WORLDWIDE REFINERY PROCESSING REVIEW. Fourth Quarter 2017

Similar documents
WORLDWIDE REFINERY PROCESSING REVIEW. Fourth Quarter 2009

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

IHS CHEMICAL High Olefins Fluid Catalytic Cracking Processes. Process Economics Program Report 195B. High Olefins Fluid Catalytic Cracking Processes

Chris Santner; Sr Director, Catalytic Cracking Technology. Coking and CatCracking Conference, New Delhi, October 2013

CONTENTS 1 INTRODUCTION SUMMARY 2-1 TECHNICAL ASPECTS 2-1 ECONOMIC ASPECTS 2-2

Recycle and Catalytic Strategies for Maximum FCC Light Cycle Oil Operations

Strategies for Maximizing FCC Light Cycle Oil

TechnipFMC RFCC Technology converts bunker fuels into high value products for African refiners

On-Line Process Analyzers: Potential Uses and Applications

WORLDWIDE REFINERY PROCESSING REVIEW. Third Quarter Hydrotreating

Maximizing Refinery Margins by Petrochemical Integration

Abstract Process Economics Program Report 195A ADVANCES IN FLUID CATALYTIC CRACKING (November 2005)

Catalytic Reforming for Aromatics Production. Topsoe Catalysis Forum Munkerupgaard, Denmark August 27 28, 2015 Greg Marshall GAM Engineering LLC 1

Optimization of Propylene Production Process from Fluid Catalytic Cracking Unit

Boron-Based Technology: An Innovative Solution for Resid FCC Unit Performance Improvement

NPRA 2010 Q&A and Technology Forum

Copyright Hydrocarbon Publishing Company, Inc. All Rights Reserved. TECHNOLOGY ADVANCES FOR PROCESSING OPPORTUNITY CRUDES

Abstract Process Economics Program Report No. 158A OCTANE IMPROVERS FOR GASOLINE (February 1992)

Utilizing the Flexibility of FCC Additives for Shale Oil Processing. Todd Hochheiser Senior Technical Service Engineer, Johnson Matthey

Abstract Process Economics Program Report 211A HYDROCRACKING FOR MIDDLE DISTILLATES (July 2003)

Fluid Catalytic Cracking Unit - FCCU

NPRA 2012 Q&A and Technology Forum HYDROPROCESSING

How. clean is your. fuel?

Abstract Process Economics Program Report No. 203 ALKANE DEHYDROGENATION AND AROMATIZATION (September 1992)

Conversion Processes 1. THERMAL PROCESSES 2. CATALYTIC PROCESSES

GULFTRONIC SEPARATOR SYSTEMS

Technip Stone & Webster Process Technology Offering in Refining

Fluid Catalytic Cracking Fcc In Petroleum Refining

ADVANCES IN REFINERY CRACKING CATALYSTS AND PROCESSES II

Refining/Petrochemical Integration-A New Paradigm Joseph C. Gentry, Director - Global Licensing Engineered to Innovate

Case Studies Using Grace Resid FCC Catalysts W. R. Grace & Co.

ACO TM, The Advanced Catalytic Olefins Process

Integrating Refinery with Petrochemicals: Advanced Technological Solutions for Synergy and Improved Profitability

HOW OIL REFINERIES WORK

Two Companies Joined to Develop a Catalytic Solution for Bottoms Upgrading to Diesel in the FCC Unit

Co-Processing of Green Crude in Existing Petroleum Refineries. Algae Biomass Summit 1 October

GTC TECHNOLOGY WHITE PAPER

OPPORTUNITY CRUDES: TO PROCESS OR NOT TO PROCESS?

Maximizing FCC Light Cycle Oil Operating Strategies Introducing MIDAS -300 Catalyst for Increased Selectivity

Modernizing a Vintage Cat Cracker. Don Leigh HFC Rahul Pillai KBR Steve Tragesser KBR

IHS CHEMICAL Light Hydrocarbon and Light Naphtha Utilization. Process Economics Program Report 297. Light Hydrocarbon and Light Naphtha Utilization

Unit 4. Fluidised Catalytic Cracking. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna

Crude Distillation Chapter 4

Refining/Petrochemical Integration-A New Paradigm

Monitoring, Mitigating g and Troubleshooting FCC Catalyst Losses

Optimizing Distillate Yields and Product Qualities. Srini Srivatsan, Director - Coking Technology

IHS CHEMICAL PEP Report 29J. Steam Cracking of Crude Oil. Steam Cracking of Crude Oil. PEP Report 29J. Gajendra Khare Principal Analyst

Process Economics Program

Features of HS-FCC. Catalyst System. Optimized Reaction Conditions

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

Increased flexibility of refineries by O 2 enrichment. Sulphur recovery and new opportunities.

