STUDIES ON FUSHUN SHALE OIL FURFURAL REFINING

Similar documents
HYDRODESULFURIZATION AND HYDRODENITROGENATION OF DIESEL DISTILLATE FROM FUSHUN SHALE OIL

PETROLEUM WAX & VASELINE PLANT

Distillation process of Crude oil

On-Line Process Analyzers: Potential Uses and Applications

Results Certified by Core Labs for Conoco Canada Ltd. Executive summary. Introduction

Supply of Services for Detailed OEB Crude Assay Analysis

Conversion Processes 1. THERMAL PROCESSES 2. CATALYTIC PROCESSES

Crude Assay, ASTM, TBP distillations, Evaluation of crude oil properties.

Fig:1.1[15] Fig.1.2 Distribution of world energy resources. (From World Energy Outlook 2005, International Energy Agency.)[16,17]

PETE 203: Properties of oil

Influence of Pressure to the Hydrocracking Process of Goudron in the Presence of a Modificated Suspended Halloysite

Softening point by Ring & Ball. Density and relative density of liquids by Hubbart pycnometer

Crude Distillation Chapter 4

Refining/Petrochemical Integration-A New Paradigm

Co-Processing of Green Crude in Existing Petroleum Refineries. Algae Biomass Summit 1 October

GTC TECHNOLOGY WHITE PAPER

Types of Oil and their Properties

General Guide of Lubricants Recycle

Characterization of crude:

Keywords: regeneration used oil, solvent extraction, vacuum distillation, ash content

Refining/Petrochemical Integration-A New Paradigm Joseph C. Gentry, Director - Global Licensing Engineered to Innovate

Growing the World s Fuels

Challenges and Solutions for Shale Oil Upgrading

Coking and Thermal Process, Delayed Coking

PETROLEUM SUBSTANCES

REPORT SYNTHETIC AND MINERAL CRUDE OILS COMPATIBILITY STUDY

Conversion of Peanut Oil into Jet and Diesel Fuels. Panama City, Florida 22 July 2016 Edward N. Coppola

V. G. Spirkin, O. P. Lykov, and O. M. Bel dii UDC

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Hydrocracking of atmospheric distillable residue of Mongolian oil

Article: The Formation & Testing of Sludge in Bunker Fuels By Dr Sunil Kumar Laboratory Manager VPS Fujairah 15th January 2018

Characterization and Refinery Processing of Partially-upgraded Bitumen

THE OIL & GAS SUPPLY CHAIN: FROM THE GROUND TO THE PUMP ON REFINING

Crude & Petroleum Products Specification & Analysis

Sensitivity analysis and determination of optimum temperature of furnace for commercial visbreaking unit

Oil & Gas. From exploration to distribution. Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir. W3V19 - Refining Processes1 p.

SOLVENT DEASPHALTING OPTIONS How SDA can increase residue upgrading margins

Definition of White Spirits Under RAC Evaluation Based on New Identification Developed for REACH

Lecture 3: Petroleum Refining Overview

Crude Assay Report. Crude Oil sample marked. Barrow Crude Oil. On Behalf Of. Chevron Australia Pty Ltd. Laboratory Supervisor. Crude Assay Chemist

Fundamentals of Petroleum Refining Refinery Products. Lecturers: assistant teachers Kirgina Maria Vladimirovna Belinskaya Natalia Sergeevna

Solvent Deasphalting Conversion Enabler

Bottom of Barrel Processing. Chapters 5 & 8

Report. Refining Report. heat removal, lower crude preheat temperature,

Guidance on Manufacturing Process Descriptions & Use of EINECS/CAS Number Definitions for REACH Registrations

Transitioning from Commercial Pilot to Mass Production 2 IUT s skid mounted 15,000 barrel per day Processing Unit

INVESTIGATION ON VISBREAKING-RESIDUE AND FINISHED FUEL OIL PRODUCT CLOSED CUP FLASH POINT

9e Lustrum VKRT. Oils, A surprising impact on rubber. 12 November 2010,Vaals. Rogier van Hoof. General Manager Benelux

