Supporting Information for jo051589t Synthesis of 2-Nitro and 2,2 -Dinitro-biphenyls by means of the Suzuki Cross-Coupling Reaction.

Similar documents
4001 Transesterification of castor oil to ricinoleic acid methyl ester

Synthesis of Biphenyl-Based Arsine Ligands by Suzuki-Miyaura Coupling and their Application to Pd-Catalyzed Arsination

Supplementary information

First example of alkyl-aryl Negishi cross-coupling in flow: Mild, efficient and clean introduction of functionalized alkyl groups.

Heterogeneous Palladium-Catalysed Catellani Reaction in Biomass-Derived γ-valerolactone

URB '-carbamoylbiphenyl-3-yl cyclohexylcarbamate. DEA Reference Material Collection. Form Chemical Formula Molecular Weight Melting Point ( o C)

Rapid Qualitative GC-TOFMS Analysis of a Petroleum Refinery Reformate Standard

Using a New Gas Phase Micro-Fluidic Deans Switch for the 2-D GC Analysis of Trace Methanol in Crude Oil by ASTM Method D7059 Application

Supplementary Material

Gas Chromatographic Analysis of Diesel Fuel Dilution for In-Service Motor Oil Using ASTM Method D7593

Supporting Information

Impact of GC Parameters on The Separation Part 2: Choice of Column Internal Diameter

Metathesis Catalysts

Performing ASTM 6584 free and total glycerin in BioDiesel using an SRI Gas Chromatograph and PeakSimple software

Free and Total Glycerol in B100 Biodiesel by Gas Chromatography According to Methods EN and ASTM D6584

Refinery Gas. Analysis by Gas Chromatography WASSON - ECE INSTRUMENTATION. Engineered Solutions, Guaranteed Results.

Supplementary Information

Electronic Supplementary information

Setting up SilFlow for BackFlush in your GC

Electronic Supporting Information

Supporting Information

SUPPORTING INFORMATION

Optimized Method for Analysis of Commercial and Prepared Biodiesel using UltraPerformance Convergence Chromatography (UPC 2 )

Technical Procedure for Gas Chromatography (GC-FID)

Analysis of Petroleum Fractions by ASTM D2887

Supporting Information

Increased sensitivity and reproducibility in the analysis of trace fatty acid methyl esters in jet fuel

Sustainable Synthesis of Quinolines and Pyrimidines Catalyzed by Manganese PNP Pincer Complexes

Technical Procedure for Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC-MS)

Using the PSD for Backflushing on the Agilent 8890 GC System

SELERITY TECHNOLOGIES SOLUTIONS FOR YOUR SUPERCRITICAL FLUID NEEDS

IFPAC 2003 Dr. Berthold Andres

Fast Simulated Distillation Based on Agilent 6890N Gas Chromatograph Application

Application. Gas Chromatography June 1995

Recyclable Heterogeneous Copper Oxide on Alumina Catalyzed Coupling of Phenols and Alcohols with Aryl halides under Ligand Free Conditions

Optimizing Ultra Fast Simulated Distillation with a Low Thermal Mass (LTM) GC System. Jim McCurry Roger Firor Agilent Technologies Wilmington, DE

Detection of Sulfur Compounds in Natural Gas According to ASTM D5504 with an Agilent Dual Plasma Sulfur Chemiluminescence Detector

Page 1. Alternate Carrier Gas Considerations and Faster GC Analysis

MET-Biodiesel Capillary GC Columns

Determination of Iodine Value in Ethylic Biodiesel Samples by 1 H-NMR

Fast and Reliable Trace Gas Analysis Improved Detection Limits for the Agilent 490 Micro GC

Simultaneous Determination of Fatty Acid Methyl Esters Contents in the Biodiesel by HPLC-DAD Method

Characterization of Tiki Torch Fuels

CONSTITUTION OF COAL TAR PITCH AND ITS EFFECT ON PROPERTIES

High Temperature Simulated Distillation Performance Using the Agilent 8890 Gas Chromatograph

GC/MS Analysis of Trace Fatty Acid Methyl Esters (FAME) in Jet Fuel Using Energy Institute Method IP585

High Throughput Mineral Oil Analysis (Hydrocarbon Oil Index) by GC-FID Using the Agilent Low Thermal Mass (LTM) System

