Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device

Similar documents
Unified Power Quality Conditioner with Electric Double Layer Capacitor

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

Development of Novel Connection Control Method for Small Scale Solar - Wind Hybrid Power Plant

Isolated Bidirectional DC DC Converter for SuperCapacitor Applications

ELECTRICAL POWER SYSTEMS 2016 PROJECTS

Implementation of FC-TCR for Reactive Power Control

Inverter with MPPT and Suppressed Leakage Current

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

A Zero-Voltage-Transition Bidirectional DC/DC Converter

Modelling and Simulation of DFIG with Fault Rid Through Protection

BIDIRECTIONAL FULL-BRIDGE DC-DC CONVERTER WITH FLYBACK SNUBBER FOR PHOTOVOLTAIC APPLICATIONS

Simulation Modeling and Control of Hybrid Ac/Dc Microgrid

Comparative Analysis of Integrating WECS with PMSG and DFIG Models connected to Power Grid Pertaining to Different Faults

Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

Power System Stability Analysis on System Connected to Wind Power Generation with Solid State Fault Current Limiter

SPIRO SOLUTIONS PVT LTD POWER ELECTRONICS 1. RENEWABLE ENERGY PROJECT TITLES I. SOLAR ENERGY

Fault Rid Through Protection of DFIG Based Wind Generation System

Power Electronics Projects

Supercapacitor Based Power Conditioning System for Power Quality Improvement in Industries

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT

Low Speed Control Enhancement for 3-phase AC Induction Machine by Using Voltage/ Frequency Technique

Battery Energy Storage System addressing the Power Quality Issue in Grid Connected Wind Energy Conversion System 9/15/2017 1

Single Stage Grid Interactive Photovoltaic System

POWER ELECTRONICS & DRIVES

1. RENEWABLE ENERGY I.SOLAR ENERGY PROJECT TITLES WE CAN ALSO IMPLEMENT YOUR OWN CONCEPT/IDEA

A Review on Reactive Power Compensation Technologies

Isolated Bidirectional DC DC Converter for SuperCapacitor Applications

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

Wind Power Plants with VSC Based STATCOM in PSCAD/EMTDC Environment

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM

Implementation Soft Switching Bidirectional DC- DC Converter For Stand Alone Photovoltaic Power Generation System

A Grid-Connected Dual Voltage Source Inverter with Power Quality Improvement Features Abstract

Investigation of Transient Recovery Voltage Across a Circuit Breaker with Presence of Braking Resistor

China. Fig. 1 Chain SVG Electrical Diagram

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application

DYNAMIC BEHAVIOUR OF SINGLE-PHASE INDUCTION GENERATORS DURING DISCONNECTION AND RECONNECTION TO THE GRID

Power Electronics & Drives [Simulink, Hardware-Open & Closed Loop]

Journal of American Science 2015;11(11) Integration of wind Power Plant on Electrical grid based on PSS/E

FAULT ANALYSIS FOR VOLTAGE SOURCE INVERTER DRIVEN INDUCTION MOTOR DRIVE

Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC

Reactive power support of smart distribution grids using optimal management of charging parking of PHEV

Design of Active and Reactive Power Control of Grid Tied Photovoltaics

Co-Ordination Control and Analysis of Wind/Fuel Cell based Hybrid Micro-Grid using MATLAB/Simulink in Grid Connected Mode

CHAPTER 6 POWER QUALITY IMPROVEMENT OF SCIG IN WIND FARM USING STATCOM WITH SUPERCAPACITOR

Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink

International Journal of Emerging Technology and Innovative Engineering Volume 2, Issue 4, April 2016 (ISSN: )

Power Quality Improvement Using Statcom in Ieee 30 Bus System

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications

Study of Fault Clearing by A Circuit Breaker In Presence of A Shunt Capacitor Bank

Fuzzy based STATCOM Controller for Grid connected wind Farms with Fixed Speed Induction Generators

Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Impact of Reactive Power in Power Evacuation from Wind Turbines

FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE

Design and Control of Hybrid Power System for Stand-Alone Applications

International Journal of Advance Engineering and Research Development. Automatic Power Factor Correction in EHV System

INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR

CONTROL AND PERFORMANCE OF A DOUBLY-FED INDUCTION MACHINE FOR WIND TURBINE SYSTEMS

IMPROVEMENT IN POWER QUALITY PROBLEMS BY UNIFIED POWER QUALITY CONDITIONER (UPQC)