Greenhouse Gas Emissions Analysis of Energy Production Processes from Estonian Oil Shale

Study on the compatibility of rubber materials in biodiesel derived from cottonseed oil

USES FOR RECYCLED OIL

OIL REFINERY PROCESSES

Fischer-Tropsch Refining

Improving the Viscosity Index of Used Lubricating Oil by Solvent Extraction

T. Jafari Behbahani, H. Talachi & M. Taymori

T. Jafari Behbahani, H. Talachi & M. Taymori

Demand for soft grades of Binder

REBCO (RUSSIAN EXPORT BLEND CRUDE OIL) SPECIFICATION GOST

Reactivity of several olefins in the HDS of full boiling range FCC gasoline over sulphided CoMo/Al 2 O 3

Direct Liquefaction of Biocoals as a Sustainable Route to Second-Generation Biofuels

Study of viscosity - temperature characteristics of rapeseed oil biodiesel and its blends

Evaluation of Crude Oil

Protea Series. The green fuel oil additives for power generation

Component Characteristics of Coal-based Jet Fuel and Petroleum-based Jet Fuel

DECARBONIZATION OFTRANSPORTATIONFUELS FEEDSTOCKS WITHPETROLEUM FRACTIONS VIA CO-HYDROPROCESSINGBIO-BASED

Optimise Combustion Efficiency Reduce Engine Fouling

CATACHEM Co.ltd. is in the market of catalysts and catalytic processes since 1992 year.

Exceeding Expectations

FORLINE LTD. Global Energy Solutions Kenneth Pike, Suite 200B Greenville, Delaware, 19807, USA. 19 Kathleen Road, SW11 2JR, London, England

UOP UNITY Hydrotreating Products

GTC TECHNOLOGY. GT-BTX PluS Reduce Sulfur Preserve Octane Value - Produce Petrochemicals. Engineered to Innovate WHITE PAPER

Fractional Distillation Lab Simulating The Refining of Petroleum 12/12 Integrated Science 3 Redwood High School Name : Per:

Desulphurizing Bunker Fuel/HFO Utilizing IUT Technology

Refinery Maze Student Guide

THE METHODS OF PREPARING PETROLEUM - DERIVED WASTE TO BURN IN MARINE BOILERS

Desulphurizing Marine Fuel/HFO Utilizing IUT Technology. November 19, 2017 International Ultrasonic Technologies Inc.

Unit 7. Vaccum Distillation of Crude

Development of the CONCAWE SCEDs Arlean Rohde, CONCAWE

CUSTOMS TARIFF - SCHEDULE V - 1

Schedule of Accreditation issued by United Kingdom Accreditation Service High Street, Feltham, Middlesex, TW13 4UN, UK

A New Refining Process for Efficient Naphtha Utilization: Parallel Operation of a C 7+ Isomerization Unit with a Reformer

CUSTOMS TARIFF - SCHEDULE. Chapter 27 MINERAL FUELS, MINERAL OILS AND PRODUCTS OF THEIR DISTILLATION; BITUMINOUS SUBSTANCES; MINERAL WAXES

CHAPTER 2 REFINERY FEED STREAMS: STREAMS FROM THE ATMOSPHERIC AND VACUUM TOWERS

Conversion of Carinata Oil into Drop-in Fuels & Chemicals. Carinata Summit Quincy, Florida 15 March 2016

Study on crystallization mechanism of saturated fatty acid methyl ester in biodiesel

Roles of Emerging FCC-based Technologies in Shifting to Petrochemicals Production

CHAPTER 5 FUEL CHARACTERISTICS

CONTENTS 1 INTRODUCTION SUMMARY 2-1 TECHNICAL ASPECTS 2-1 ECONOMIC ASPECTS 2-2

GTC Technology Day. 16 April Hotel Le Meridien New Delhi. Isomalk Technologies for Light Naphtha Isomerization

Mini refinery feasibility study

Report No. 35 BUTADIENE. March A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE I PARK, CALIFORNIA

1 The diagram shows the separation of petroleum into fractions. gasoline. petroleum Z. bitumen. What could X, Y and Z represent?

