Kaydon white paper. Slewing bearing selection, simplified. an SKF Group brand. by Jeff Lauber, engineering specialist

Similar documents
An engineering & product selection guide for turntable bearings

Kaydon bearing solutions for Slewing Ring Bearings

Shifting gears: simplify your design with slewing ring bearings

Kaydon white paper The thin section bearing of today

Remanufactured Bearings. Like-New Quality at Substantial Savings.

HS Series. Introduction. Design Features. Availability. Applications

Kaydon white paper. The importance of properly mounting thin section bearings. an SKF Group brand. by Rob Roos, Senior Product Engineer

Why bigger isn t always better: the case for thin section bearings

SLEWING RING CHARACTERISTICS, APPLICATIONS

Large Bearing Design Manual and Product Selection Guide

RK Series. Introduction. Design Features. Availability. Applications

Engineering Precision with Every Revolution SLEWING RINGS & PINIONS

Large Bearing Design Manual and Product Selection Guide

Trust but verify: the value of acceptance testing

Technical specification of slewing bearing

Product Line Overview/Comparison

ENGINEERED SOLUTIONS Based on Reali-Slim Bearings A N I L L U S T R A T E D M O U N T I N G G U I D E

Axial-radial cylindrical roller bearings

Product Specification Sheet Number: 319

Clarifying Drives. How to Design and Manufacture the Perfect Sedimentation Drive A GLV COMPANY

Reliable and Application specific. Slewing Drives for Wind Turbines

TECHNICAL INFORMATION

ZERO BACKLASH GEARING

Heavy Duty Ball Screw Linear Actuators

Mounting Overlap Shield. Face Clamps. Gap. Seat Depth. Lead In Chamfer. Loose Fit.

Product Specification Sheet Number: 305

Sheet 1 Variable loading

CYLINDRICAL ROLLER BEARING CATALOG TIMKEN THRUST AND PLAIN BEARINGS CATALOG

Precision and reliability for air, land and sea

Kaydon s Bearing Remanufacturing Program

Chapter 3. Transmission Components

Solutions for power transmission. MAV-standardisarja.

ROSTA Tensioning Motorbases Type MB. self-adjusting maintenance-free overload-proof non-slip dampen harmful vibrations extend belt drive

Ch# 11. Rolling Contact Bearings 28/06/1438. Rolling Contact Bearings. Bearing specialist consider matters such as

MAIN SHAFT SUPPORT FOR WIND TURBINE WITH A FIXED AND FLOATING BEARING CONFIGURATION

Slewing Bearing Solution

The SKF brand now stands for more than ever before, and means more to you as a valued customer.

ROSTA Tensioning Motorbases Type MB. self-adjusting maintenance-free overload-proof non-slip dampen harmful vibrations extend belt drive

Locking Assemblies & Locking Elements

Stelron PS Indexer. PS Series Parallel Shaft Indexer

ISOMOVE. Mechanical actuators ISO 6431

ROSTA MOTORBASES ROSTA. Self-Tensioning Motor Mount for Belt Drives. without slippage self-adjusting maintenance-free

ENGINEERED SOLUTIONS. Bearings. Based on Reali-Slim AN ILLUSTRATED MOUNTING GUIDE

PROPULSION EQUIPMENT DOCUMENTATION SHEET. Propulsion Equipment

Timken Spherical Plain Bearings. An industry standard throughout the world.

alpha Value Line - NPS Sizing and Technical Data Efficient Flexible Reliable

igus slewing ring bearings

TUBULAR CENTRIFUGAL INLINE FANS

EJP SERIES Right-angle Worm

RE / STAR Tolerance Rings STAR Ball Knobs, Knob and Lever Type Handles

FUNCTION OF A BEARING

Chapter 1 Gear Design

Stopping Accuracy of Brushless

Lecture 13 BEVEL GEARS

Locking Assemblies & Locking Elements

Serving Industries Worldwide. Mining. Aggregate. Crushers.

