Flammability of Bakken Crude Oil: Dangerous. Rail Cargo Even When Empty. (by Dr. Gerard Macri, Expert Witness)

Similar documents
Distillation process of Crude oil

Refinery Maze Student Guide

Technical Information

Types of Oil and their Properties

Live Crude Oil Volatility

CHEMSYSTEMS. Report Abstract. Petrochemical Market Dynamics Feedstocks

White Paper.

LVOC Combusting ME-GIE Engine

Made in Texas Plan to Create a Million New Jobs. Oil Sign Policy

Chemical and Physical Characteristics of Ethanol and Hydrocarbon Fuels

Atmospheric Crude Tower with Aspen HYSYS V8.0

UTC Region 5 Meeting. Justin J Kringstad Geological Engineer Director North Dakota Pipeline Authority

Transportation and Transfer

Evaluation of Crude Oil

by Jim Phillips, P. E.

Physical Properties of Alkanes

DJ Basin Crude Oil Flammability Analysis

PETE 203: Properties of oil

Distillation. How you can benefit from the future of biodiesel

Chapter 2. The Vehicle-Tank Metering System

Fuels of the Future for Cars and Trucks

AFV/EV Safety Training: Automotive Recycling. Instructor s Manual. National Alternative Fuels Training Consortium

Fundamentals of Petroleum Refining Refinery Products. Lecturers: assistant teachers Kirgina Maria Vladimirovna Belinskaya Natalia Sergeevna

FUELS. Product Specifications

Alkylate. Alkylate petrol has been used in many years as an environmentally and healthy adjusted fuel for forest workers and other. WHY?

Welcome to Natural Gas 101 Overview of Oil and Gas Industry by Michael Rozic ECI. Remote Automation Solutions 1

Ethanol and the Economics of Octane The Superior Solution

Guidance on Manufacturing Process Descriptions & Use of EINECS/CAS Number Definitions for REACH Registrations

Fractional Distillation Lab Simulating The Refining of Petroleum 12/12 Integrated Science 3 Redwood High School Name : Per:

Minimizing Transmix With FuellCheck

Oil & Gas. From exploration to distribution. Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir. W3V19 - Refining Processes1 p.

GASOLINE VAPOR BEHAVIOR DURING LEAK DETECTION ACTIVITIES ON A MOTOR VEHICLE

Estimation Procedure for Following Vapor Pressure Changes

COMPARATIVE FIRE RISK OF MOTOR VEHICLE FUELS: GASOLINE VS ETHANOL

Changes to America s Gasoline Pool. Charles Kemp. May 17, Baker & O Brien, Inc. All rights reserved.

FUNDAMENTAL PRINCIPLES

William Piel

An Explosive Situation. Definitions

CHEVRON PHILLIPS CHEMICAL PIPELINE COMPANY LLC PETROCHEMICAL PRODUCTS (AS DEFINED HEREIN)

Fixed or Semi-Fixed Foam Fire Protection Systems for Storage Tanks

AL BADI TRADING OIL & GAS PRODUCTS LLC

Where We Are. Today: Finish up Chapter 4, hopefully! Discussion: Alternative fuels, the benefits of conservation Where to go next?

Learning Equipment for the Flammability Limits of Liquefied Petroleum Gas

Live Crude Oil Volatility

Q1. Useful fuels can be produced from crude oil. Crude oil is a mixture of hydrocarbons.

LOADING OF ORGANIC LIQUID CARGO VESSELS. (Adopted 10/13/1992, revised 1/18/2001)

GC MERGE OF LIGHT ENDS WITH ASTM D7169 BOILING POINT DISTRIBUTION

2018 GHG Emissions Report

NADA MANAGEMENT SERIES. A DEALER GUIDE TO Fuel Economy Advertising THIRSTY FOR ADVENTURE. NOT GAS. New Hybrid Hillclimber

Alternative Fuel Vehicle Quiz Questions

On-Line Process Analyzers: Potential Uses and Applications

Underground Tank Applications Installation Guide

ECOMAX Product Details

Q1. The table shows how much carbon dioxide is produced when you transfer the same amount of energy by burning coal, gas and oil.

White Paper. Improving Accuracy and Precision in Crude Oil Boiling Point Distribution Analysis. Introduction. Background Information

REPORT SYNTHETIC AND MINERAL CRUDE OILS COMPATIBILITY STUDY

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

Conversion Processes 1. THERMAL PROCESSES 2. CATALYTIC PROCESSES

Chemical and Physical Characteristics of Ethanol and Hydrocarbon Fuels

Ignition energy enough for igniting the mixture is available, such as sparkles generated by friction and impaction, electric arc or hot surfaces.