Biodiesel Production and Analysis

The Purification Feasibilityof GlycerinProduced During

The Role of the Merox Process in the Era of Ultra Low Sulfur Transportation Fuels. 5 th EMEA Catalyst Technology Conference 3 & 4 March 2004

CRUDE DISTILLATION. Overview. Purpose To recover light materials. Fractionate into sharp light fractions.

Oil Refinery Processes Process Engineering Associates Llc

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

GULFTRONIC SEPARATOR SYSTEMS

Oxidative Desulfurization. IAEE Houston Chapter June 11, 2009

Transcription:

Oil Shale, 2011, Vol. 28, No. 3, pp. 372 379 ISSN 0208-189X doi: 10.3176/oil.2011.3.02 2011 Estonian Academy Publishers STUDIES ON FUSHUN SHALE OIL FURFURAL REFINING G. X. LI, D. Y. HAN *, Z. B. CAO, M. M. YUAN, X. Y. ZAI School of Petrolchemical Engineering, Liaoning Shihua University Fushun Liaoning 113001, P. R. China Solvent refining of Fushun shale oil with furfural as a solvent extraction agent was investigated. The results showed that raffinate yield decreased with either the increasing of agent/oil mass ratio or reaction temperature; the extract yield increased under the same conditions, while the quality of raffinate oil was better. At agent/oil mass ratio of 3/1, reaction temperature of 60 C and residence time of 30 min, the raffinate yield was 55.37%, and the extract yield 43.60%. The heavy component from the extract oil was used for blending different grades of asphalt such as heavy-traffic paving asphalt and building asphalt, the light component from the extract oil was used for separation of non-hydrocarbon compounds; a range of light fuel oil was produced through catalytic cracking experiment with the denitrified raffinate oil, the removed nitrogen compounds were also used for separation of nonhydrocarbon compounds. Introduction Shale oil is a product of oil shale low-temperature carbonization. It is similar to petroleum, but rich in unsaturated hydrocarbons and nitrogen-, sulfur-, and oxygen-containing organic compounds. These unsaturated hydrocarbon and non-hydrocarbon compounds are the main reason for an increasing resin formation in the oil. The sediment formed largely accounts for low stability and black color. Shale oil is an important alternative resource of energy. Reserves of shale oil exceed normal petroleum reserves greatly, nowadays intense focus is on increasing energy sources, therefore the developing shale oil industry may help to resolve the problem of energy supply security. In China shale oil is usually used as a boiler fuel or bunker fuel oil at present. It is very irrational to restrict the use of shale oil to these low-value applications. Confronted with shortage of resources, reasonable processing steps should be carried out to gain a better economic benefit for the product. * Corresponding author: e-mail hdy_mailbox@163.com

Studies on Fushun Shale Oil Furfural Refining 373 There are two kinds of processing methods for shale oil: hydrotreating and non-hydrotreating [1]. Liquid fuel products derived from hydrotreating of shale oil, such as diesel oil, naphtha and gasoline, were produced with good stability of diesel, high yield of products, no three wastes discharge through hydrotreatment. Such processes are most suited to large refinery applications due to high one-time investment and high equipment cost as well as high ongoing operating cost; while the latter method is suitable for the middle-sized refinery due to lower investment in equipment, simple operation and lower operating cost. The non-hydrotreating method generally includes procedures of acid-base refining, solvent refining, adsorption refining, adding stabilizer and so on. For non-hydrotreating of shale oil, most methods used at present are directed toward the light fractionation of shale oil. For example, sulfuric acid-alkali washing method was used to produce the product qualified as light diesel from the diesel fractions of shale oil [2], but a large volume of acid-alkali sludge produced in the process is difficult to dispose of, so there was little to take up in current industrial applications. S. Zhang [3] explored a two-step complex method of separating nitrogen compounds from shale oil fractions (<3 C distillate) using titanium tetrachloride and copperchloride dihydrate. The method enables to reduce both the content of resin in oil and acidity to levels which meet the standard of qualified diesel. In State Key Laboratory of Heavy Oil Processing of Petroleum University [4] gas oil of shale oil was refined using a complex solvent method. Stability of the refined oil was improved to a large extent and refined oil yield was about 80%. All methods concentrating on light fractionation of shale oil are not widely used in industrialized applications. In this paper a new refining method is proposed for Fushun shale oil. The method is easily applicable to batch method in industry, with the aim of processing the full cut of shale oils produced in FMG vertical retorts. The effects of agent/oil ratio, reaction temperature and residence time on the raffinate and extract yields were studied. The raffinate oil and extract oil were analysed, in addition highvalue heavy-traffic paving asphalt and non-hydrocarbon compounds rich in nitrogen, sulfur and oxygen were gained through further processing of the extract oil containing much non-hydrocarbon compounds to produce compounds which are similar to petroleum asphalt. The quality of raffinate oil resembles that of 20# diesel, which can be used directly or as the raw material for catalytic cracking after denitrogenation to get more products. The non-hydrotreating processing method was fully realized for Fushun shale oil. It has a particular significance for processing of shale oil. The process is easy to operate, and the objective is to industrialise the technology after a future successful pilot plant test.