VANEAXIAL FANS. DUCT FANS Capacities to 60,000 CFM Static pressures to 2 WG. TUBEAXIAL FANS Capacities to 86,000 CFM Static pressures to 3 WG

Download the most up-to-date version at KleanTop Belt Product Catalog

NODIA AND COMPANY. Model Test Paper - I GATE Machine Design. Copyright By Publishers

TYPE TSC/TLC T SERIES FLEXIBLE DISC COUPLINGS

MAAG TM WPU two-stage gear unit for vertical mills

Chapter 11 Rolling Contact Bearings

iglidur PRT polymer slewing ring bearings

SUGGESTED SPECIFICATIONS

alpha Value Line - NP Sizing and Technical Data Effi cient Flexible Reliable

Mechanism Feasibility Design Task

LIGHTWEIGHT AND COMPACT. SERIES SL Nm. single-position multi-position. THE ultimate COUPLING from Nm

Slotted nut NMG. Housing nut GWR. Bosch Rexroth AG. for economical constructions. a min. 0,3. M A = tightening torque of slotted nut.

CLASSIFICATION OF ROLLING-ELEMENT BEARINGS

CH#13 Gears-General. Drive and Driven Gears 3/13/2018

alpha Value Line - NPR Sizing and Technical Data Efficient Flexible Reliable

alpha Value Line - NPT Sizing and Technical Data Efficient Flexible Reliable

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

CHAPTER 5 PREVENTION OF TOOTH DAMAGE IN HELICAL GEAR BY PROFILE MODIFICATION

ScienceDirect A NEW EXPERIMENTAL APPROACH TO TEST OPEN GEARS FOR WINCH DRUMS

SHAFT MOUNT REDUCERS. For Additional Models of Shaft Mount Reducers See Sections F & J G-1

No. of Single leaf Sector Gates 2 Clear span of opening 7.0m Cylinder rebate size. Sill level inner gate Gate crest level - inner.

Sealing Technologies & Solutions

Gear Tooth Geometry - This is determined primarily by pitch, depth and pressure angle

TORQLIGHT SAFETY COUPLINGS

4 Self aligning ball bearings

USING STANDARD ISOLATORS TO CONTROL UNWANTED MACHINE VIBRATION

Linear Motion Technology Handbook. The Drive & Control Company

Ball Rail Systems RE / The Drive & Control Company

Gear Engineering Data. Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables

R PS System R PS System RPS SYSTEM

Our Mission. Our Brand Promise

Rotary Indexing Table with Face Gear

CONTENTS. D-LOK Ball Bearings

10 Thrust ball bearings

Principles of slewing bearing selection and application

slewing rings production program 23/2010-OTO-A

Defining Innovation. turbo pressure blowers. Twin City Catalog 1200

Precision Modules PSK

TIMKEN DEEP GROOVE BALL BEARINGS

Marine Engineering Exam Resource Review of Couplings

TRANSLATION (OR LINEAR)

EPSILON LOADERS A-LINE 2.0 M13A

Profile rail guides LLT

Bevel Gears. Fig.(1) Bevel gears

Transcription:

Slewing bearing selection, simplified by Jeff Lauber, engineering specialist an SKF Group brand

Selecting the right slewing bearing Slewing bearings are typically used in applications where their ability to transmit relatively high loads is of primary importance. However, there are other potential application requirements that can have a significant impact in the selection of an appropriate slewing bearing, and they should be thoroughly considered during the selection process. These considerations include, among others, rotational speed, protection from contamination, accuracy, frictional resistance, and temperature range of the operating environment. 1

Steps for selecting a slewing bearing Figure 1 Compressive thrust and moment loading This white paper outlines nine steps to follow in order to select the appropriate slewing bearing for a given application. Note that these guidelines apply to normal slewing applications, which are defined as those that meet the following conditions: Vertical axis of rotation Compressive thrust and moment loading (see Figure 1) Radial load less than 10% of the thrust load Oscillation or intermittent rotation with occasional pitch line velocity (limited time for speeds to 500fpm for single row bearings and 300fpm for multirow bearings) Operating temperature within -20 F to +140 F (-29 C to +60 C) Mounting surfaces reinforced and machined to bearing manufacturer s criteria Proper installation (see the Kaydon white paper How mounting can optimize slewing bearing performance for more information. Periodic lubrication Periodic confirmation of specified bolt tension If yours is not a normal application, consultation with your bearing supplier during the early stages of a project can help assure success. 2