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink

Bidirectional Intelligent Semiconductor Transformer

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line

Power Management with Solar PV in Grid-connected and Stand-alone Modes

High-Voltage, High-Current DC- DC Converters Applications and Topologies

THE IMPORTANCE OF INTEGRATING SYNCHRONOUS COMPENSATOR STATCOM IN WIND POWER PLANT CONNECTED INTO THE MEDIUM VOLTAGE GRID

Statcom Operation for Wind Power Generator with Improved Transient Stability

POWER ELECTRONICS TITLES LeMeniz Infotech

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC

Australian Journal of Basic and Applied Sciences. Resonant Power Converter fed Hybrid Electric Vehicle with BLDC Motor Drive

Multi-Port DC-DC Converter for Grid Integration of Photo Voltaic Systems through Storage Systems with High Step-Up Ratio

Adaptive Power Flow Method for Distribution Systems With Dispersed Generation

Development and Analysis of Bidirectional Converter for Electric Vehicle Application

CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM

A NEW ZCS-ZVS SINGLE PHASE PFC CONVERTER WITH A LCD SNUBBER FOR OUTPUT VOLTAGE REGULATION

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor

G2V and V2G operation 20 kw Battery Charger

Abstract- In order to increase energy independency and decrease harmful vehicle emissions, plug-in hybrid electric vehicles

Reactive Power Compensation at Load Side Using Electric Spring

[Patil, 7(2) April-June 2017] ISSN: Impact Factor: 4.015

Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources

EFFICIENT GRID CONNECTED INVERTER TO OVERCOME THE LOAD DISTURBANCE IN HYBRID ENERGY STORAGE SYSTEM

Analysis of Grid Connected Solar Farm in ETAP Software

Integration of Ultra-Capacitor Using Bidirectional Converter with RES Applications

A Novel ZVS/ZCS Bidirectional DC DC Converter for DC Uninterruptable Power Supplies

International Conference on Advances in Energy and Environmental Science (ICAEES 2015)

A Novel Hybrid Smart Grid- PV-FC V2G Battery Charging Scheme

Academic Year International/National Journal S.No Name of the Faculty Title of the Paper Name of the Journal

S.NO TITLE DOMAIN A dual inverter for an open end winding induction motor DRIVES 1 drive without an isolation transformer

Impact of Plug-in Electric Vehicles on the Supply Grid

Shunt Capacitor Bank Protection in UHV Pilot Project. Qing Tian

A SIMPLE CONTROL TECHNIQUE FOR UNIFIED POWER FLOW CONTROLLER (UPFC)

DRAFT. Guidelines on Power quality & safety issues in usage of roof-top solar pv system CENTRAL ELECTRICITY AUTHORITY

CHAPTER 5 ACTIVE AND REACTIVE POWER CONTROL OF DOUBLY FED INDUCTION GENERATOR WITH BACK TO BACK CONVERTER USING DIRECT POWER CONTROL

Behaviour of battery energy storage system with PV

Fuzzy logic controlled Bi-directional DC-DC Converter for Electric Vehicle Applications

Australian Journal of Basic and Applied Sciences

Modeling Of DFIG and Improving the LVRT Capability Of System Using Crowbar And Battery Energy Storage System

Transcription:

Australian Journal of Basic and Applied Sciences, 5(9): 1180-1187, 2011 ISSN 1991-8178 Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device M. Davudi, S. Torabzad, B. Ojaghi Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran Abstract: In this paper a novel design of Universal Power Quality Conditioning System (UPQS) is proposed which is composed of the DC/DC converter and the storage device connected to the DC link of UPQS for balancing the voltage interruption. The proposed UPQS can balance the reactive power, harmonic current, voltage sag and swell, voltage unbalance, and the voltage interruption. The performance of proposed system was analyzed through simulations with MATLAB\SIMULINK software. The proposed system can improve the power quality at the common connection point of the non-linear load and the sensitive load. Key word: Universal Power Quality Conditioning System (UPQS), voltage interruption, DC/DC converter, super-capacitor INTRODUCTION Since several equipments such as computers, automation equipments, and communication equipments are very sensitive for the input voltage disturbances, the inadequate operation or the fault of these loads brings about huge losses (Hingorani, 1995), (Arrillaga et al, 2000), (Prodanovic and Green, 2003). The elimination or mitigation of disturbances propagated from the source side and the other loads interconnected is critical for improving the operational reliability of these critical loads. One of the most interesting structures of energy conditioner is two back-to-back connected dc/ac fully controlled converters. In this case, depending on the control scheme, the converters may have different compensation functions. For example, they can function as active series and shunt filters to compensate simultaneously load current harmonics and supply voltage fluctuations. In this case, the equipment is called Universal Power Quality Conditioning System (UPQS) or Unified Power Quality Conditioner (UPQC) (Akagi et al., 2007), (Aredes and Watanabe, 1995), (Han et al, 2006). Unified Power Quality Conditioner (UPQC) has been widely studied to eliminate or mitigate the disturbances propagated from the source side and the other loads interconnected (Hideaki and Hirofumi, 1998), (Aredes et al, 1998), (Han et al, 2006). UPQC has two voltage-source inverters of three-phase four-wire or three-phase three-wire configuration. One inverter called the series inverter is connected through transformers between the source and the common connection point. The other inverter called the shunt inverter connected in parallel with the load. The series inverter operates as a voltage source, while the shunt inverter operates as a current source. UPQC can simultaneously mitigate the voltage disturbance in source side and the current disturbance in load side. UPQC can compensate voltage sag, voltage swell, harmonic current, and harmonic voltage, and control the power flow and the reactive power. However, it cannot compensate the voltage interruption because it has no energy storage in the DC link. This paper proposes a new configuration of UPQC that consists of the DC/DC converter and the supercapacitors for compensating the voltage interruption. The operation of proposed system was verified through simulations with MATLAB\SIMULINK software. MATERIALS AND METHODS The proposed system is consisted of three main parts: configuration of proposed UPQC, DC/DC converter design and Energy storage design. Theses parts have discussed and finally the simulation results have been introduced. 1. Configuration of Proposed UPQC: Figure 1 shows the configuration of proposed UPQC, which additionally has a DC/DC converter and super-capacitors for compensating the voltage interruption. The energy in the DC link charges the supercapacitors through the bi-directional DC/DC converter when the system is in normal operation. The energy in the super-capacitors is released to the DC link through the bi-directional DC/DC converter when the voltage interruption occurs. Corresponding Author: S. torabzad, Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran. 1180

Fig. 1: Configuration of proposed UPQC with energy storage. The control system has three major elements which are shunt inverter control, series inverter control, and DC/DC converter control. When the level of source voltage is maintained as 1.0 p.u., the system works in normal mode. When the level is between 0.5 and 1.0 p.u. or higher than 1.0 p.u., the system works in voltage sag or swell mode. When the level is lower than 0.5 p.u., the system works in interruption mode. In normal mode, the series inverter injects the zero voltage and the shunt inverter absorbs the current harmonics generated by the load. The DC/DC converter works in charge mode or standby mode depending on the voltage level of the super-capacitors. In voltage sag or swell mode, the series inverter injects the compensating voltage to maintain the load voltage constant. The shunt inverter absorbs the current harmonics generated by the load and the DC/DC converter works in standby mode. In voltage interruption mode, the series inverter is disconnected from the line and the circuit breaker is opened to isolate the source side. The shunt inverter starts to work as an AC voltage source. The DC/DC converter works in discharge mode to supply the energy stored in the super-capacitors to the load. The control strategy for the series and shunt inverters of the proposed UPQC has been derived based on the Synchronous reference frame method (Hu and Chen, 2000). The series inverter control compensates the voltage disturbance in the source side due to the fault in the distribution line. V Sa V Sb V Sc V Sa V Sb V Sc a b c d q sin cos PLL 0 * V Sd _ + a b c sin cos d q 0 * V F _ abc + V F _ abc _ K + + PWM Voltage Control Series Inverter V V V Fig. 2: Control block diagram of the shunt converter of the UPQC. The series inverter control determines the reference voltage to be injected by the series inverter as shown in fig. 2, using the algorithm described in reference (Hu and Chen, 2000). The shunt inverter control has two functions to compensate the current harmonics and the reactive power in normal operation, and to supply the active power to the load during the voltage interruption. The first function was described in reference (Hu and Chen, 2000). The second function is same as that of the power converter used in power system interconnection. The shunt inverter control has a selective switch as 1181