First principle modeling of an industrial Fluid Catalytic Cracking the adaptation of the model

The Role of the Merox Process in the Era of Ultra Low Sulfur Transportation Fuels. 5 th EMEA Catalyst Technology Conference 3 & 4 March 2004

NPRA Q&A Technology Forum 2010

Grace Davison s GENESIS Catalyst Systems Provide Refiners the Flexibility to Capture Economic Opportunities

Innovative Solutions for Optimizing Refining & Petrochemicals Synergies. Jean-Paul Margotin

WORLDWIDE REFINERY PROCESSING REVIEW. Third Quarter 2013

CONVERT RESIDUE TO PETROCHEMICALS

Refining/Petrochemical Integration A New Paradigm. Anil Khatri, GTC Technology Coking and CatCracking Conference New Delhi - October 2013

Enhance Naphtha Value and Gasoline Reformer Performance Using UOP s MaxEne TM Process

Catalytic Cracking. Chapter 6

HOW OIL REFINERIES WORK

ON-PURPOSE PROPYLENE FROM OLEFINIC STREAMS

UOP Unicracking TM Process Innovations in Hydrocracking Technology

Refinery / Petrochemical. Integration. Gildas Rolland

PROCESS ECONOMICS PROGRAM

SOLVENT DEASPHALTING OPTIONS How SDA can increase residue upgrading margins

Rive Molecular Highway TM Catalyst Delivers Over $2.50/bbl Uplift at Alon s Big Spring, AM-13-03

GTC TECHNOLOGY. GT-BTX PluS Reduce Sulfur Preserve Octane Value - Produce Petrochemicals. Engineered to Innovate WHITE PAPER

FCC UNIT FEEDSTOCK FLEXIBILITY IN MOL S DANUBE REFINERY

HOW OIL REFINERIES WORK

NPRA Q&A Technology Forum 2009

Presentation. Strategy of Octane Management at IOCL Mathura Refinery

The Greener FCC Moving from Fuels to Petrochemicals

Challenges and Solutions for Shale Oil Upgrading

FUTURE REFINERY -- FCC'S ROLE IN REFINERY / PETROCHEMICAL INTEGRATION

Unit 1. Naphtha Catalytic Reforming. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna

Chemical Technology Prof. Indra D. Mall Department of Chemical Engineering Indian Institute of Technology, Roorkee

AlkyClean Solid Acid Alkylation

A Look at Gasoline Sulfur Reduction Additives in FCC Operations

Stephen Stanley Jose de Barros Fred Gardner Lummus Technology 1 st Indian Oil Petrochemical Conclave March 16, 2012 New Delhi

Refining impact of the IMO bunker fuel sulphur decision

Crude to Chemicals. Opportunities and Challenges of an Industry Game-Changer. MERTC, Bahrain. January 23, 2017

Report No. 35 BUTADIENE. March A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE I PARK, CALIFORNIA

Resid fluid catalytic cracking catalyst selection

PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California

LLANO NOGALES, BERTA ARAMBURU LOPEZ-ARANGUREN

The Role of a New FCC Gasoline Three-Cut Splitter in Transformation of Crude Oil Hydrocarbons in CRC

Quenching Our Thirst for Clean Fuels

Production of Transportation Fuels by Co-processing Biomass-Derived Pyrolysis Oils in a Petroleum Refinery Fluid Catalytic Cracking Unit

Lummus Technology and GTC. FCC Gasoline Desulfurization with CDHDS+ /GT-BTX PluS. A World of Solutions

GTC Technology Day. 16 April Hotel Le Meridien New Delhi. Isomalk Technologies for Light Naphtha Isomerization

UOP UNITY Hydrotreating Products

Special Report. Shale gas drives new opportunities for US downstream

Preface... xii. 1. Refinery Distillation... 1

Abstract Process Economics Program Report 222 PETROLEUM INDUSTRY OUTLOOK (July 1999)