374 G. X. Li et al. Experimental Material Fushun shale oil produced by Shale Oil Refinery of Fushun Mining Group Co., Ltd. in vertical Fushun retorts was used as the raw feed material. The analysis results are given in Table 1. Furfural was used as the solvent extraction agent in the experiments. Table 1. Properties of Fushun shale oil Item Value Item Value Elemental composition, wt.% Density (20 C), g/cm 3 0.9033 C 86.05 Kinematic viscosity ( C), mm 2 /s 11.3 H 11.51 Solidification point, C 33 O 0.69 Open cup flash point, C 137 S 0.56 Phenol, % 3.1 N 1.19 Asphaltene, % 0.85 C/H 7.49 Wax, % 20.0 Basic nitrogen, % 0.69 Resin, % (sulphate process) 42 Boiling range: Carbon residue, % 1.63 <200 C 3% 200 3 C 35% >3 C 62% Experimental procedure The mixture of shale oil and solvent in the required proportions was put into a container, heated up to the required temperature and stirred to ensure good contact between shale oil and extracting agent. After stirring the mixture was allowed to settle naturally, the extract phase was decanted to separate the extract phase and the raffinate phase. Extract oil and raffinate oil were produced by separating the extracting agents through atmospheric distillation. Results and discussion Effect of temperature on raffinate yield and extract yield Effect of temperature (, 60, 70, 80 C) on the yield of raffinate at a mass ratio of extracting agent to oil of 3:1 and residence time of 30 min using technical furfural as the extracting solvent was investigated and the results are shown in Fig. 1. Properties of raffinate oil are listed in Table 2 and some main quality indexes of 20# heavy diesel (Chinese standard) in Table 3. As can be seen in Fig. 1, the ability of dissolving the target unwanted component in furfural at low temperatures is very low because some of the unwanted non-hydrocarbon compounds and heavy aromatics do not separate fully. With the increasing temperature, the solubility of the target unwanted components in furfural enhances, however, at the same time the solubility of

Studies on Fushun Shale Oil Furfural Refining 375 the required product fractions increases. The optimum separation using furfural is possible as the selectivity of solvent decreases resulting in the decrease in the raffinate oil and in the increase in the extract oil at a temperature of 60 C. As shown in Table 2, the quality of raffinate oil increases with increasing temperature. Comparing the results given in Tables 2 and 3, it can be seen that the raffinate oil extracted at 60 C can be saled as 20# heavy diesel and, on the other hand, the raffinate oil can be saturated after treatment in conditions of catalytic cracking, because nitrogen content in the raffinate oil meets the standard of catalytic cracking after solvent refining. Considering the cost consumption, low temperature 60 C was chosen as the best temperature for extraction. 65 55 Raffinate yield, % raffinate yield/% 60 55 40 raffinate yield/% extract yield/% 55 60 65 70 75 80 Temperature, C temperature/ў ж 40 35 30 extract yield/% Fig. 1. The effects of temperature on raffinate and extract yields. Extract yield, % Table 2. Properties of raffinate oil extracted at different temperatures Items Temperature, C 60 70 80 Solidification point, C 30 34 29 32 Kinematic viscosity ( C), mm 2 /s 10.9 15.4 20.1 30.8 Open cup flash point, C 100 168 175 184 Carbon residue, % 1.56 0.31 0.27 0.20 Ash content, % 0.08 0.0035 0.0030 0.0024 Water soluble acid or alkali None None None None Sulfur content, % 0.43 0.37 0.29 0.21 Basic nitrogen, ppm 62. 42.88 35.46 21.37 Total nitrogen, ppm 187.23 124.37 94.25 61.54