shown in fig. 3, which works in current control mode or voltage control mode under the control of system manager. Fig. 3: Shunt inverter control block diagram. The DC/DC converter control works in charge mode or discharge mode selectively, depending on the direction from the system manager. In charge mode, the system manager monitors whether the voltage level of the super-capacitors exceeds the maximum operation voltage or not. If the voltage level reaches the maximum value, the DC/DC converter works in standby mode. In discharge mode, the system manager monitors whether the voltage level of the super-capacitors drops lower than the minimum operation voltage or not. If the voltage level reaches the minimum value, the DC/DC converter shuts down to stop supplying power to the load. 2. DC/DC Converter Design: The DC/DC converter can operate in bi-directional mode using soft-switching Scheme (Bendre et al, 2003), (Jacobs et al, 2004). The operation voltage of the super-capacitor bank is in the range between 60-75V, while the dc link voltage is about 700V. The ground point in dc link should be isolated from the ground point in the super-capacitor bank. The converter should have high current rating in bank side and high voltage rating in DC link side. Considering these requirements, a DC/DC converter with two full-bridges was selected as shown in Figure 4. L f I SC Sc 1 S c 4 Sb 1 C 1 Sb 4 I DC V SC S a L Lk V DC C h Sc 3 S c 2 N c N b Sb 3 C 3 Sb 2 Fig. 4: DC/DC converter structure. A filter reactor is inserted between the bank and the full-bridge to reduce the ripple of charging and discharging current, which can reduce the lifetime of super-capacitors due to unwanted heat generation. The full-bridge in bank side works as a current-fed type, while the full-bridge in DC link side works as voltage-fed type. The DC/DC converter boosts the super-capacitor voltage up to the nominal DC link voltage in discharge mode. The super-capacitor voltage is controlled between 60-75V, while the DC link voltage increases up to 1182

700V. The switches S C1 and S C2 operate with a duty ratio of higher than 0.5. The current through the inductor L f increases as all the switches are on conduction-state. The voltage overshoot can be suppressed by turning on auxiliary switch S a when two switches in face with diagonal opposition are on conduction state. The current through transformer rises linearly and its peak value becomes larger than the current through the boost inductor. When the auxiliary switch turns off, the magnetic energy stored in the leakage inductance of transformer flows through the back-connection diode of the switch in off state. So, the zero-voltage turn-on condition is provided. The DC/DC converter decreases the nominal DC-link voltage down to the level of super-capacitor voltage in charge mode. When switch S b1 and S b2 turns on, the input voltage applied to the leakage inductance of transformer L Lk increases the input current. The power in the primary side is transferred to the secondary side. The secondary voltage charges the capacitor C h through the reverse-connected diode of auxiliary switch S a. If the charging voltage is high enough to make the charging current zero, switch Sb1 turns off. Switch S b3 turns on with zero-voltage scheme while the capacitor C 1 is charged and the capacitor C 3 is discharged. When auxiliary S a turns on, the voltage across the auxiliary capacitor affects the primary voltage of the coupling transformer. This voltage is applied to the leakage inductance L Lk with reverse polarity. This makes the primary current zero and switch S b2 turns off with zero-current scheme. 3. Energy Storage Design: The size of super-capacitors is determined depending on the duration of voltage interruption and the size of load connected. It is assumed that the maximum voltage interruption has duration of three seconds and the load has a power rating of 10kW. Therefore, total energy to be released during the voltage interruption is 30 kj. The bank of super-capacitors is designed considering three criteria, the expandability of storage capacity, the unbalance of unit voltage, and the current rating of each unit. HP1700P-0027A manufactured by Ness Company was selected as a basic unit for the energy storage bank. Table 1 shows the specification of selected super-capacitor unit. Table 1: Specification of super-capacitor unit. Capacitance 1700 F Continuous operation voltage 2.7V Peak operation voltage 2.85V Current rating 360A The bank is designed so as to utilize the upper 25% of maximum storage capacity, considering the expandability of operation capacity by adding more super-capacitors. The maximum current flows through the super-capacitor bank, when it discharges the maximum power. The minimum voltage across the super-capacitor bank can be determined with the maximum discharge power and the current rating as the following. Ubank _min = 20 kw / 360A = 55.5V (1) It is assumed that the super-capacitor is charged by 2.43V, which is 90% to the maximum charging voltage of 2.7V, for consideration of 10% margin. The lowest discharged voltage is determined to be 2.1V using the following. Uunit _min = 3/ 4 Uunit _max = 2.1V (2) Therefore, the lowest discharge voltage and the minimum unit voltage determine the number of units to be connected in series as the following. N = Ubank _ min / U unit _ min = 55.5 / 2.1= 26.5 (3) However, the bank can be designed using total 28 units of super-capacitors for the purpose of safety margin. RESULTS AND DISCUSSION The power circuit is modeled as a 3-phase 3-wire system with a non-linear load that is composed of 3- phase diode-bridge with RC load in the DC side with a THD of more than 40%. The circuit parameters used in the simulation is shown in Table 2. The maximum simulation time was set up by 1.5sec. It is assumed that the shunt inverter start to operate at 100 msec, while the series inverter start to operate at 200 msec. The load current is shown in fig. 5. In fig. 6 the active and reactive power consumed by the load are demonstrated. In this section, voltage sag is applied and the results are studied. A voltage sag with peak amplitude of 100v is applied from t=1sec to t=1.3sec. The source and load voltage are shown in fig. 7. It is seen in this figure that the UPQC series inverter has modified load voltage correctly. 1183