Dangerous Goods. Transport Tanks

Module 5 Propulsion and Power Generation of LNG driven Vessels (23 th November to 27 th November University of Piraeus, Greece)

Tax and Revenue Administration (TRA)

5. What are other common issues with on farm fuel storage?

Petroleum industries are dealing with different hazardous materials starting from storing, processing and distributing the petroleum products These he

Selecting Explosion-Proof Motors And Variable-Frequency Drive Controllers For Hazardous Environmental Applications

ENGINES ENGINE OPERATION

Effect of Fuel, Compression ratios on Energetic and Exergetic efficiency of Spark Ignition (SI) Engine

PRACTICE EXAMINATION QUESTIONS FOR 1.6 ALKANES (includes some questions from 1.5 Introduction to Organic Chemistry)

Defining the Debate: Crude Oil Exports

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Module 4: Fire Fighting Foam Principles and Biodiesel Fuel

TRANSFER OF ORGANIC COMPOUNDS INTO MOBILE TRANSPORT TANKS (Effect: 5/6/77: Rev. Effect. 7/26/00)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Once a waste of lamp oil production

Converting low quality gas into a valuable power source

Уверенная модернизация

STANDARD COMPLIANT VAPOR PRESSURE

Propane Education and Research Council LCA C.2011, 16 Nov REVIEW OF LIFE CYCLE GHG EMISSIONS FROM LPG RIDING MOWERS

Department of Energy Analyses in Support of the EPA Evaluation of Waivers of the Renewable Fuel Standard November 2012

Physical Property Analyzer PPA4100 Series. On-Line RVP Analyzer

Systems. In-line Blending. Solutions you can trust

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd.

How Natural-Gas Vehicles Work

Storage and Dispensing Locations

Challenges and Opportunities in Managing CO 2 in Petroleum Refining

DGP-WG/17-WP/13 Appendix APPENDIX PROPOSED AMENDMENTS TO TABLE 3-1

CEE 452/652. Week 6, Lecture 1 Mobile Sources. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

AUTOGAS 150 SERIES PUMPS INSTALLATION GUIDELINES FOR UNDERGROUND TANK APPLICATIONS

Replacing the Volume & Octane Loss of Removing MTBE From Reformulated Gasoline Ethanol RFG vs. All Hydrocarbon RFG. May 2004

Chapter 2 Outline: Alkanes

U.S. Rail Crude Oil Traffic

U.S. Rail Crude Oil Traffic

Challenges to Ethanol Blending in the Southeast

1. Introduction and Summary

B A K E R & O B R I E N

Crude Distillation Chapter 4

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

Facts and Figures. October 2006 List Release Special Edition BWC National Benefits and Related Facts October, 2006 (Previous Versions Obsolete)

EUROPEAN COMMITTEE UNDER THE GOVERNMENT OF THE REPUBLIC LITHUANIA. September 5, 2001 Final report summary

Transcription:

Flammability of Bakken Crude Oil: Dangerous Rail Cargo Even When Empty (by Dr. Gerard Macri, Expert Witness) Suppose for the moment a noteworthy author published a paper dealing with the chemical properties of a flammable substance (like ethanol) made the following statements: 1) The flammability as measured by the LFL (Lower Flammable Limit) and flash point (FP) of ethanol vary with the amount of ethanol that has evaporated. 2) The LFL and FP of ethanol are not constant values and may vary with time even at constant temperature and pressure. 3) A container containing 2 ounces of ethanol is more flammable than one containing 12 ounces. Even a novice scientist would disagree with the accuracy of the statements (1) and (2) because they contradict the fundamental principles of the properties of a substance, i.e., the LFL and FP of substance are intensive properties (like boiling point or density) and do not vary with the amount of material as the extensive properties (like mass or volume) vary and therefore must remain constant regardless of the amount of material present or the amount of time that has past. Statement (3) may require a bit more thought. We will get to this later. The properties of LFL and FP are constant for a pure substance (provided certain criteria like LFL at a specific temperature and flash point type - closed or open cup are observed). But the key word is pure substance. Crude oil, however, is not a pure substance but a mixture of a variety of liquid petroleum fractions and dissolved volatile gases, each of which has their own characteristic LFL and FP values. Therefore, from the moment the crude oil is loaded from the well head onto tanker cars or into a pipeline, the more volatile fractions start to degas from the bulk 1

liquid changing the properties of the delivered crude oil depending on the amounts lost through evaporation. Oil production is now at an all-time high in America and a significant proportion delivered by rail over 100 tanker cars each trip carrying over two million gallons of crude oil travelling distances of over one thousand miles. These many rail shipments inevitably have led to derailments resulting in fiery explosions, destruction of many towns, and spills to the environment. Crude oil is comprised of a blend of various types of hydrocarbons: lighter components of lower molecular weights, C1 to C10, which volatilize readily within hours, a middle fraction of medium molecular weights, C11 to C22, which volatilize over days, and the heavy components, which are separated into petroleum fractions at the refinery. Bakken Crude is the name of the crude oil from the oil producing rock formation in North Dakota, Montana, and the adjoining Canadian provinces, which has become the second largest oil producer in the US, only behind Texas. Bakken Crude is a light-weight petroleum crude, containing a higher percentage of the lighter end petroleum components including flammable gases like methane, ethane, propane, and butane (called condensates ). The main differentiating characteristic of Bakken crude is its vapor pressure the ability of a liquid to vaporize at a specific temperature. These flammable gases that are in solution at loading but as the ambient temperature increases, the gases held in solution evaporate into the vapor space inside the tank cars. It is this mass of flammable vapor in the tank car that becomes a fire ball in the event of a train derailment. Tank cars do contain the useful safety feature: relief valves (set for both maximum temperature and pressure limits) which vent excess gas from the vapor space. Vapor pressure measurements of tank cars transporting Bakken crude oil at loading are typically higher than average crudes (11.8 psi vs. 7.0 psi) which is attributed to the higher percentages of volatile condensates which average 3% in Bakken crude versus 1% in other average light crudes. These values are still within the North Dakota state limit of 13.7 psi for transport in rail cars. 2