Report. Refining Report. heat removal, lower crude preheat temperature,

FCC Gasoline Treating Using Catalytic Distillation. Texas Technology Showcase March 2003, Houston, Texas. Dr. Mitchell E. Loescher

THE OIL & GAS SUPPLY CHAIN: FROM THE GROUND TO THE PUMP ON REFINING

PILOT PLANT DESIGN, INSTALLATION & OPERATION Training Duration 5 days

Transcription:

WORLDWIDE REFINERY PROCESSING REVIEW Monitoring Technology Development and Competition in One Single Source Fourth Quarter 2017 Fluid Catalytic Cracking Plus Latest Refining Technology Developments & Licensing HYDROCARBON PUBLISHING COMPANY Translating Knowledge into Profitability P.O. Box 815, Paoli, PA 19301-0815 (U.S.A.) Phone: (610) 408-0117/ Fax: (610) 408-0118 Review@Hydrocarbonpublishing.com

Review Fluid Catalytic Cracking 1. INTRODUCTION...1 2. FLUID CATALYTIC CRACKING...5 2.1 MARKET/TECHNOLOGY TRENDS & OPPORTUNITIES... 5 2.1.1 Introduction... 5 2.1.2 Market Conditions and Outlook... 6 2.1.2.1 Worldwide Product Demand... 6 2.1.2.1.1 Global Light Distillates Demand... 7 2.1.2.1.1.1 North America... 8 2.1.2.1.1.2 Europe... 9 2.1.2.1.1.3 Asia Pacific... 10 2.1.2.1.2 Global Middle Distillates Demand... 11 2.1.2.1.2.1 North America... 12 2.1.2.1.2.2 Europe... 14 2.1.2.1.2.3 Asia Pacific... 15 2.1.2.1.3 Global Petrochemicals Demand... 16 2.1.2.1.3.1 2.1.2.1.3.2 Expanding Propylene Consumption... 17 Bright Prospects in Aromatics... 19 2.1.2.1.4 Global Transportation Fuels Specifications... 20 2.1.2.1.4.1 2.1.2.1.4.2 Motor Gasoline... 21 Middle Distillates... 23 2.1.2.1.5 FCCU Emissions... 26 2.1.2.2 2.1.2.3 FCC Capacity Expansion on a Global Scale... 27 Current Status of FCC Catalyst Market... 28 2.1.3 Technology Directions, Competition, and Future Prospects... 29 2.1.3.1 Layout of Current Technology Competition... 29 2.1.3.2 Notable Trends in Current and Future Technological Offerings... 33 2.1.3.2.1 Processing Tight Oil... 33 2.1.3.2.2 Processing Resid Feeds... 36 2.1.3.2.3 2.1.3.2.4 Processing Biofeeds... 38 Producing High quality Gasoline and Increasing Yield... 39 2.1.3.2.5 Boosting LCO Yield and Quality... 41 2.1.3.2.6 Light Olefins Production Enhancement... 44 2.1.3.2.6.1 Propylene Production... 45 2.1.3.2.6.2 Butylene Production... 47 2.1.3.2.7 Aromatics Production... 48 2.1.3.2.8 2.1.3.2.9 Regenerator Pollution Abatement and GHG Concerns... 49 Process Modeling, Monitoring, and Control... 49 2.1.3.2.10 Benchmarking FCCUs for Optimum Performance... 50 2.1.3.3 2.1.3.4 FCCU Revamps for the Optimum Return on Investment... 51 Current R&D Trends... 51 2.1.4 Conclusion... 53 2.2 STATE OF THE ART TECHNOLOGY... 55 2.2.1 Introduction... 55 2.2.2 Commercial Processes and Hardware... 56 2.2.2.1 Axens... 56 2.2.2.2 CB&I /Lummus Technology... 57 2.2.2.2.1 2.2.2.2.2 Fuels Production... 57 Indmax FCC (I FCC)... 60 i

