný systém pre výťah s použitím palivových článkov 41

6.8. Zotrvačník Flywheel Zotrvačník je čisto mechanický zásobník energie. Pracuje na princípe zrýchlenia zotrvačníka na veľmi vysokú uhlovú rýchlosť. Brzdná energia sa premieňa na rotačnú energiu. Keď túto energiu odoberáme, uhlová rýchlosť sa znižuje. Vysoké otáčky spôsobujú veľké dostredivé sily, a preto musí byť zotrvačník vyrobený z materiálov s vysokou pevnosťou. Namiesto mechanických ložísk sú využívané magnetické ložiská na zníženie trenia. Flywheel is purely mechanical energy storage system. Flywheel works on principle of accelerating of a rotor on a very high angular velocity. Braking energy is recuperated to rotational energy. When energy is extracted from the system to angular velocity of flywheel is decreased. High rpm causes big centrifugal forces and therefore flywheel has to be made of high-strength materials. Magnetic bearings are used instead of mechanical one to reduce friction. 6.9. Ostatné zdroje energie Another energy sources Najčastejším pomocným zdrojom energie je solárny panel na karosérií. Solárny panel využíva princípy fotovoltaiky a premieňa priamo slnečnú energiu na elektrickú. Ich účinnosť je okolo 15%. Most used supplementary power source is solar cell on bonnet. Solar cell uses the principles of photovoltaic and converts directly solar energy into electric energy. Efficiency of fuel cells is approximately 15%. Odpadkové teplo ponúka možnosti využitia aj Peltirových článkov a Stirligovho motoru. Peltierové články pracujú na princípe rozdielu teplôt na dvoch plochách, ktorý premieňajú na elektrickú energiu. Stirlingov motor pracuje na podobnom princípe, len vytvára mechanickú energiu. 42 Waste heat offers also usage of Peltiers modules and Stirling engine. Peltiers modules works on principle where two areas have different temperatures these modules converts this difference to electric energy. Stirling engine works on similar principle but the obtained energy is mechanical.

6.10. Bezpečnosť alternatívnych pohonov Safety of alternative drivetrains Bezpečnosť pri bežných vozidlách so spaľovacím motorom je z hľadiska pohonu veľmi dobrá. Palivo je síce horľavé, ale výbušná je len zmes so vzduchom. Aká je však bezpečnosť alternatívnych pohonov? Safety in conventional vehicles with IC engine is from point of view of drivetrain very good. Fuel is flammable but explosion causes only the mixture with oxygen. How it is with safety of alternative drivetrains? Napríklad zotrvačník. V Porsche 911 GT3 R Hybrid má zotrvačník vážiaci 20 kg ktorý rotuje s vyše 14 000 otáčok za minútu. Pri predstave, že by sa zotrvačník uvoľnil zo svojho uloženia pri maximálnych otáčkach, môžeme predpokladať, že obrovské množstvo energie uloženej v zotrvačníku postačí na niekoľko minútovú rotáciu zotrvačníka. Počas tejto nekontrolovateľnej rotácií môže tento zotrvačník spôsobiť obrovské škody a čo je najhoršie, táto rotácia sa prakticky nedá zastaviť. For example flywheel. In Porsche 911 GT3 R Hybrid has flywheel that weights 20 kg and spins 14 000 revolutions per minute. If we imagine that flywheel would be released from its bearings in maximal rpm we can assume that big amount of energy stored in flywheel would be enough for spinning of this flywheel for several minutes. During this uncontrolled rotation can this flywheel cause tremendous damage and what is the worst this rotation is practically impossible to stop. Vozidlá s palivovými článkami majú taktiež problém s bezpečnosťou najmä kvôli vodíku. Táto vysoko reaktívna látka môže pri nehodách nekontrolovateľne vybuchnúť. Taktiež počas reakcie v článku môže dochádzať k reakcii vodíka a inej látky vo vzduchu, čím sa môžu tvoriť jedy. Vehicles using fuel cells have also problems with safety mainly because of using hydrogen. This extremely reactive element can explode during accident without any chance to control this explosion. Also during reaction in cell hydrogen can react with other elements in air and create toxic matter. 43