Application Note. Author. Introduction. Energy and Fuels

Technical Procedure for Gas Chromatography-Mass Spectrometry (GC-MS)

Ambident Reactivites of Pyridone Anions. Table of Contents

Supplementary Material

Application Note. Abstract. Authors. Environmental Analysis

CHAPTER 3 EXPERIMENTAL METHODS AND ANALYSIS

Supplementary Information

SYNTHESIS AND LUMINESCENCE OF. SOLUBLE meso-unsubstituted TETRABENZO- AND TETRANAPHTHO [2,3]PORPHYRINS

High Sensitivity UHPLC-DAD Analysis of Azo Dyes using the Agilent 1290 Infinity LC System and the 60 mm Max-Light High Sensitivity Flow Cell

INTEREST OF HPTLC FOR FOSSIL DERIVED PRODUCTS ANALYSIS : A SIMPLE APPROACH TO HYDROCARBON GROUP TYPE ANALYSIS

PRODUCT SPECIFICATION. Product Specification Crystal 9000 Gas Chromatograph. Chromatec Crystal Laboratory Gas Chromatography System

C2, C3, C4 Monomer Analysis

Optimized Supercritical Fluid Chromatographic Instrumentation for the Analysis of Petroleum Fractions

Beverage Grade Carbon Dioxide

Copyright 2004 Alltech Associates, Inc.UNP. brochure #487K. accessories

SUPPORTING INFORMATION

Fast Gas Chromatographic Separation of Biodiesel

4025 Synthesis of 2-iodopropane from 2-propanol

BIODIESEL FUELS: THE USE OF SOY OIL AS A BLENDING STOCK FOR MIDDLE DISTILLATE PETROLEUM FUELS

Sulfur Detection at ppb Levels in Light Hydrocarbon Streams

GC-101. Testing of Biodiesel Using Gas Chromatography. by Bob Armantrout. Presented at: Local Biodiesel: A Biodiesel Coop Conference

Agilent InfinityLab LC Purification Solutions SELECTION GUIDE

Dual Channel Simulated Distillation of Carbon and Sulfur with the Agilent 7890A GC and 355 Sulfur Chemiluminescence Detector

CERTIFICATE OF ACCREDITATION

GC Method Compliance and Large Valve Oven Application

Second Quarterly Report. For the Period 1 January 1991 to 31 March 1991

SUPPLEMENTARY INFORMATION

GAS CHROMATOGRAPHY: INJECTION TECHNIQUES CAPILLARY COLUMNS

Supplementary Information for A library-screening approach to developing a fluorescent sensing array for the detection of metal ions

APPLICATION OF SOLID PHASE MICROEXTRACTION (SPME) IN PROFILING HYDROCARBONS IN OIL SPILL CASES

Dual Plasma Sulfur and Nitrogen Chemiluminescence Detectors. Unsurpassed Stability, Selectivity, and Sensitivity for your GC Analysis

Practical Applications of Compact High-Resolution 60 MHz Permanent Magnet NMR Systems for Reaction Monitoring and Online Process Control

DIFFERENTIATION OF CRUDE OILS, FUEL OILS, AND USED LUBRICATING OIL USING DIAGNOSTIC RATIOS

ii) PC based works station with monitor and printer having below mentioned specifications:

mono-layer ACR High purity Reinforced 1-10 Excellent Fair mono-layer DD High purity Reinforced Excellent Excellent

Synthesis, biological evaluations and molecular modelling of new. analogs of the anti-cancer agent

Supplementary Information

GC Analysis of Total Fatty Acid Methyl Esters (FAME) and Methyl Linolenate in Biodiesel Using the Revised EN14103:2011 Method

Alliance HPLC DEFINED BY DEPENDABILITY, TODAY AND IN THE FUTURE

ASTM D2887 Simulated Distillation Calibration Mixture Analysis Using a Differential Acceleration Column

QuickSplit TM Flow Splitters

AppNote 6/2006. Ultra-Fast Determination of the Hydrocarbon Oil Index by Gas Chromatography using a Modular Accelerated Column Heater (MACH) KEYWORDS

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

Analysis of Glycerin and Glycerides in Biodiesel (B100) Using ASTM D6584 and EN Application. Author. Abstract. Introduction

Phase Distribution of Ethanol, and Water in Ethyl Esters at K and K

Antek Gas Chromatography Products: A Guided Tour Through Industry

Supporting Information. Pd-Catalyzed Intramolecular Aminoalkylation of Unactivated. Alkenes: Access to Diverse N-Heterocycles.