2.2.2.3 ExxonMobil/KBR... 62 2.2.2.3.1 Flexicracking III... 62 2.2.2.3.2 2.2.2.3.3 Orthoflow... 64 MAXDIESEL... 68 2.2.2.3.4 Propylene Production... 69 2.2.2.4 Petrobras... 69 2.2.2.4.1 Fuels Production... 69 2.2.2.4.2 Propylene Production... 71 2.2.2.5 Shell Global Solutions... 71 2.2.2.5.1 FCC... 72 2.2.2.5.2 MILOS... 79 2.2.2.6 Sinopec... 80 2.2.2.6.1 Clean Gasoline and Propylene... 80 2.2.2.6.2 2.2.2.6.3 Maximizing Iso paraffins... 82 Flexible Dual riser Fluid Catalytic Cracking... 83 2.2.2.6.4 Maximum Gas and Diesel... 86 2.2.2.6.5 2.2.2.6.6 Maximum Liquefied Gas and High octane Gasoline... 87 Propylene Production... 87 2.2.2.7 TechnipFMC/Axens... 88 2.2.2.7.1 2.2.2.7.2 Fuels Production... 88 Propylene Production... 92 2.2.2.8 UOP... 98 2.2.2.8.1 FCC... 98 2.2.2.8.2 MSCC... 107 2.2.2.8.3 Propylene Production... 108 2.2.2.9 Summary of Commercial FCC Processes and Hardware... 110 2.2.3 Other Commercial Hardware... 116 2.2.3.1 Beijing Huiersanji Green Chem Co.... 116 2.2.3.2 Blasch Precision Ceramics... 117 2.2.3.3 Cat' Fine Management Technologies LLC... 117 2.2.3.4 ClearStak... 117 2.2.3.5 Fisher Klosterman... 118 2.2.3.6 2.2.3.7 Koch Glitsch... 118 Lawrence Pumps... 119 2.2.3.8 Tracerco/Johnson Matthey... 119 2.2.4 Commercial Catalysts and Additives... 120 2.2.4.1 Albemarle... 121 2.2.4.1.1 Cracking Catalysts to Increase Liquid Products... 122 2.2.4.1.2 Gasoline Olefins and Octane Additives... 133 2.2.4.1.3 Gasoline Sulfur Reduction... 134 2.2.4.1.4 Tight Oil Processing... 134 2.2.4.1.4.1 ACTION T... 134 2.2.4.1.4.2 AMBER T/UPGRADER T... 136 2.2.4.1.5 SO X Reduction Additives... 137 2.2.4.1.6 Bottoms Cracking Additives... 139 2.2.4.1.7 Microfine Reduction Catalyst Technology... 143 2.2.4.1.8 Catalyst Circulation Improvement Additives... 143 2.2.4.1.9 Combustion Promoters... 144 2.2.4.1.10 Light Olefins Production... 145 2.2.4.2 Ambur Chemical Co.... 149 2.2.4.3 BASF Catalysts... 149 2.2.4.3.1 Cracking Catalysts to Increase Liquid Products... 153 2.2.4.3.2 Co catalysts... 158 2.2.4.3.3 2.2.4.3.4 Tight Oil Processing... 161 Gasoline Sulfur Reduction Formulations... 163 2.2.4.3.5 SO X Reduction Additives... 164 2.2.4.3.6 Microfine Reduction Catalyst Technology... 165 ii