Samozrejme aj pri zotrvačníkoch a palivových článkoch sa uplatňujú nové technológie, ktoré sa snažia tieto problémy vyriešiť. Pri zotrvačníkoch to môže byť napríklad použitie vysoko pevného materiálu, ktorý je však krehký. V puzdre, v ktorom je uložený, by sa pri nehode jednoducho rozpadol. Of course, new technologies that are trying to solve these problems occur also in using of flywheels and fuel cells. When using flywheel it can be for example usage of high strength material that is brittle. In the safety cage the flywheel will simply fall to pieces during accident. Problémom elektromobilov sú vysoké elektrické napätia. Vysoké napätie je však veľmi nebezpečné. Nové bezpečnostné normy určujú, že napätie musí do 4 sekúnd po havárií klesnúť pod 60 Voltov. Ak sa technológia tohto bezpečnostného systému dostane na požadovanú úroveň, stanú sa elektromobily podobne bezpečné ako klasické vozidlá. Problem with safety of electric vehicles is the usage of high voltage. High voltage is very dangerous for us. This is why new safety norms were issued. The voltage must be decreased after an accident to level sixty Volts in four seconds. If the technology of this safety system will get to desired level the electric vehicle will have similar safety as the conventional vehicles. 6.11. Vplyv na životné prostredie Environmental impact Vplyv zotrvačníkov a palivových článkov na životné prostredie zatiaľ nie je známy. Diskutuje sa najmä o vplyve batérií. Batérie majú väčšiu životnosť, ako samotné vozidlo. Taktiež nie sú úplne recyklovateľné. Počas každého nabíjacieho cyklu sa kapacita batérie trochu zníži. Po 150 000 km sa ich kapacita zníži asi o jednu tretinu. Environmental impact of flywheels and fuel cells is unknown. There is a discussion mainly about impact of batteries because they have longer lifetime than vehicle itself. We cannot recycle the whole battery and after each charging cycle the capacity of battery is a bit decreased. After 150 000 km the capacity of battery is decreased by one third. 44

Čo sa však stane s batériami potom? Recyklácia je pri dnešných technológiách nerentabilná, ale ich uložením na skládkach ničíme životné prostredie. Na druhej strane však máme batérie, ktoré budú podstatne lacnejšie. Ak si predstavíme aplikáciu, kde nie sú problémom rozmery, ale len ich kapacita, dostávame nové možnosti využitia starých batérií. Druhý život batérií sa stane biznisom. Veľmi pekným využitím, by bolo umiestňovať tieto staré batérie do nemocníc a iných verejných inštitúcií, ako sekundárne generátory, kým nenájdeme rentabilnú technológiu na ich recykláciu. Inou možnosťou je využívať ich pri špičkových odberoch počas dňa, keďže dnes na pokrytie tejto spotreby využívame neekonomické a neekologické dieselové generátory. What will happen with batteries next? Recycling is not profitable by technologies we are using nowadays. If we will concentrate in waste dumps we will harm the environment. On the other side we the batteries that will be much cheaper. If we imagine an application where the sizing is not the problem and only problem is the capacity of energy source we can get new usage of old batteries. Second life of batteries will become good business. Very nice solution would be usage of old batteries in hospitals or other public institutions as secondary generators until we will find profitable technology for recycling. Another possibility is to use it for peak power demand during the day. Now we are using not economic and not ecologic diesel generators to cover the peak power demand. Fig. 6.7: Household power demand during the day - Spotreba domácnosti počas dňa 45