Study of viscosity - temperature characteristics of rapeseed oil biodiesel and its blends

Alternative Carrier Gases for ASTM D7213 Simulated Distillation Analysis

SUPPORTING INFORMATION

Mineral Turpentine Adulterant in Lubricating Oil

CASE STUDY FTIR v. PYMS

The Analysis of Hydrocarbon Composition in LPG by Gas Chromatography using the DVLS Liquefied Gas Injector

Transcription:

upporting Information for jo051589t ynthesis of 2-Nitro and 2,2 -Dinitro-biphenyls by means of the uzuki Cross-Coupling Reaction. Raquel Rodríguez González, Lucia Liguori, Alberto Martinez Carrillo, and Hans-René Bjørsvik* Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway Table of content Experimental 1 General Methods 1 Compound data 1 1 H NMR spectrum of 3a 2,2 -dinitrobiphenyl 4 13 C NMR spectrum of 3a 2,2 -dinitrobiphenyl 5 1 H NMR spectrum of 4a 2-nitrobiphenyl 6 13 C NMR spectrum of 4a 2-nitrobiphenyl 7 1 H NMR spectrum of 4b 2-amino-2'-nitro-biphenyl 8 13 C NMR spectrum of 4b 2-amino-2'-nitro-biphenyl 9 1 H NMR spectrum of 4c 2-methoxy-2'-nitro-biphenyl 10 13 C NMR spectrum of 4c 2-methoxy-2'-nitro-biphenyl 11 1 H NMR spectrum of 4d 2-methyl-2'-nitro-biphenyl 12 13 C NMR spectrum of 4d 2-methyl-2'-nitro-biphenyl 13 1 H NMR spectrum of 4f 2-chloro-2'-nitro-biphenyl 14 13 C NMR spectrum of 4f 2-chloro-2'-nitro-biphenyl 15 1 H NMR spectrum of 4g 2,4-dinitro-biphenyl 16 13 C NMR spectrum of 4g 2,4-dinitro-biphenyl 17 1 H NMR spectrum of 10 3,3 -dinitrobiphenyl 18 13 C NMR spectrum of 10 3,3 -dinitrobiphenyl 19 1 H NMR spectrum of 12 2,3'-Dinitrobiphenyl 20 13 C NMR spectrum of 12 2,3'-Dinitrobiphenyl 21 1 H NMR spectrum of 13 3-Nitrobiphenyl 22 13 C NMR spectrum of 13 3-Nitrobiphenyl 23 1 H NMR spectrum of 14 4-Nitrobiphenyl 24 13 C NMR spectrum of 14 4-Nitrobiphenyl 25 Experimental General Methods. GLC analyses were performed on a capillary gas chromatograph equipped with fused silica column (L 25 m, 0.20 mm i.d., 0.33 µm film thickness) at a helium pressure of 200 kpa, split less /split injector and flame ionization detector. Mass spectra were acquired on a GC-M instrument using a gas chromatograph equipped with fused silica column (L 30 m, 0.25 mm i.d., 0.25µm film thickness) and He as carrier gas. 1 H-NMR spectra were recorded on NMR spectrometers operating at 200 MHz and 400 MHz. Chemical shifts were referenced to internal TM. tarting materials and reagents were purchased commercially and used without further purification. All of the reaction products are previously reported in the literature. The reaction products were analyzed by GC and GC-M and by comparison with authentic samples. ilica gel 60 (0.040-0.0063 mm) was used for the flash chromatography. F-254 TLC plates were used in order to follow the progress of the reactions, the purity of substance and to identify the various fractions from the flash chromatography separation. The spots of substances on the thin-layer were visualized under UV light. Compound data. O 2 N 2,2 -Dinitrobiphenyl [2436-96-6] C 12 H 8 N 2 O 4 MW 244.20. 1 H NMR (200 MHz, CDCl 3, ppm): δ 8.24-8.19 [dd, 2H], 7.73-7.65 [td, 2H], 7.63-7.55 [td, 2H], 7.32-7.28 [dd, 2H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 147.5, 134.5, 133.7, 131.3, 129.5, 125.1. M (m/e) 198 (100), 182 (2), 168 (34), 152 (4), 139 (48), 127 (7), 115 (33), 102 (5), 89 (11), 75 (10), 63 (16). O 2 N 3,3 -Dinitrobiphenyl [958-96-3] C 12 H 8 N 2 O 4 MW 244.20. 1 H NMR (200 MHz, DMO-d 6 -CD 3, ppm): δ 8.53-8.51 [t, 2H], 8.29-8.23 [dq, 2H], 8.17-8.11 [dq, 2H], 7.80-7.72 [t, 2H]. 13 C NMR (200 MHz, DMOd 6 -CD 3, ppm): δ 150.4, 141.7, 135.1, 132.0, 124.7, 123.4. M (m/e) 244 (100), 198 (16), 186 (7), 168 (2), 152 (52), 139 (15), 126 (8), 102 (3), 87 (3), 76 (10), 63 (10). O 2 N 4,4 -Dinitrobiphenyl [1528-74-1] C 12 H 8 N 2 O 4 MW 244.20. M (m/e) 244 (100), 214 (16), 198 (3), 181 (6), 168 (3), 152 (55), 139 (22), 126 (11), 114 (3), 102 (5), 87 (4), 75 (11), 63 (11). 1