2.2.4.3.7 Catalyst Circulation Improvement Additive... 166 2.2.4.3.8 Combustion Promoters... 166 2.2.4.3.9 Light Olefins Production... 167 2.2.4.4 Grace Catalysts Technologies... 169 2.2.4.4.1 Cracking Catalysts to Increase Liquid Products... 173 2.2.4.4.2 Gasoline Sulfur Reduction Formulations... 190 2.2.4.4.3 Tight Oil Processing... 194 2.2.4.4.4 SO X Reduction Additives... 196 2.2.4.4.5 NO X Reduction Additive... 197 2.2.4.4.6 Catalyst Circulation Improvement Additive... 198 2.2.4.4.7 2.2.4.4.8 Bottoms Cracking Additive... 199 Combustion Promoters... 199 2.2.4.4.9 Light Olefins Production... 201 2.2.4.5 2.2.4.6 Inst. Mexicano del Petróleo... 206 JGC Catalysts and Chemicals... 206 2.2.4.7 Johnson Matthey Process Technologies/INTERCAT JM... 207 2.2.4.7.1 2.2.4.7.2 Gasoline Olefins and Octane Additives... 207 Gasoline Sulfur Reduction Additives... 209 2.2.4.7.3 SO X Reduction Additives... 209 2.2.4.7.4 2.2.4.7.5 Tight Oil Processing... 212 Bottoms Cracking Additives... 214 2.2.4.7.6 2.2.4.7.7 Combustion Promoters... 216 Light Olefins Production... 217 2.2.4.7.8 Delta Coke Reduction... 220 2.2.4.8 Nalco Energy Services/Refining Process Services... 220 2.2.4.8.1 MVP... 221 2.2.4.8.2 NPP... 222 2.2.4.9 Rive Technology, Inc... 223 2.2.4.10 Sinopec Catalyst Co.... 226 2.2.4.10.1 2.2.4.10.2 Diesel Maximizing Catalysts... 227 Gasoline Olefins Reduction Formulations... 227 2.2.4.10.3 Gasoline Sulfur Reduction Additives... 229 2.2.4.10.4 SO X Reduction Additive... 229 2.2.4.10.5 Light Olefins Production... 229 2.2.4.11 Summary of Commercially Available FCC Catalysts... 229 2.2.4.12 Summary of Commercially Available FCC Additives... 231 2.2.5 Alternative Catalyst Technologies... 233 2.2.5.1 2.2.5.2 Albemarle... 233 Grace Catalysts Technologies... 233 2.2.5.3 Johnson Matthey Process Technologies... 234 2.2.5.4 2.2.5.5 KBR... 239 Nippon Oil... 239 2.2.6 Advanced Process Control Systems... 240 2.2.6.1 ABB... 240 2.2.6.2 AspenTech... 240 2.2.6.3 Cutler Technology Corp.... 241 2.2.6.4 Expertune... 242 2.2.6.5 Honeywell Advanced Solutions... 242 2.2.6.6 2.2.6.7 Invensys... 244 Petrocontrol... 244 2.2.6.8 Yokogawa... 245 2.2.6.9 Summary of Commercially Available Advanced Control Systems... 245 2.2.7 Process Models and Simulation... 247 2.2.7.1 AspenTech... 249 2.2.7.2 BASF... 249 2.2.7.3 2.2.7.4 Computational Particle Fluid Dynamics... 250 Eurotek Refining Services... 251 iii

2.2.7.5 KBC Advanced Technologies... 251 2.2.7.6 Petrobras... 252 2.2.7.7 2.2.7.8 Shell... 252 Topnir Systems... 253 2.2.7.9 Summary of Commercially Available Process Models and Simulation Software... 253 2.2.8 Resid Fluid Catalytic Cracking... 255 2.2.8.1 RFCC Processes... 255 2.2.8.2 RFCC Additives and Catalysts... 257 2.3 PLANT OPERATIONS AND PRACTICES... 274 2.3.1 Feed Considerations... 274 2.3.1.1 Effect of FCC Feed Contaminants on Unit Operation... 274 2.3.1.2 Impact of VGO Hydrogen Content on FCC Operation... 276 2.3.1.3 2.3.1.4 Minimizing Diesel range Material in FCC Feed... 279 Waxy Crudes as FCC Feeds... 280 2.3.1.5 Optimizing FCC Feed Preheat Temperature... 281 2.3.2 Processing Tight Oil... 282 2.3.2.1 2.3.2.2 Expected Changes to Product Slate... 284 Heat Balance Concerns... 287 2.3.2.3 Delta Coke Concerns... 289 2.3.3 Improving FCC Gasoline Output and Quality... 290 2.3.3.1 Enhancing Gasoline Octane... 291 2.3.3.2 FCC Gasoline Sulfur Reduction... 292 2.3.3.3 2.3.3.4 Lowering FCC Gasoline Olefinicity... 295 Lowering the Benzene Content of FCC Gasoline... 296 2.3.3.5 Variables Influencing Gasoline Aromatics Content... 296 2.3.3.6 2.3.3.7 FCC Gasoline Stability... 297 Revamping FCC Naphtha Splitter to Dividing Wall Column Design... 297 2.3.3.8 Effect of Long term Storage on FCC Gasoline Quality... 298 2.3.4 Increasing FCC LCO Production... 299 2.3.4.1 Catalyst Modifications to Improve FCC LCO Yields... 306 2.3.4.2 Improving LCO Recovery from the Main Fractionator... 309 2.3.5 Increasing Production of Light Olefins in the FCCU... 312 2.3.5.1 Improving FCC Propylene Production... 312 2.3.5.2 2.3.5.3 Propylene Production with Resid Streams... 319 Managing Revamp Costs for Producing/Recovering Higher Yields of FCC Propylene... 320 2.3.5.4 Balancing Propylene Production with FCC Fuel Products... 322 2.3.5.5 2.3.5.6 Increasing FCC Isobutane and Isobutylene Production... 324 Factors Influencing the FCC Propylene to Butylene Production Ratio... 325 2.3.5.7 Reducing Acetone in Butylene and Butane Streams... 326 2.3.6 Resid Fluid Catalytic Cracking... 327 2.3.6.1 2.3.6.2 Responding to Opportunity Crudes... 329 Fouling Prevention for Resid Processing... 332 2.3.6.3 Proper Feed Injection System Design for RFCCUs... 332 2.3.6.4 2.3.6.5 Dual Regenerator Designs for RFCCUs... 334 Running an RFCCU on Lighter Feeds: Maintaining Regenerator Temperature... 334 2.3.6.6 Processing Hydrotreated Resid Feeds... 335 2.3.6.7 2.3.6.8 New Method for Feedstock Characterization and Yield Predictions for a RFCCU... 335 RFCC Slurry Pumps Design and Service Life... 336 2.3.6.9 Uses for RFCC Slurry... 337 2.3.6.10 RFCCU Operational Issues and the Lessons Learned... 339 2.3.7 Operational Monitoring, Process Simulation and Unit Optimization... 341 2.3.7.1 Multivariate Statistical Modeling... 341 2.3.7.2 2.3.7.3 Monitoring Fresh Feed Flowrate... 342 Monitoring Entrained Oxygen Sources in FCC Fuel Gas... 342 2.3.7.4 2.3.7.5 Monitoring Bottoms Level in the Main Fractionator... 343 Measuring Cyanide Content in CO 2 Rich FCCU Flue Gas... 344 iv