9 steps for selecting a slewing bearing: steps 1& 2 Figure 2 Resultant forces acting on or about a bearing Step 1 Determine what is required of your application in terms of load, speed, accuracy, torque, environment, coatings, mounting arrangements, and lubrication. Kaydon s Specification Data Sheet lists the more common requirements; download the data sheet, use the online form, or see pages 125 and 126 of Kaydon Catalog 390. Early consultation with your bearing manufacturer will help assure selection of a bearing that provides the necessary features to meet your requirements. Step 2 Determine all maximum bearing loads, being sure to include all dynamic and static loads imposed on the bearing. Consider all applied forces to the bearing and gear not only at rated and working loads, but also loads imposed during: extreme weather conditions impact or testing assembly or disassembly all other situations These loads in turn must be simplified into the forces acting at the bearing s center. See Figure 2. 3

Step 3 of 9 Step 3 Multiply the resultant bearing forces by the applicable service factor (SF). See Table 1 (on the next page) for the service factors of common applications, or use the Kaydon Bearings slewing bearing selector tool. Application service factors are based on a number of considerations. The primary considerations are the frequency of use at higher vs. normal loads and potential for extreme or impact loads. These factors may be superseded by customer specification, finite element analysis (FEA), or regulations by certifying authorities. If the intended equipment and application do not appear in Table 1, select a comparable application for initial sizing. If unsure, consult with the bearing manufacturer. 4

Table 1 Application Aerial lift devices Aerial baskets, platforms, ladders, etc. Service factor (SF) 1.00 Conveyors 1.00 Cranes Mobile - (loads limited by machine stability) Normal construction duty (tire mounted) Normal construction duty (crawler mounted) Production duty such as scrap and ship yards Forestry handling (logging) Stacker cranes (must include dynamic forces as loads) Pedestal or tower - (loads not limited by machine stability) Loads continually monitored by safe load device Applications with risk of sudden impact load application 1.00 1.10 1.50 1.50 Excavators Load limited by tipping Load limited by hydraulic pressure relief 1.50 Index and turnstile tables* (include any shock loads for evaluation) Occasional use with intermittent rotation Frequent use with intermittent rotation Frequent use with intermittent rotation and impact loads 1.00 1.50 Industrial manipulators and robots Occasional service Frequent service 1.00 Steering gear (must include dynamic and shock loads due to transit forces) Pneumatic tires Solid tires 1.50 *Excludes coilers/uncoilers 5

Step 4 of 9 Step 4 If an integral gear is desired, determine the required gear capacity. As with bearing loads, consider all conditions that would generate potential gear loads. Examples include dynamic loads while working vs static loads; loads on incline; and overload testing. Consider also the duty cycle at each of these conditions. 6

Step 5 of 9 Figure 3 Step 5 Determine the preferred mounting arrangement, considering the pinion and gear location. Consider the requirements for installation and continued maintenance of the bearing and retaining bolts. Slewing bearings can be designed to suit a number of mounting arrangements. See Figures 3 through 6 for examples of basic arrangements available from Kaydon Bearings, which can be varied to suit the requirements of a specific application. The mounting structures shown are intended to be illustrative only. Pinion is attached to outer ring support and the upper structure is supported by the inner ring. A shroud over the outer seal and bolts prevents contamination under extreme conditions. Through bolt arrangement shown. Figure 4 Figure 5 Figure 6 Inner ring with through bolts supports the upper structure with pinion. An external shroud protects the gear teeth on the outer ring, supported by the lower structure with threaded bolts. Pinion is attached to upper structure supported by outer ring. Location of gear on inner ring can provide protection from harsh external conditions. Threaded bolt arrangement shown. Pinion is attached to lower structure supporting inner ring. Geared outer race supports upper structure. Through bolts used on inner ring and threaded bolts on outer ring. 7

Step 6 of 9 Figure 7 Cross-sections of available Kaydon slewing bearings Step 6 Review available bearing styles and cross-sections. Figure 7 features a few of the slewing bearing designs available from Kaydon. Kaydon s slewing bearing Catalog 390 provides detailed information about the design features, sizes, and ratings of each bearing series. Download the catalog. RK Series MT Series XR Series TR Series 8