7. Elektromotor Electric motor Úlohou elektromotoru je premieňať elektrické energiu na mechanickú prácu. Elektrický prúd prechádzajúci cievkou vytvára v okolí cievky magnetické pole, ktorého pôsobením sa roztočí rotor. Na pohon hybridu môžeme využiť takmer každý elektromotor, ktorý má vhodnú momentovú charakteristiku. Purpose of the electric motor is to convert electrical energy into mechanical work. Current forced through a coil produces a magnetic field that spins the rotor. In principle we can use each kind of electric motor to propel the vehicle. We have to consider mainly the torque characteristic of the motor. Elektromotory majú väčšinou menší výkon. Je to spôsobené tým, že ich výkon sa udáva pri konštrukčnej hodnote a elektromotory, na rozdiel od SM, môžeme pri špičkovom výkone niekoľkonásobne preťažiť. Napríklad elektromotor ASM6.17.12 od spoločnosti Brusa má výkon 27 kw, ale na 30 sekúnd ho však môžeme preťažiť až na 54 kw. Electric motors have usually smaller power. It s caused by the fact that these motors are rated at their nominal power. Their peak power is much bigger but we can use this power only in limited time. For example Motor ASM6.17.12 developed by Brusa company has nominal power 27 kw but for 30 seconds we have dynamic peak power 54 kw. Veľkou výhodou elektromotorov je taktiež ich schopnosť pracovať ako generátor. Princíp rekuperácie brzdnej energie bol vysvetlený v kapitole 2.2. Pôsobenie EM ako generátora sa využíva aj pri sériovom a sériovoparalelnom usporiadaní (kapitola 5.1. a 5.3.). Dáva nám veľa možností ako poháňať vozidlo čo najefektívnejšie. Great advantage of all electric motors is that they can also work as generators. Principle of regenerative braking was described in chapter 2.2. Possibility to use EM as generator is also used in series and series-parallel drivetrain architecture (chapters 5.1. & 5.3.).It gives us lots of possibilities how to propel the vehicle most effective. 46

Podľa toho či využívame striedavý, ale jednosmerný prúd delíme elektromotory na jednosmerný motor (DC motor) a striedavý motor (AC motor). V súčasnosti sa najviac využíva na pohon vozidla DC motor so sériovým vinutím. Whether we are using direct current or alternating current we are dividing electric motors into DC motors (direct current) and AC motors (alternating current). At present time the most used electric motor for propelling of vehicle is DC series wound motor. 7.1. Jednosmerný elektromotor DC electric motor Jednoduchý DC motor pracuje na princípe rotujúcej cievky v magnetickom poli. Prúd je do cievky privádzaný cez komutátor, ktorý zaisťuje periodickú zmenu smeru prúdu. Tým že sa mení smer prúdu, sa mení aj orientácia magnetického poľa v okolí cievky. Simple DC motor works on principle of rotating coil in the magnetic field. Current in the coil is supplied by two brushes that make the contact and split ring- commutator which provides periodical change of direction of current which means we also change the magnetic feel around the coil. Fig. 7.1: Principle of operation of DC motor - Princíp práce DC elektromotora [40] 47

Jednosmerné motory môžeme veľmi dobre preťažovať. Na jednu hodinu ich môžeme preťažiť o 20%. Pri krátkom intervale ich môžeme preťažiť aj o 100%. Jednoduché elektromotory využívajú kefy brush, ktoré zabezpečujú spojenie batérií a cievky. Z konštrukčného hľadiska musíme kvôli kefám brush a komutátoru dosahovať maximálne otáčky okolo 7000 otáčok za min. DC motors have high overload capacity. For stable power output for one hour is overload capacity 20%. During short interval overload capacity can be 100%. Simple electric motors uses brushes that provide moving contact of coil with batteries. From constructors point of view maximal revolutions are limited to about 7000 rpm due to usage of brushes and commutators. Pri DC motore s vonkajším budením magnetické pole v statore nie je tvorené permanentnými magnetmi, ale budené z cievok. Podľa zapojenia cievok delíme DC motory s vonkajším budením na motory so sériovým resp. paralelným vinutím. Pri paralelnom vinutí dosahuje motor vyšší točivý moment, a preto je paralelné vinutie častejšie využívané vo vozidlách. In separately excited direct current motor the magnetic field in stator is created not by permanent magnets but is excited by coils. According to connection of armature we have series and parallel wound excited DC motors. In parallel connection the DC motor has better torque characteristic (bigger max. torque) and therefore is preferred for use in vehicles. Tieto motory majú jednoduchú reguláciu a plynulý prechod z módu kedy poháňajú vozidlo do módu generátora. Nevýhodou týchto motorov je využívanie uhlíkových kief brush a komutátora, ktoré potrebujú časté menenie kvôli veľkému mechanickému opotrebovaniu. These motors have simple regulation and smooth jump from driving mode to breaking (generator) mode. Disadvantage of these motors is usage of carbon brushes and semi-ring commutators that needs periodic replacement duet to big mechanical wear (friction, heat and current flow). 48