Not only are the tank cars filled to capacity with the Bakken crude oil considered dangerous loads, but even empty cars present a hazard. According to an API publication ( Classification and Loading of Crude Oil into Rail Tank Cars, September, 2004), the likely volume of crude oil heel remaining in an empty car is approximately 7%, or about 2100 gal for a 30,000 gal tank car after unloading. Therefore, a 30,000 gal tank car filled to capacity is 4,010 cubic feet (cf) but when empty contains 2100 gal or 280 cf of heel and 3700 cf of space. Assuming an average density of 8 lb/gal for crude and a 3% content for the condensates (as propane), Weight (propane) = (8 lb/gal) (2100 gal) (.03) = 504 lb condensates total Using a simplified ideal gas law to estimate the quantity of condensates that could occupy the 3700 cf of space in the vapor headspace (provided the gas pressure remained below 13.7 psi), Weight (gas) = (0.93 atm) (3700 /.035 L) (56 g/mole) =504.8 lb in vapor (454 gm/lb)(.082)(298 o K) Assumptions: condensate average molecular weight ( propane ) = 56; pressure = 13.7 psi or.93 atm; convert 3700 cf to 105,714L; 0.082 = universal gas constant. Therefore, most of the condensates dissolved in the crude oil could degas and occupy the 3700 cf of available space in the tank car. Performing the same calculation for a full tank car of 30,000 gal with an assumed vapor headspace of 5-10% volume, Total volume (30,000 gal) = 4010 cf Volume of 10% headspace = 401 cf Volume of crude (27,000 gal) = 3609 cf Weight (propane) = (8 lb/gal) (27000 gal) (.03) = 6480 lb condensates total 3

Only a fraction of the 6480 lb of condensates evaporate. Whatever quantity degasses from the liquid, it is limited to a pressure of 13.7 psi in the space of 401 cf because any excess pressure above that is vented through the pressure relief valve set at 13.7 psi (0.93 atm) to the outside, reducing the condensate gases to the following: Weight (gas) = (0.93 atm) (401 /.035 L) (56 g/mole) =53.7 lb vapor (454 gm/lb)(.082)(298 o K) Therefore, an empty tank car has sufficient flammable content in the vapor space to cause a fire and/or explosion if derailed and ignited by sparks in fact, more vapor than a full tank car at the moment of tank rupture and release of gases. Of course, a full tank also releases its headspace of gases and immediately after release of the full tank s liquid contents, the remaining dissolved condensates flash off and ignite as well. Therefore, the full tank car has in addition more combustible liquid fuel and dissolved condensate gases to feed a fire but it is not the liquid that ignites but the vapors that initially catch fire and as the vapors are consumed, more liquid evaporates to establish equilibrium, and the fire continues to burn. Therefore, unlike pure substances (like ethanol), which have distinct and invariant LFL and FP that do not change with time or quantity of material, Bakken crude oil is a mixture of various hydrocarbons with a wide range of LFLs and FPs. After the crude oil is loaded into tank cars, the more volatile condensates evaporate over time changing the flammability characteristics of the crude oil remaining in the tank car. Yet, at the end of the journey, the Bakken crude oil will still have a significant level of dissolved condensate vapors remaining in the bulk liquid. These are the properties that make Bakken crude riskier to transport and handle but desirable to the petroleum industry because it is richer in the lighter products like gasoline and diesel requiring a minimal refining process and has a higher market value. In the final analysis, the wide variance of LFL and FP values in Bakken crude oil (variances taken from the same well head and variances both at loading and over 4

the duration of the journey) have created significant quantitative analysis and data interpretation challenges. Attempts are being made by DOT and other regulatory agencies to promulgate suitable test protocols to better define the flammability characteristics of these illusive mixtures. Defining an accurate DOT Packing Group (based on FP and LFL) which measures the danger level of the transported material in a predictable manner is almost impossible because these flammability characteristics are different from tank car to tank car for the same shipment and then are changing during transit depending on the degree of off-gassing. The potential danger of these shipments remain a concern to the public and governmental agencies, who are attempting to improve the design and construction of the outdated DOT-111 rail cars, impose stricter regulations limiting tanker loads, reducing rail speeds, and other controls as well as improving railway operating practices in an attempt to minimize the probability and severity of derailments and fires caused by these speeding, deceptive Molotov cocktails - among which even an empty one can pack a lethal blow to a village or town. 5