Table 2: Grid parameters Source Phase Voltage (rms) DC Link voltage Shunt inverter rating Series inverter rating Shunt inverter Inductance ( L f ) Shunt inverter Capacitance ( C f ) Switching Frequency Series inverter Inductance ( L s ) Series inverter Capacitance ( C s ) Series inverter Resistance ( R s ) PV Array Rating 220v / 50Hz 600v 45kVA 15kVA 3mH 20kHz 3mH 40kW 10 F 15 F 12 Fig. 5: Nonlinear load current. Fig. 6: Active and reactive power consumed by load. 1184

(a) Fig. 7: Voltage sag compensation. (a) Source voltage. (b) Load voltage. In this section, voltage interruption occurs from t=1sec to t=1.3sec. Fig. 8 shows the source and load voltage and the output current supplied by the DC/DC converter respectively. It is seen that after voltage interruption, load voltage is remained at its desired value due to shunt inverter operation. Conclusion: This paper proposes a new configuration of UPQC that consists of the DC/DC converter and the supercapacitors for compensating the voltage interruption. The proposed UPQC can compensate the reactive power, harmonic current, voltage sag and swell, voltage unbalance, and the voltage interruption. The control strategy for the proposed UPQC was derived based on the Synchronous reference frame method. The operation of proposed system was verified through simulations with MATLAB/SIMULINK software. The proposed UPQC has the ultimate capability of improving the power quality at the installation point in the distribution system. The proposed system can replace the UPS, which is effective for the long duration of voltage interruption, because the long duration of voltage interruption is very rare in the present power system. (b) 1185

(a) (b) Fig. 8: Voltage interruption compensation. (a) Source Voltage. (b) Load voltage. 1186 (c)

REFERENCES Akagi, H., Y. Kanazawa and A. Nabae, 2007. Instantaneous reactive power compensator comprising switching devices without energy storage components. IEEE Transactions on Industry Application, 20: 625-630. Aredes, M., K. Heumann, E.H. Watanabe, 1998. An universal active power line conditioner. IEEE Transactions on Power Delivery, 13(2): 545-551. Aredes, M. and E.H. Watanabe, 1995. New control algorithms for series and shunt three-phase four-wire active power Filters. IEEE Transactions on Power Delivery, 10: 1649-1656. Arrillaga, J., M.H.J. Bollen, N.R. Watson, 2000. Power quality following deregulation. Proceedings of the IEEE, 88(2): 246-261. Bendre, A., S. Norris, D. Divan, I. Wallace, 2003. New high power DC/DC converter with loss limited switching and lossless secondary clamp. IEEE Transactions on Power Electronics, 18(4):1020-1027. Han, B., B. Bae, H. Kim, S. Baek, 2006. Combined Operation of Unified Power Quality Conditioner With Distributed Generation. IEEE Transactions on Power Delivery, 21: 330-338. Han, B., B. Bae, S. Baek, G. Jang, 2006. New configuration of UPQC (unified power quality conditioner) for medium-voltage application. IEEE Transactions on Power Delivery, 21(3): 1438-1444. Hideaki, F. and A. Hirofumi, 1998. The unified power quality conditioner: the integration of series- and shunt- active filters. IEEE Transactions on Power Electronics, 13(2): 315 322. Hingorani, N.G., 1995. Introducing custom power. IEEE Spectrum, 32(6): 41-48. Hu, M. and H. Chen, 2000. Modeling and Controlling of Unified Power Quality Compensator. IEEE International Conference on Advances in Power System Control, Operation and Management, 2: 431-435. Jacobs, J., A. Averberg, R. De Doncker, 2004. A novel three-phase DC/DC converter for high-power applications. IEEE Power Electronics Specialists Conference, 3: 1861-1867. Prodanovic, M., and T.C. Green, 2003. Control and filter design of three-phase inverters for high power quality grid connection. IEEE Transactions on Power Delivery, 18(1): 373-380. 1187