Iným DC motorom je jednosmerný motor bez kief brush. Jeho konštrukcia je veľmi podobná synchrónnemu striedavému elektromotoru. Stator je tvorený cievkami a rotor zase permanentným magnetom. Týmto uložením nám odpadávajú kefky brush a komutátor. Prepínaním smeru prúdu v cievkach, na základe polohy magnetických pólov rotoru, získavame meniace sa magnetické pole potrebné na rotáciu. Rotor sa teda otáča tak rýchlo, ako rýchlo meníme smer prúdu v cievkach, čiže motor je synchrónny. Other type of DC motor is brushless DC motor. Its construction is similar to synchronous alternating current motor. In outer stator are placed coils and permanent magnets are fixed in rotor. This enables elimination of commutators and carbon brushes. By switching the direction of current in coils based on position of magnetic poles of rotor we will get the changing magnetic field necessary for rotation. Rotor spins at the same speed as the direction of current in coils is switched. Therefore this motor is synchronous. 7.2. Striedavý elektromotor AC electric motor Rozdielom oproti jednosmerným motorom je najmä to, že na rotáciu sa využíva striedavý prúd. Striedavých elektromotorov je viac, ale svoje uplatnenie vo vozidlách našli synchrónny a asynchrónny motor. The difference between DC motors and AC motors is that for rotation is used alternating current. There are many types of AC motors but in hybrid vehicles are used mostly synchronous and asynchronous AC motors. 7.2.1. Synchrónny elektromotor Synchronous AC electric motor Tento motor bude pracovať iba vtedy, ak cievky v statore budú vytvárať rotačné magnetické pole. Pre hladký chod musí mať elektrický prúd priebeh sínusu, pretože aj magnetické pole variuje sínusovo. Rotor je tvorený permanentným magnetom. 49 The motor will run only when stator coils are generating rotating magnetic field. To run smooth the electric current must have sinusoidal characteristic because the magnetic field varies also sinusoidally. Rotor is permanent magnet.

Fig. 7.2: Synchronous AC electric motor - Synchrónny striedavý elektromotor [41] Synchrónne motory majú veľa nevýhod. Je potrebné ich roztočiť na pracovné otáčky iným strojom, alebo pomocným asynchrónnym rozbehovým vinutím. Pokiaľ pod záťažou stratia synchronizáciu s rotujúcim elektromagnetickým poľom, klesne ich výkon a zastavia sa. Synchronous AC motors have many disadvantages. We need to spin them to working revolutions by other device or by auxiliary asynchronous wounding. If they under load loose synchronization with rotating magnetic field their power will decrease and the motor will stop. 7.2.2. Asynchrónny elektromotor Asynchronous AC electric motor Asynchrónny motor vynašiel v roku 1888 Nikola Tesla. Je to najrozšírenejší pohon v elektrotechnike vôbec. Tok energie medzi statorom a rotorom je realizovaný výhradne pomocou elektromagnetickej indukcie, preto sa často tento motor označuje ako motor indukčný. Rotor sa obvykle skladá zo sady vodivých týč, usporiadaných do tvaru valcovej klietky. Tyče sú na koncoch vodivo spojené. Asynchronous motor was developed by Nicola Tesla in 1888. It s most used motor in electro-technics. Energy flow between stator and rotor is realized only by electromagnetic induction. This is why this motor is also called induction alternating current motor. Rotor consists of two circular conductors joined by several straight conductive bars into the so called squirrel cage construction. 50

Fig. 7.3: Asynchronous AC electric motor - Asynchrónny elektromotor [42] Rotujúce magnetické pole statora indukuje v tyčiach rotora elektrické prúdy, ktoré vytvárajú elektromagnetické pole rotora. Obe magnetické polia potom interakciou vytvárajú elektromotorickú silu, potrebnú pre rotáciu rotora. Pokiaľ je motor zaťažený, nikdy nedosiahne otáčky dané frekvenciou rotujúceho magnetického poľa. Nikdy s nimi nebude synchrónny, a preto sa nazýva asynchrónny motor. Rotating magnetic field of stator inducts current in bars of rotor and this inducted current creates electromagnetic field of rotor. Both magnetic fields than interacts and creates the electro-motoric force which is need for rotation of rotor. If the motor is under some load, rotor will never have same rpm as are rpm given by frequency of rotating magnetic field so they ll never be synchronized. Therefore this motor is called asynchronous AC motor. 7.3. Kombinácia viacerých elektromotorov Combination of more el. motors Elektromotory môžeme kombinovať. Najčastejšie sú zapájané v sérií, čiže sú spojené jedným hriadeľom. Takéto spojenie sa využíva napríklad v bani, kde by bol jeden motor príliš veľký. Vo vozidlách sa najčastejšie využíva možnosť uložiť motory do kolies, ale aj ich spájanie cez planétový prevod. It is possible to combine electric motors. They are connected mainly in series by one shaft. This connection is used in mine, where one electric motor would be too big. In vehicles are motors placed in wheels or we are coupling two motors by planetary gear set as for example in Toyota Prius 51