2.3.7.6 FCCU Health Monitoring... 346 2.3.7.7 Inspecting and Monitoring Expansion Joints in Catalyst Standpipes... 347 2.3.7.8 2.3.7.9 Vapor Line Sampling... 347 Applying Advanced Simulation Techniques... 348 2.3.7.10 Debottlenecking the Gas Concentration Unit of a FCCU... 350 2.3.7.11 Benchmarking FCCUs for Optimum Performance... 351 2.3.8 Fouling, Degradation, and Erosion Problems... 352 2.3.8.1 Slurry Exchanger Fouling... 352 2.3.8.2 Fouling in Main Air Blower... 353 2.3.8.3 Dipleg Plugging and Fouling... 354 2.3.8.4 Coke Deposits in the Reactor Plenum Chamber... 355 2.3.8.5 Refractory Material Degradation in FCCU Catalyst Transfer Lines... 356 2.3.8.6 Hot Spots in FCCU Piping and Transfer Lines... 357 2.3.8.7 2.3.8.8 Mitigating Erosion Problems in FCCUs... 358 Preventing Hydrates Formation in FCC Gas Concentration Equipment... 362 2.3.9 FCCU Hardware Considerations and Improvements... 363 2.3.9.1 Reactor... 363 2.3.9.1.1 Reactor Design... 363 2.3.9.1.2 Riser Nozzle Design and Metallurgy... 364 2.3.9.1.3 2.3.9.1.4 Optimizing Riser Mixing... 365 Improving Air Steam Distribution... 366 2.3.9.1.5 Minimizing Coke Buildup in the Reactor... 367 2.3.9.1.6 Methods to Control Secondary Cracking in the FCC Reactor... 369 2.3.9.1.7 The Lifetime of Reactor Cyclones... 369 2.3.9.2 Regenerator... 370 2.3.9.2.1 Available Configurations for Catalyst Regeneration... 370 2.3.9.2.2 Meeting Regenerator Temperature Constraints... 371 2.3.9.2.3 2.3.9.2.4 Regenerator Combustion Mode: Effect on Contaminant Mobility and Activity... 373 Operating Partial Burn Regenerators in Total Combustion Mode... 374 2.3.9.2.5 Benefits and Drawbacks of Oxygen Enrichment in Regenerators... 374 2.3.9.2.6 Minimizing Inerts Entrained in Catalyst Exiting the Regenerator... 377 2.3.9.3 Reactor and Regenerator Internals... 377 2.3.9.4 Stripper Vessel... 378 2.3.9.4.1 Improving Stripper Performance... 378 2.3.9.4.2 Measuring Stripper Efficiency... 379 2.3.9.5 Main Fractionator... 379 2.3.9.5.1 Overhead Line Coking and Corrosion... 379 2.3.9.5.2 Avoiding Salt Deposition Problems... 380 2.3.9.5.3 Preventing Collector Tray Leaks... 382 2.3.9.5.4 Dealing with High Ash Content... 383 2.3.9.5.5 Benefits of a Staged Revamp on a FCCU Main Fractionator... 385 2.3.9.5.6 Isolation Valve Considerations... 385 2.3.9.5.7 Sulfidation Corrosion of the Bottoms Circuit... 386 2.3.10 Catalyst Management... 386 2.3.10.1 2.3.10.2 Reducing Rare Earth Use... 386 Evaluating FCC Catalyst Selection... 389 2.3.10.3 Additives for Feed Flexibility... 394 2.3.10.4 2.3.10.5 Pre blending of Additives with Catalysts... 395 Effect of Changing Catalyst Formulation on FCC Performance... 395 2.3.10.6 Catalyst Losses from the FCCU... 396 2.3.10.6.1 Diagnosing the Cause... 397 2.3.10.6.2 Catalyst Properties... 399 2.3.10.6.3 2.3.10.6.4 Operating Conditions... 400 Equipment Design... 400 2.3.10.6.5 Mechanical Conditions... 401 2.3.10.6.6 Refinery Experience with Loss Detection and Reduction... 402 2.3.10.7 Catalyst Circulation Problems... 403 v