O 2 N O 2 N 2,3 -Dinitrobiphenyl [7391-72-2] C 12 H 8 N 2 O 4 MW 244.20. 1 H NMR (200 MHz, CD 3, ppm): δ 8.33-8.24 [t, 2H], 8.20-8.16 [d, 1H], 8.09-8.04 [dd, 1H], 7.87-7.79 [m, 2H], 7.67-7.58 [t, 2H]. 13 C NMR (200 MHz, CD 3, ppm): δ 149.6, 149.5, 140.8, 135.5, 134.5, 133.2, 133.0, 130.9, 130.7, 125.7, 123.9, 123.9. M (m/e) 244 (70), 227 (10), 214 (4), 197 (15), 186 (18), 168 (64), 152 (78), 139 (100), 126 (36), 115 (48), 102 (19), 89 (16), 77 (31), 63 (45). O 2 N CH 3 4-Methyl-2,2 -Dinitrobiphenyl [106164-07-2] C 13 H 10 N 2 O 4 MW 258.23. M (m/e) 212 (100), 196 (3), 181 (42), 167 (6), 152 (21), 141 (9), 128 (15), 115 (10), 89 (7), 77 (12), 63 (12). H 3 C O 2 N CH 3 4,4 -Methyl-2,2 -Dinitrobiphenyl [35883-87-5] C 14 H 12 N 2 O 4 MW 272.26. M (m/e) 226 (100), 210 (10), 196 (37), 181 (10), 165 (10), 152 (15), 139 (4), 128 (7), 115 (7), 89 (4), 77 (9), 65 (6). H 3 CO 2-Methoxy-2 -nitrobiphenyl [6460-92-0] C 13 H 11 N 1 O 3 MW 229.23. 1 H NMR (200 MHz, CDCl 3, ppm): δ 7.94-7.89 [dd, 1H], 7.66-7.58 [td, 1H], 7.49-7.37 [qd, 3H], 7.34-7.28 [dd, 1H], 7.11-7.03 [td, 1H], 6.92-6.88 [d, 1H], 3.69 [s, 3H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 156.2, 142.2, 133.0, 132.8, 131.8, 130.1, 130.0, 128.3, 127.3, 124.2, 121.5, 110.9, 55.5. M (m/e) 229 (100), 198 (17), 184 (10), 168 (53), 152 (17), 139 (55), 128 (17), 115 (27), 77 (12), 63 (13). H 3 CO 2,2 -Methoxybiphenyl [4877-93-4] C 14 H 14 O 2 MW 214.26. M (m/e) 214 (100), 199 (12), 184 (22), 168 (18), 155 (7), 139 (13), 128 (15), 115 (10), 102 (5), 91 (5), 75 (3), 63 (7). OCH 3 H 2 N 2-Amino-2 -nitrobiphenyl [35883-86-4] C 12 H 10 N 2 O 2 MW 214.22. 1 H NMR (200 MHz, CDCl 3, ppm): δ 7.89-7.84 [dd, 1H], 7.61-7.52 [td, 1H], 7.47-7.34 [qd, 2H], 7.07-7.01 [t, 1H], 6.92-6.88 [dd, 1H], 6.74-6.65 [qd, 2H], 3.48 [s, 2H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 150.0, 144.0, 133.9, 133.2, 133.0, 129.8, 129.1, 129.0, 124.6, 123.6, 119.1, 116.1. M (m/e) 214 (100), 197 (66), 180 (24), 167 (91), 152 (9), 139 (28), 128 (9), 115 (18), 83 (27), 77 (12), 63 (13). H 2 N 2,2 -Diaminobiphenyl [153113-05-4] C 12 H 12 N 2 MW 184.24. M (m/e) 184 (100), 167 (54), 154 (4), 139 (7), 128 (6), 117 (3), 91 (13), 77 (9), 65 (6). NH 2 H 3 C 2-Methyl-2 -nitrobiphenyl 1 [67992-12-5] C 13 H 11 MW 213.23. 1 H NMR (200 MHz, CDCl 3, ppm): δ 8.11-8.08 [dd, 1H], 7.88-7.83 [dd, 1H], 7.53-7.28 [m, 2H], 7.22-7.06 [m, 4H], 1.99 [s, 3H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 149.4, 146.5, 137.5, 132.8, 132.4, 130.9, 130.3, 128.6, 128.5, 126.0, 125.5, 124.3, 20.1. M (m/e) 213 (28), 196 (53), 183 (51), 165 (100), 152 (34), 139 (25), 128 (15), 115 (35), 82 (21), 76 (17), 63 (22). H 3 C 2,2 -Dimethylbiphenyl [605-39-0] C 14 H 14 MW 182.27. M (m/e) 182 (67), 167 (100), 152 (17), 139 (5), 128 (6), 115 (10), 89 (15), 82 (6), 76 (8), 63 (7). CH 3 CF 3 O 2 N 2-Nitro-2 -(trifluoromethyl)-biphenyl [2613-39-0] C 13 H 8 F 3 MW 267.20. M (m/e) 267 (72), 217 (16), 201 (100), 168 (25), 151 (10), 139 (7), 115 (13), 100 (9), 75 (9), 63 (4). 2-Chloro-2 -nitrobiphenyl [950-94-7] C 12 Cl MW 233.65. 1 H NMR (200 MHz, CDCl 3, ppm): δ 8.01-7.96 [dd, 1H], 7.61-7.52 [td, 1H], 7.49-7.44 [dd, 1H], 7.41-7.32 [td, 1H], 7.28-7.13 [m, 4H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 148.9, 137.7, 134.6, 133.3, 132.7, 131.5, 130.2, 129.7, 129.7, 129.3, 127.3, 124.7. M (m/e) 233 (1), 198 (100), 168 (20), 152 (29), 139 (12), 126 (6), 115 (15), 75 (11), 63 (7). Cl Cl Cl 2,2 -Dichlorobiphenyl [13029-08-8] C 12 H 8 Cl 2 MW 223.10. M (m/e) 222 (98), 187 (42), 152 (100), 126 (6), 93 (12), 75 (22), 63 (6). 1 Iihama, T.; Fu, J.-m; Bourguignon, M.; nieckus, V. ynthesis 1989, 3, 184-188. 2