8. Výhody kúpy hybridného vozidla Advantages of buying a hybrid vehicle Prečo by sme mali kupovať hybridné vozidlá? Sú približne o tretinu drahšie ako vozidlá s podobnými parametrami aj výbavou. Ich spotreba ani CO2 emisie nie sú výrazne nižšie. V nasledujúcich tabuľkách budú najznámejšie hybridy porovnané s podobnými vozidlami iba so SM. Why should we buy a hybrid vehicle? They are about one third more expensive than vehicles with similar parameters and features. Their fuel consumption and CO2 emissions are not much smaller. In next tables will be compared hybrids with similar conventional vehicles with ICE. Toyota Auris 1.8 VVT-i, 73 kw (SM/ICE), 60 kw (el. motor), [43] 20 950 Škoda Fabia Classic 1.6 TDI CR, 66 kw, [44] 12 500 Škoda Fabia GreenLine 1.2 TDI CR, 55 kw, [44] 13 800 Peugeot 207 1.4 HDi, 50 kw, [45] 12 200 Kia Cee d 1.6 CRDi VGT, 66 kw, [46] 14 700 Spotreba Consumption (mesto city) CO2 emissions [ l/100km] [ /100km] [ /100 000km] [ g/km] [t/100 000km] Toyota Auris 3.8 5.59 5 593.6 89 8.9 Fabia Classic 4.1 5.51 5 551.4 89 8.9 F. GreenLine 5.1 6.91 6 905.4 109 10.9 Peugeot 207 5.2 7.04 7 040.8 113 11.3 Kia Cee d 4.9 6.63 6 634.6 113 11.3 Tab. 8.1: Consumption and CO 2 emissions for small vehicles for 5passangers* *When price of petrol is 1,472 /l and diesel 1,354 /l on 22.05.2011 [47] Porovnanie spotreby a CO 2 emisií malých vozidiel pre 5 osôb* *Pri cene benzínu 1,472 /l a cene nafty 1,354 /l ku 22.05.2011 [47] Toyota Auris má ako jediná benzínový motor. Taktiež, má ako jediná automatickú prevodovku. Toyota Auris is the only one which has petrol engine. Also is the only one with automatic transmission. 52

Toyota Prius II 1,8 VVT-I, 73 kw (SM/ICE), 2x50 kw (el. mot.), [48] 25 500 Škoda Octavia GreenLine 1.6 TDI CR, 77 kw, [44] 18 000 Škoda Octavia Classic 1.6 TDI CR DPF, 77 kw, [44] 16 400 Renault Fluence 1.5 dci, 66 kw, [49] 14 000 Renault Thalia 1.2, 55 kw, [50] 6 500 Spotreba Consumption (mesto city) CO2 emissions [ l/100km] [ /100km] [ /100 000km] [ g/km] [t/100 000km] Toyota Prius 3.9 5.74 5 740.8 99 9.9 Octavia Green 4.7 6.36 6 363.8 99 9.9 Octavia Classic 5.7 7.72 7 717.8 119 11.9 R. Fluence 5.3 7.18 7 176.2 115 11.5 Renault Thalia 7.6 11.19 11 187.2 136 13.6 Tab. 8.2: Consumption and CO 2 emissions for vehicles for 5passangers* *When price of petrol is 1,472 /l and diesel 1,354 /l on 22.05.2011 [47] Porovnanie spotreby a CO 2 emisií vozidiel pre 5 osôb* *Pri cene benzínu 1,472 /l a cene nafty 1,354 /l ku 22.05.2011 [47] Toyota Prius a Renault Thalia majú benzínovým motor. Toyota Prius má ako jediná automatickú prevodovku. Výber vozidiel bol pre Taxi služby v Bratislave, ktoré jazdia väčšinou v meste. Záverom týchto tabuliek je, že kúpa hybridu nie je výhodná čisto z finančného hľadiska. Oba hybridy však majú vyššiu výbavu a lepšie zrýchlenie. Na spotrebe by sa vklad vrátil až po 600 000 km, čo pre taxík v Bratislave znamená 20 rokov. Otázne je, či bude reálna = udávaná spotreba. Toyota Prius and Renault Thalia has both petrol engine. Toyota Prius is the only one with automatic transmission. Selection of vehicles was based for Taxi services in Bratislava. Conclusion from the tables is that buying a hybrid is not a bargain. However, both hybrids have better vehicle equipment and better acceleration. By the fuel consumption you will have a bargain after 600 000 km which means for taxi in Bratislava 20 years. Other question is whether real = declared consumption. 53