Step 7 of 9 Step 7 Make a preliminary selection by comparing the resultant operating bearing forces, including service factor (SF), to the bearing s rating curve. In order for a bearing to be appropriate for a given application, all required resultant force combinations should fall below the curve. Assure all extreme load conditions fall below the bearing s rating curve. If extreme load condition is static and only occurs several times during bearing s service life do not include the service factor. Otherwise, include the service factor. The maximum thrust rating of a bearing should exceed 3 times the maximum operating thrust force on the bearing, regardless of the moment force at that condition. This criteria is due to concern for rigidity of the supporting structure and ability to properly distribute the load around the bearing s diameter. If the bearing desired does not meet this criteria, contact the bearing manufacturer for assistance. Load curves for Kaydon slewing bearings, such as the example in Figure 8, can be found using the Kaydon slewing bearing selector or Catalog 390. Several bearings may meet the required load ratings. Figure 8 Maximum rating curves for several bearing types Thrust (lbs x 1,000) 600 500 400 300 200 100 0 F A L M N O P * L: MT-324 M: MT-324X N: MT-415 O: MT-470 P: MT-540 0 50 100 150 200 250 Moment (ft-lbs x 1,000) * Max resultant bearing forces F R 0.10 x F a x SF 5,000 lbs F A = F a x SF = 50,000 lbs F M = F m x SF = 180,000 lbs F M 9

Step 8 of 9 Figure 9 Example: Part number table including gear tooth ratings External gear Step 8 Check the gear size, quality, and rating for suitability. A sample gear rating chart, from Kaydon Bearings, is shown in Figure 9. The chart s gear tooth rating (Fz) indicates the maximum allowable tangential gear tooth load for normal slewing bearing applications. Refer to page 21 of Kaydon Catalog 390 for more details. Kaydon part number Outline dimensions and weight Outer ring Hole data Inner ring Gear data Full depth involute P d = 6, α 20, AGMA Q8 D o d i D i d o G L o n o L i n i D 2 b 2 z 2 approx in in in in lbs in in in in lbs KH-125E 16.500 8.625 12.750 12.250 75 14.750 16 10.250 16 16.167 2.000 97 5,480 KH-166E 20.500 12.750 16.875 16.375 100 18.875 20 14.375 20 20.167 2.000 121 5,570 KH-225E 26.667 18.500 22.750 22.250 140 24.500 18 20.500 18 26.333 2.000 158 5,670 KH-275E 31.667 23.500 27.750 27.250 175 29.500 24 25.500 24 31.333 2.000 188 5,700 KH-325E 36.667 28.500 32.750 32.250 205 34.500 28 30.500 28 36.333 2.000 218 5,730 Tolerances +0/-.020 ±.050 *Note *Note.030.030 ±.030 Gear tooth rating F z 10

Step 9 Figure 10 Kaydon Bearings slewing bearing selector tool Step 9 Finally, confirm that the bearing you select meets all of your design requirements. The Kaydon slewing bearing selector (Figure 10) can help with obtaining preliminary data. Consult with bearing and other component manufacturers, and submit a completed specification data sheet to the bearing manufacturer to confirm proper bearing selection. Ultimately, the responsibility for choosing the appropriate bearing rests with the equipment designer. 11

Conclusion Like all bearings, slewing bearings serve as a connection between two adjacent structures, allowing rotation and transmission of load between them. In addition, a slewing bearing typically includes features for simple and quick attachment to those adjacent structures, and a feature to facilitate the mechanical rotation of one ring and its adjoining structure relative to the other. Slewing ring bearings have traditionally been thought of as large-diameter, heavy section, low-precision bearings. But today they are also readily available with bore sizes as small as 50 mm, making them ideal for robotics, radar pedestals, and other precision applications. The use of a single large-diameter bearing makes it possible for wiring and plumbing to run through the bore of the bearing. This can simplify overall design, help protect components, and improve appearance. Selecting the right slewing bearing is key. With attention to all relevant design requirements and with help from the bearing manufacturer, a slewing bearing can be specified that meets or exceeds all application requirements. Kaydon Bearings Kaydon Bearings 2860 McCracken Street P. O. Box 688 Muskegon, MI 49443-0688 231.755.3741 tel 800.514.3066 free 231.759.4102 fax bearings@kaydon.com 12