376 G. X. Li et al. Table 3. Main quality indexes of 20 # heavy diesel Item Quality index Test method Kinematic viscosity ( C), mm 2 /s, not greater than 20.5 GB/T 265 Carbon residue, %, not greater than 0.5 GB/T 268 Ash content, %, not greater than 0.06 GB/T 8 Sulfur content,%, not greater than 0.5 GB/T 387 Mechanical impurity, %, not greater than 0.1 GB/T 511 Water content, %, not greater than 1.0 GB/T 260 Flash point (closed cup), C, not lower than 65 GB/T 261 Solidification point, C, not higher than 20 GB/T 510 Water soluble acid or alkali None GB/T 259 Table 4. Properties of raffinate oil extracted at different agent to oil ratio Items Agent to oil ratio 1:1 2:1 3:1 4:1 Solidification point, C 30 34 25 Kinematic viscosity (ºC), mm 2 /s 8.7 10.9 15.4 28.1 Open cup flash point, C 100 128 168 184 Carbon residue, % 1.56 0.76 0.31 0.20 Ash content, % 0.08 0.04 0.0035 0.0024 Water soluble acid or alkali None None None None Sulfur content, % 0.56 0.43 0.37 0.21 Basic nitrogen, ppm 62. 56.22 42.88 21.37 Total nitrogen, ppm 187.23 158.56 124.37 61.54 Effect of mass ratio of agent to oil on raffinate and extract yields The mass ratio of refining solvent to oil is called agent/oil ratio. Effect of the agent/oil ratio on raffinate and extract yields at 60 C and residence time 30 min is shown in Fig. 2. The properties of raffinate oil are shown in Table 4. The results show that adding more solvent altered the proposed original balance state and that resulted in decreasing concentration of unwanted component in furfural, and it will favor the transfer of the unwanted component into furfural to reach a new equilibrium. Thus, the larger the agent/oil ratio, the better the quality of oil. In summary, increasing agent/oil ratio results in lower processing capacity of the material requiring a larger equipment, moreover, increasing solvent amount results in higher operating costs, so an agent/oil ratio of 3:1 is preferred. Effect of residence time on raffinate and extract yields Effect of residence time on removal rate of basic nitrogen at agent to oil ratio 3:1, reaction temperature 60 C with furfural as extracting agent was also investigated and the results are shown in Fig. 3. As can be seen in Fig. 3, the raffinate yield and extract yield both increase with the extension of residence time, for times exceeding 30 min both raffinate yield and extract yield vary

Studies on Fushun Shale Oil Furfural Refining 377 little because the dissolution of the unwanted component in furfural has reached saturation and the two phases are fully separated. So the optimal time is 30 min. 75 raffinate Raffinate yield/% yield, % 70 65 60 55 raffinate r f i nat yield, e % el d/ % extract r act yield, el % d/ % 1 2 3 4 agent Agent/oil / l mass ratio r at i o 40 35 30 25 extract Extract yield/% yield, % Fig. 2. The effect of agent/oil ratio on raffinate and extract yield. 60 54 raffinate yield/% Raffinate yield, % 48 42 36 30 raffinate r f i natyield, e el % d/ % extract r act yield, el % d/ % 40 35 30 25 extract Extract yield/% yield, % 24 10 20 30 40 r esi Residence time, i me/ min mi n 20 Fig. 3. The effect of residence time on raffinate and extract yields. Analysis of the quality of raffinate oil Raffinate oil is a brown pasty solid at room temperature, conventional analysis data are given in Table 5. We can see that the solidification point of the raffinate oil is much higher than that of normal crude oils, sulfur and nitrogen content are higher as well. Sulfur and nitrogen content resembles that of the petroleum residual oil; wax content is up to 34.5%, which is higher than that of Chinese crude oil; the index of carbon residue is 0.31%, kinematic viscosity ( C, mm 2 /s) 8.6 mm 2 /s resembles the quality of 20#