Prečo by sme si mali kupovať niečo, čo pre nás nie je výhodnejšie? Odpoveďou je, že si kupujeme našu budúcnosť. Kupujeme si vývoj budúcich technológií. Po 100 000 km je rozdiel približne tisíc euro, oproti obyčajným vozidlám, a hybridy už nie sú vôbec drahšou alternatívou. Je len otázkou času, kedy bude ich kúpa výhodnejšia. Why we should then consider buying a hybrid vehicle? The answer is that with buying a hybrid we are buying our future. We are buying the development of future technologies. With difference of thousand euro after 100 000 km hybrids are not so much expensive alternative and it depends only on time when buying a hybrid will be a real bargain. 9. Simulácia vozidiel Vehicle simulation Analýza založená na simulácií sa stáva základom vývoja nových pohonov. V súčasnosti existuje niekoľko simulačných programov. Každý program sa sústredí na iný problém, takže nie je možné použiť jeden program na simuláciu všetkých problémov. Najznámejšími platformami sú MatLab/Simulink a Modelica/Dymola. Program Advisor (ADvanced VehIcle SimulatOR) jedným z balíkov pre MatLab (Matrix Laboratory). Dlhodobo bol jedným z najvyužívanejších program na simuláciu hybridov. V roku 2003 ho však spoplatnili. Ďalším balíkom pre MatLab je QSS Toolbox vyvinutý na ETH Zurich. V tejto štúdií bude používaný pre výpočet spotreby. Simulation based analysis are becoming crucial for development of new drivetrains. At present time there are several simulation tools. Each program is always focused on specific application and therefore we are not able to use one tool for simulation of each problem. Well known platforms are MatLab/Simulink and Modelica/Dymola. Program Advisor (ADvanced VehIcle SimulatOR) is package for MatLab (Matrix Laboratory). Advisor was one of the most used vehicle simulation tool for a long time. In 2002, Advisor became commercial. Another package for MatLab is QSS Toolbox developed at ETH Zurich. In this thesis will be used for calculation of fuel consumption. 54

9.1. QuasiStatic Simulation Toolbox (QSS TB) Pomocou tohto toolboxu sa dá veľmi rýchlo namodelovať pohon vozidla a jeho spotreba. Tento toolbox nie je vhodný na zachytenie dynamických vlastností, ktoré sú popísané diferenciálnymi rovnicami. Hlavnou myšlienkou v QSS TB je obrátiť klasický postup výpočtu dynamických systémov. Namiesto výpočtu rýchlosti z daných síl, sa z danej rýchlosti vypočítava zrýchlenie, a z neho sa určujú potrebné sily. [51] The QSS TB makes it possible for drivetrain to be designed quickly and to calculate easily consumption. The quasistatic approach is not suitable for the capture of dynamic properties described by diff. eq. The key idea behind the QSS TB is to reverse the usual calculation of dynamic systems. Rather than calculating speeds from given forces, this toolbox calculates accelerations and determines forces from given speeds. [51] 9.2. Súčasti knižnice QSS toolboxu Elements of the QSS toolbox Fig. 9.1: The QSS toolbox library - Knižnica QSS toolboxu [51] Jednotlivé bloky sa budú lepšie vysvetlovať pri aplikovaní na jednoduchý príklad. Prostredie v ktorom pracujeme je MatLab, Simulink a všetky jednotlivé bloky aj ich podsystémy sú plne kompatibilné. It will be better to describe all the functions of the blocks on one simple example from library. Toolbox is designed for MatLab, Simulink and all the block in library with their subsystems are fully compatible. 55