O 2 N 2-Nitrobiphenyl 2, 3 [86-00-0] C 12 H 9 MW 199.21. 1 H NMR (200 MHz, CDCl 3, ppm): δ 8.18-8.14 [dd, 1H], 7.77-7.73 [dd, 1H], 7.56-7.31 [m, 5H], 7.25-7.20 [m, 2H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 149.6, 137.7, 136.6, 132.6, 132.3, 129.0, 128.5, 128.5, 128.3, 128.2, 124.4. M (m/e) 199 (31), 182 (44), 171 (47), 152 (100), 143 (33), 126 (20), 115 (81), 102 (9), 87 (8), 76 (35), 63 (21). 1,1 -Biphenyl [92-52-4] C 12 H 12 MW 154.21. M (m/e) 154 (100), 139 (2), 128 (5), 115 (3), 102 (2), 87 (2), 76 (16), 63 (5). H 2 N 2-Aminobiphenyl [90-41-5] C 12 H 11 N MW 169.22. M (m/e) 169 (100), 139 (8), 115 (10), 83 (14), 63 (6). O 2 N 2,4-Dinitrobiphenyl [2486-04-6] C 12 H 8 N 2 O 4 MW 244.20. 1 H NMR (200 MHz, CDCl 3, ppm): δ 8.70-8.69 [d, 1H], 8.48-8.42 [dd, 1H], 7.69-7.64 [d, 1H], 7.49-7.46 [m, 3H], 7.36-7.32 [m, 2H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 147.2, 142.6, 135.9, 135.5, 133.5, 133.0, 129.9, 129.4, 128.3, 128.0, 126.8, 120.0. M (m/e) 244 (13), 227 (19), 216 (46), 199 (7), 189 (6), 181 (7), 168 (30), 158 (19), 151 (85), 139 (100), 126 (40), 115 (54), 102 (33), 87 (18), 75 (30), 63 (33), 51 (21). 3-Nitrobiphenyl 4 [2113-58-8] C 12 H 9 MW 199.21. 1 H NMR (200 MHz, CDCl 3, ppm): δ 8.37 [s, 1H], 8.15-8.10 [dd, 1H], 7.87-7.83 [d, 1H], 7.57-7.53 [d, 3H], 7.49-7.38 [m, 3H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 148.8, 142.9, 138.7, 133.2, 129.9, 129.3, 128.7, 127.3, 122.1, 122.0. M (m/e) 199 (100), 152 (79), 141 (7), 127 (7), 115 (5), 102 (3), 87 (2), 76 (13), 63 (6), 51 (5). 4 4-Nitrobiphenyl [92-93-3] C 12 H 9 MW 199.21. 1 H NMR (200 MHz, CDCl 3, ppm): δ 8.28-8.24 [d, 2H], 7.72-7.68 [d, 2H], 7.63-7.58 [dd, 2H], 7.53-7.43 [m, 3H]. 13 C NMR (200 MHz, CDCl 3, ppm): δ 147.8, 147.3, 139.0, 129.4, 129.2, 128.0, 127.6, 124.3. M (m/e) 199 (100), 169 (23), 152 (75), 141 (16), 127 (9), 115 (9), 102 (5), 87 (2), 76 (15), 63 (7), 51 (9). 2 Hassan, J.; Hathroubi, C.; Gozzi, C.; Lemaire, M. Tetrahedron. 2001, 57, 7845-7855. 3 D auria, M. Tetrahedon Lett. 1995, 36, 6567-6570. 4 Tao, B.; Boykin, D. W. J. Org. Chem. 2004, 69, 4330-4335 3