2.3.10.8 Catalyst Backflow... 406 2.3.10.9 Diagnosing the Cause of Catalyst Deactivation... 407 2.3.10.10 2.3.10.11 Maintaining FCC Ecat Activity... 407 Disposing of FCC Ecat... 409 2.3.10.12 Catalyst Unloading and Impact on Profits... 409 2.3.11 Energy Efficiency and Environmental Emissions... 410 2.3.11.1 Improving FCC Energy Efficiency... 410 2.3.11.1.1 Key FCC Variables to Monitor for Energy Efficiency Improvements... 410 2.3.11.1.2 Heat Recovery in the Main Fractionator for Propylene Recovery... 411 2.3.11.1.3 Recovering H 2 in FCC Offgas... 412 2.3.11.1.4 Installation of a Power Recovery System... 412 2.3.11.2 Reducing Environmental Emissions from the FCCU... 415 2.3.11.2.1 FCC Feed Pretreatment... 416 2.3.11.2.2 2.3.11.2.3 Use of Electrostatic Precipitators to Reduce FCC Emissions... 416 Proper Two stage Cyclone System Design... 418 2.3.11.2.4 Effect of FCC Operating Variables on SO X Emissions... 418 2.3.11.2.5 Hydrocarbons in Flue Gas Stream... 419 2.3.11.2.6 Flue Gas Scrubbers to Reduce FCC SO X Emissions... 419 2.3.11.2.7 SO X Additives to Meet Ultra low SO X Emission Levels... 421 2.3.11.2.8 Effect of Regenerator Operations on NO X and CO Emissions... 422 2.3.11.2.8.1 Effect of O 2 Availability and Discharge Design on Regenerator NO X Emissions... 425 2.3.11.2.8.2 Selective Catalytic Reduction Units for NO X Reduction... 425 2.3.11.2.9 Lowering FCC NO X Emissions... 428 2.3.11.2.10 Nitrates in Purge Water... 430 2.3.11.2.11 2.3.11.2.12 Lowering CO Emissions during FCCU Startup... 430 Options to Reduce Particulate Matter Emissions from Regenerators... 430 2.3.11.2.13 Preventing Clogging of FCC Flue Gas Equipment... 433 2.3.11.2.14 Measuring Sulfur Content in FCC Flue Gas... 434 2.3.12 FCCU Safety Considerations... 435 2.3.12.1 Preventing Vapor Over pressure Events during Startup... 435 2.3.12.2 2.3.12.3 Emergency and Unplanned Shutdowns... 435 Loss of Fractionator Bottoms Cooling... 436 2.3.12.4 2.3.12.5 Operating in Dry Circulation Mode... 437 Improving Catalyst Slide Valve Design to Improve Unit Safety... 438 2.3.12.6 Relief Valves in the FCCU... 438 2.3.12.7 2.3.12.8 Blinds between Reactor and Main Fractionator... 438 Tunable Diode Laser Analyzers in FCCUs... 440 2.3.12.9 Preventing ESP Safety Incidents... 441 2.3.13 FCCU Revamps for the Optimum Return on Investment... 442 2.4 REFINING R&D ALERT!... 444 2.4.1 Introduction... 444 2.4.2 Gasoline Reformulation... 451 2.4.2.1 Patents... 451 2.4.2.2 Research... 452 2.4.3 Gasoline Yield Enhancement... 452 2.4.3.1 Process... 452 2.4.3.2 Catalyst... 454 2.4.3.2.1 Patents... 454 2.4.3.2.2 Research... 455 2.4.4 LCO Yield and Quality... 456 2.4.5 Light Olefins Yield Maximization... 457 2.4.5.1 Process and Unit Design... 457 2.4.5.1.1 2.4.5.1.2 Multi stage Cracking... 457 Non VGO Feedstocks... 457 2.4.5.1.2.1 2.4.5.1.2.2 Patents... 457 Research... 458 vi