9.2.1. Modelovanie bežného vozidla Conventional vehicle modelling Pri modelovaní bežného vozidla musíme najskôr vybrať jazdný cyklus. Pre nás je najvhodnejší NEDC cyklus, ktorý je európsky jazdný cyklus. V bloku Vehicle sa vozidlu priradia všetky jazdné odpory a vypočíta sa točivý moment. Prechodom cez block Transmission sa podľa zaradeného prevodového pomeru prepočíta točivý moment a aj uhlová rýchlosť, ktoré sú výstupom motora. V bloku Combustion Engine sa potom preráta výkon potrebný na pohon, na energiu potrebnú z paliva. V bloku Tank sa dáta sumarizujú a prepočítavajú na spotrebu v l/100 km. [51] For modeling a conventional vehicle we have to first select a driving cycle. For our calculation the best one is NEDC cycle which is European driving cycle. In block Vehicle the driving resistances are calculated and the torque is calculated. In block Transmission according to selected gear the torque and angular velocity is recalculated and we obtain the output of engine. In block Combustion Engine is the power needed to propel the vehicle recalculated to energy from fuel. In block Tank are those data summarized and recalculated to consumption in l/100 km. [51] Fig. 9.2: Simulation of conventional vehicle - Modelovanie bežného vozidla [51] V ďalších podkapitolách budú jednotlivé bloky bližšie popísané. Táto schéma bude taktiež využitá pri získavaní informácií pre model sériového hybridu VW Crafter. In next sections will be in more depth described each block scheme. Scheme of conventional vehicle will be also used to obtain information for modeling of series hybrid VW Crafter. 56

9.2.2. Jazdný cyklus Driving cycle Porovnávanie spotreby pre rôzne pohonné systémy má zmysel iba vtedy, ak dáta používané na výpočet sú získané počas normalizovaného testovacieho cyklu. Cyklus musí byť definovaný minimálne dvoma vektormi časovým a rýchlostným vektorom. V QSS TB sú najčastejšie jazdné cykly už prednastavené. Európskym je EU cyklus (NEDC) a americkým je FTP cyklus. [51] A comparison of the fuel consumption for different drive systems makes sense only if data used for calculations are obtained during normalized test cycle. This cycle must be defined at least by two vectors the time vector and the velocity vector. In QSS toolbox package the most frequently used driving cycles are already defined. European is EU cycle (NEDC) and American is FTP cycle. [51] Fig. 9.3: The user interface (mask) of the Driving Cycle block Užívateľské rozhranie (mask) bloku jazdného cyklu [51] 57

9.2.3. Vozidlo - Vehicle Celkový jazdný odpor môže byť rozdelený do 4 základných skupín: Aerodynamické straty Valivý odpor Zotrvačné sily vytvárajúce odpor akcelerácií Vonkajšie odpory, ktorými je napríklad stúpanie V QSS toolboxe sa využívajú prvé tri jazdné odpory. [51] The total running resistances may be divided in four groups: Aerodynamic losses Rolling resistance losses Vehicle acceleration resistances losses (inertia of the rotating mass) External resistances losses such as those arising from climbing In the QSS TB, the block Vehicle shows the first 3 of these effects. [51] Fig. 9.4: Block Vehicle in QSS TB - Schéma bloku vozidla v QSS TB [51] 58

9.2.4. Spaľovací motor Combustion engine V tejto štúdií bude využívaná zjednodušená (Willansova) aproximácia spaľovacieho motora. Táto aproximácia počíta účinnosť SM na základe tlaku vo valci. In this thesis the Willans approximation of combustion engine will be used. It s based on computing of engine s efficiency by mean of pressure in the cylinder. Fig. 9.5: Scheme of the block Combustion Engine based on Willans approximation Schéma bloku spaľovacieho motoru založená na Willansovej aprox. [51] Fig. 9.6: Scheme for computation of the engine s efficiency by Willans approach [51] Schéma výpočtu účinnosti spaľovacieho motora podľa Willansovej aprox. 59