ppm (f1) 8.00 7.50 7.00 8.24 8.23 8.20 8.19 7.73 7.72 7.69 7.68 7.66 7.65 7.63 7.62 7.59 7.58 7.55 7.55 7.32 7.31 7.28 7.28 4 2.00 2.07 2.03 2.00

155.0 ppm (f1) 150.0 147.5 145.0 140.0 135.0 134.5 133.7 131.3 130.0 129.5 125.0 125.1 120.0 5

ppm (t1) 1.00 8.18 8.18 8.14 8.14 8.00 0.77 7.77 7.74 7.73 7.50 5.07 7.56 7.55 7.52 7.51 7.50 7.48 7.45 7.42 7.41 7.39 2.00 7.38 7.37 7.36 7.36 7.34 7.32 7.31 7.25 7.23 7.21 7.20 7.00 6

ppm (f1) 150.0 145.0 140.0 135.0 130.0 125.0 149.6 137.7 136.6 132.6 132.3 129.0 128.5 128.5 128.3 128.2 124.4 7

ppm (t1) 3.0 4.0 5.0 6.0 7.0 8.0 9.0 7.89 7.88 7.85 7.84 7.61 7.60 7.57 7.56 7.53 7.52 7.47 7.46 7.43 7.42 7.39 7.38 7.35 7.34 7.07 7.07 7.05 7.02 7.01 6.92 6.92 6.89 6.88 6.74 6.74 6.73 6.72 6.70 6.69 6.68 6.66 6.65 3.48 1.00 1.05 2.12 0.97 2.25 2.15 1.09 NH 2 8

ppm (f1) 150 150.0 NH 2 144.0 140 133.9 133.2 133.0 130 129.8 129.1 129.0 124.6 123.6 120 119.1 116.1 110 9

ppm (t1) 4.0 5.0 6.0 7.0 8.0 7.94 7.93 7.90 7.89 7.66 7.65 7.62 7.62 7.59 7.58 7.49 7.49 7.46 7.45 7.42 7.41 7.38 7.37 7.34 7.33 7.32 7.29 7.28 7.11 7.11 7.07 7.07 7.04 7.03 6.92 6.88 3.69 3.00 1.01 1.07 1.02 1.04 1.14 3.09 OMe 10

ppm (f1) 156.2 150 142.2 133.0 132.8 131.8 130.1 130.0 128.3 127.3 124.2 121.5 110.9 100 OMe 50 11 55.5