2.4.5.1.3 Integrated Process Schemes... 458 2.4.5.1.4 Other... 459 2.4.5.1.4.1 2.4.5.1.4.2 Patents... 459 Research... 460 2.4.5.2 Catalyst... 461 2.4.5.2.1 ZSM 5... 461 2.4.5.2.1.1 Patents... 461 2.4.5.2.1.2 Research... 465 2.4.5.2.2 Other Zeolitic Catalysts... 466 2.4.5.2.2.1 Patents... 466 2.4.5.2.2.2 Research... 468 2.4.5.2.3 Additives... 469 2.4.5.2.4 Other... 471 2.4.6 Heavy Oil and Resid Cracking... 471 2.4.6.1 Process... 471 2.4.6.2 Catalysts and Additives... 477 2.4.7 Aromatics Production... 484 2.4.7.1 Integrated Process Schemes... 484 2.4.7.2 Production of Both Light Aromatics and Light Olefins... 485 2.4.7.2.1 2.4.7.2.2 Process... 485 Catalyst... 487 2.4.8 Biofeeds and Fischer Tropsch Feeds... 488 2.4.8.1 Process... 488 2.4.8.1.1 Patents... 488 2.4.8.1.2 Research... 489 2.4.8.2 Catalyst... 492 2.4.8.2.1 Patents... 492 2.4.8.2.2 Research... 492 2.4.9 NO X, SO X, CO, and PM Emissions Reduction... 496 2.4.9.1 Process... 496 2.4.9.2 Catalyst... 501 2.4.10 Preparation and Properties of Catalysts and Additives... 503 2.4.10.1 Metal resistance Properties... 503 2.4.10.1.1 Patents... 503 2.4.10.1.2 Research... 506 2.4.10.2 Preparation Procedures and Equipment... 506 2.4.10.3 Other... 507 2.4.10.3.1 Patents... 507 2.4.10.3.2 Research... 511 2.4.11 Hardware... 512 2.4.11.1 Injection Devices... 512 2.4.11.2 Separators and Cyclones... 516 2.4.11.3 Stripping Devices... 518 2.4.11.4 Regenerator... 518 2.4.11.4.1 Patents... 518 2.4.11.4.2 Research... 525 2.4.11.5 Fractionation Tower... 525 2.4.11.6 Slurry Oil Equipment and Handling... 527 2.4.11.7 Other... 532 2.4.12 Process Monitoring, Control, and Optimization... 536 2.4.12.1 Patents... 536 2.4.12.2 Research... 537 2.4.13 Other... 540 2.4.13.1 Process Integration... 540 2.4.13.2 Recycle or Disposal of Spent FCC Catalyst... 542 2.4.13.2.1 Patents... 542 vii

2.4.13.2.2 Research... 545 2.4.13.3 Other... 546 2.5 WORLDWIDE INSTALLED CAPACITY... 547 2.6 CONSTRUCTION... 548 2.6.1 Recent Construction Activity... 548 2.6.2 Completed Construction Projects... 553 2.7 REFERENCES... 570 viii