Fig. 9.7: The user interface (mask) of the Combustion Engine block Užívateľské rozhranie (mask) bloku spaľovacieho motoru [51] 60

9.2.5. Zdroj energie Energy source Potrebný výkon spaľovacieho motora je vydelený dolnou výhrevnosťou zodpovedajúceho paliva. Získavame momentálnu hmotnostnú spotrebu paliva. Potom túto spotrebu zintegrujeme, aby sme získali celkovú spotrebu. Nakoniec je spotreba vydelená prejdenou dráhou a upravená na l/100 km. [51] The required power of the combustion engine is divided by the lower heating value of the corresponding fuel to compute the resulting actual fuel mass flow. Then the fuel mass flow is integrated in order to obtain the consumed fuel mass.the total fuel mass is finally divided by the total distance and transformed in l/100 km. Fig. 9.8: Block Energy source in QSS TB - Schéma bloku zdroja energie v QSS TB [51] Fig. 9.9: The user interface (mask) of the Tank block Užívateľské rozhranie (mask) bloku nádrže [51] 61

9.3. Modelovanie pohonu VW Crafter Modelling of VW Crafter drivetrain Pre demonštráciu výhodnosti hybridov som si zvolil vozidlo VW Crafter. Pohon zabezpečuje 2.5 litrový dieselový motor TDI 80 kw so systémom common rail. Pre jeho 3 655kg vážiacu verziu je udávaná kombinovaná spotreba okolo 10 litrov. For demonstration of better fuel consumption for hybrid drivetrains I have choose vehicle VW Crafter. 2.5 liter diesel engine TDI 80 kw with system common rail propels the vehicle. For its version that weights 3655 kg the consumption is 10 liter. Fig 9.10: VW Crafter [52] Fig. 9.11: Simulation of VW Crafter drivetrain - Simulácia pohonu VW Crafter 62

Ako môžeme vidieť z výsledku simulácie, dosiahnutá spotreba je približne rovnaká, ako udávaná spotreba výrobcom. As we can see frm the result of simulation the fuel consumption is more less the same as declared by the manufacturer. 9.4. Modelovanie sériového hybridného pohonu pre VW Crafter Modelling of series hybrid drivetrain for VW Crafter Pre modelovanie sériového pohonu potrebuje vedieť, aké motory použijeme, typ a kapacitu batérií, ktoré chceme použiť. Spaľovací motor v tomto pohone bude motor koncernu VW 1.2 TDI CR, 55 kw. Nebude však pracovať v oblasti maximálneho výkonu, ale v oblasti maximálneho krútiaceho momentu. V tejto oblasti bude výkon okolo 30 kw, ktorý bude prenášaný do generátora používaného v hybridnom VW Touareg s nominálnym výkonom 37 kw. O pohon sa bude starať trakčný elektromotor z VW Bulli s výkonom 85kW. Uvažované sú NiMH batérie s kapacitou 9 kwh. Hmotnosti: 37 kw generátor 50 kg 85 kw trakčný el. motor 60 kg 9 kwh NiMH batérie 130 kg + ďaľšia elektronika - menší SM, prevodovka For modeling of series hybrid drivetrain we need to know which motors, engine and type and capacity of battery we want to use. Combustion engine in this drivetrain will be VW concern engine - 1.2 TDI CR, 55 kw. This motor won t be working at peak power region but it will be working in region of maximum torque. In this region the output power will be around 30 kw. This power will be transmitted to generator use also in hybrid VW Touareg with nominal power of 37 kw. Traction engine will be from VW Bulli with nominal power of 85 kw. Batteries will be NiMH with capacity of 9 kwh. Total mass: 37 kw generator 50 kg 85 kw traction el. motor 60 kg 9 kwh NiMH batteries 130 kg + other electronics - smaller ICE, transmission Celková hmotnosť ~ 3 900 kg Total mass: ~ 3 900 kg 63

Fig. 9.12: Simulation of series hybrid drivetrain for VW Crafter Simulácia sériového hybridného pohonu pre VW Crafter Fig. 9.13: Battery charge - Stav nabitia batérie 64