9.0 8.0 7.0 6.0 5.0 ppm (f1) 8.11 8.08 8.08 7.88 7.87 7.84 7.83 7.53 7.52 7.49 7.49 7.46 7.45 7.41 7.40 7.37 7.36 7.32 7.32 7.29 7.28 7.22 7.21 7.18 7.17 7.16 7.15 7.14 7.12 7.09 7.06 CH 3 4.0 3.0 2.0 12 1.99

150 ppm (f1) 149.4 146.5 137.5 132.8 132.4 130.9 130.3 128.6 128.5 126.0 125.5 124.3 100 CH 3 50 13 20.1

ppm (f1) 8.00 1.00 8.01 8.00 7.97 7.96 7.50 7.00 4.11 1.02 1.05 1.16 Cl 7.61 7.60 7.57 7.56 7.53 7.52 7.49 7.48 7.45 7.44 7.41 7.40 7.37 7.36 7.34 7.32 7.28 7.27 7.26 7.25 7.24 7.23 7.21 7.20 7.19 7.18 7.16 7.15 7.13 14

ppm (f1) 150.0 145.0 140.0 135.0 130.0 125.0 148.9 137.7 134.6 133.3 132.7 131.5 130.2 129.7 129.7 129.3 127.3 124.7 15 Cl

ppm (f1) 10.0 9.0 8.0 7.0 6.0 8.70 8.69 8.48 8.47 8.44 8.42 7.69 7.64 7.49 7.48 7.46 7.36 7.34 7.32 16 O 2 N 2.13 3.12 1.06 1.04 1.00

ppm (f1) 147.2 142.6 140 135.9 135.5 133.0 133.5 130 129.9 129.4 128.3 128.0 126.8 120 120.0 O2 N 110 17

ppm (t1) 8.50 2.00 8.53 8.52 8.51 8.00 2.02 2.07 8.29 8.28 8.27 8.25 8.24 8.24 8.23 8.13 8.17 8.12 8.16 8.15 8.16 8.12 8.11 2.00 7.80 7.76 7.72 O2 N 7.50 18

160 ppm (t1) 150 140 130 120 O 2 N 110 150.4 141.7 135.1 132.0 124.7 123.4 19

8.50 ppm (t1) 2.02 8.33 8.32 8.31 8.29 8.00 1.01 0.99 8.28 8.27 8.25 8.24 8.20 8.16 8.09 8.08 8.05 8.04 7.50 1.99 2.03 O2 N O 2 N 7.87 7.87 7.84 7.83 7.82 7.80 7.80 7.79 7.78 7.77 7.75 7.74 7.73 7.71 7.70 7.67 7.66 7.58 7.58 20

155.0 ppm (t1) 150.0 145.0 140.0 135.0 130.0 125.0 120.0 O 2 N O 2 N 115.0 149.6 149.5 140.8 135.5 134.5 133.2 133.0 130.9 130.7 125.7 123.9 123.9 21

ppm (f1) 160 150 140 130 120 110 148.8 142.9 138.7 133.2 129.9 129.3 128.7 127.3 122.1 122.0 22

ppm (f1) 8.50 8.00 7.50 7.00 6.50 8.37 8.15 8.14 8.11 8.10 7.87 7.83 7.57 7.53 7.49 7.47 7.44 7.41 7.38 23 3.07 3.08 1.01 1.00 1.00

ppm (f1) 8.50 8.00 7.50 7.00 6.50 8.28 8.24 7.72 7.68 7.63 7.62 7.59 7.58 7.53 7.51 7.50 7.49 7.45 7.43 24 3.01 2.04 2.04 2.00

ppm (f1) 155.0 150.0 145.0 140.0 135.0 130.0 125.0 120.0 115.0 147.8 147.3 139.0 129.4 129.2 128.0 127.6 124.3 25