378 G. X. Li et al. heavy gas oil. Comparing the two analyses, all indexes for the raffinate meet the requirements for 20# heavy gas oil except the solidification point is higher. This raffinate product is not suitable to be used as feed for catalytic cracking due to its high nitrogen content, but it can be used to produce light fuel oil after denitrogenation. The removal of nitrogen compounds was also used to separate non-hydrocarbon compounds; the denitrogenated oil can be processed according to the technology for wax oil. Table 5. Properties of raffinate oil Item Analytic value Carbon residue, wt.% 0.31 Density (20 C), g/cm 3 0.8568 Kinematic viscosity ( C), mm 2 /s 8.6 Solidification point, C 34 Open cup flash point, C 168 Fire point, C 174 Asphaltene, % 0.3 Ash, % 0.0035 Sulfur, % 0.3744 Nitrogen, % 0.89 Basic nitrogen, % 0.1743 Wax, % 34.5 Resin, % 6.15 IBP 210 Boiling range, C 10% 313 14% 3 Analysis of the quality of extract oil Extract oil is a thick black substance at room temperature, conventional analysis data are given in Table 6. We can see that the extract oil cannot be directly used for making asphalt because its softening point is low and needle penetration deep. Light components were distilled from the extract oil through true boiling point distillation. The distillate can be used as a solvent Table 6. Properties of extract oil Item Value Item Value Density (20 C), g/cm 3 1.0231 Elemental composition, wt.% Kinematic viscosity ( C), mm 2 /s 15.3 C 86.44 Solidification point, C 31 H 10.09 Open cup flash point, C 143 O 0.91 Phenol, % 3.7 S 0.75 Asphaltene, % 1.58 N 1.81 Wax, % 7.2 C/H 8.65 Resin, % (sulphate process) 53 Softening point, С <25 Carbon residue, % 4.06 Needle penetration/0.1mm >300

Studies on Fushun Shale Oil Furfural Refining 379 to enhance the separation of non-hydrocarbon compounds. In addition, important chemical materials such as phenols, pyridines and quinoline, etc. can be derived from the distillate; the resultant residue (heavy component) from extract oil can be used for blending different grades of asphalt such as heavy-traffic paving asphalt and building asphalt. Conclusions 1. At agent/oil mass ratio of 3/1, reaction temperature of 60 C residence time of 30 min, and technical furfural as extracting agent, the raffinate oil yield was 55.37%, and the extract yield 43.60%. 2. The raffinate oil after solvent refining with furfural can be sold as 20# heavy diesel; the removed nitrogen compounds and the extract oil can be used for separation of non-hydrocarbon compounds. Acknowledgements This work was supported by Liaoning Science & Technology Foundation (No. 2008230002). REFERENCES 1. Zhao, G., Chunlei Yao, Hui Quan. The Prospects of Shale Oil Utilization // Contemporary Chemical Industry. 2008. Vol. 10, No. 5. P. 496 499 [in Chinese]. 2. Zhao, Y. Research on Proccessing Plan of Shale Oil // Shenyang Chemical Industry. 2000. Vol. 29, No. 1. P. 78 80 [in Chinese]. 3. Zhang, S., Yang, Q., Li, S. Refining of Fushun shale oil by complexation // Journal of Petroleum University (Natural Science Journal). 1996. No. 20 (supplement). P. 77 80 [in Chinese]. 4. Li, X. Study on light diesel and blend oil from shale oil [Doctoral thesis]. Beijing: University of Petroleum, 2003 [in Chinese]. Presented by J. Schmidt Received September 20, 2010