REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS

Similar documents
The Whispering Train Programme. The search for effective and cost neutral noise reduction measures for existing freight wagons.

E17H RAIL WHEEL INSPECTION

Risk Management of Rail Vehicle Axle Bearings

Effectiveness of ECP Brakes in Reducing the Risks Associated with HHFT Trains

Development of Advanced Computational Models of Railway Vehicles

Self-powered, On-board, Wireless Condition, Preventive, & Predictive Monitoring. Keith J. Abate Sr. SR. Dir. Business Development Perpetuum Rail

Investigation Body for Railway Accidents and Incidents. Bulletin of General Information Derailment of a Lineas freight train Aubange - 19 th May 2017

S&C: Understanding Root Causes & Assessing Effective Remedies C4R Final Dissemination Event, Paris 15 th March 2017

What is model validation? Overview about DynoTRAIN WP5. O. Polach Final Meeting Frankfurt am Main, September 27, 2013

Simulation of railway track maintenance trains at MATISA

TRACK CONDITION MONITORING AT SNCF : AN INTRODUCTION TO METHODS, TOOLS AND PERPECTIVES

Improving the Quality of NDT in the Rail Sector through the Introduction of Advanced Technologies and NDT Means

ULTRASONIC TESTING OF RAILWAY AXLES WITH PHASED ARRAY TECHNIQUE EXPERIENCES DURING OPERATION

CONNECTED AUTOMATION HOW ABOUT SAFETY?

Based on the findings, a preventive maintenance strategy can be prepared for the equipment in order to increase reliability and reduce costs.

Introduction. Cent re-bearing longitudinal movement in transitions due to track twist loads; \ 1

Using ERTMSFormalSpecs to model ERTMS braking curves

Joint Network Secretariat Urgent Procedure Task Force Broken wheels

Summary of survey results on Assessment of effectiveness of 2-persons-in-the-cockpit recommendation included in EASA SIB

Detection and evaluation of rail defects with nondestructive

Switch Life Improvement Through Application of a Water Based, Drying Friction Modifier Richard Stock, Barnaby Temple. L.B. Foster Rail Technologies

Monitoring of switches & crossings (turnouts) and tracks

Big data for free (almost)

Nencki Bogie test stand NBT

Coriolis Density Error Compensating for Ambient Temperature Effects

FFL4E Future Freight Loco for Europe. Shift Freight to Rail: Midterm Event for S2R Projects Vienna,

Locomotive Allocation for Toll NZ

Development of an actively controlled, acoustically optimised single arm pantograph

Summary Safety Investigation Report Derailment of a Lineas freight train Aubange - 19 May 2017

Force Based Condition Monitoring of Railway Infrastructure

Our Approach to Automated Driving System Safety. February 2019

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE

Switch design optimisation: Optimisation of track gauge and track stiffness

Diesel Locomotive Train Driver Performance Checklist

Railway vibration measurement. Enhance safety and cut maintenance costs

RNRG WHITE PAPER Early Detection of High Speed Bearing Failures

WHITE PAPER. Preventing Collisions and Reducing Fleet Costs While Using the Zendrive Dashboard

Driving techniques and strategies for freight trains

Innovative designs and methods for VHST 2 nd Dissemination Event, Brussels 3 rd November 2016

Methodology and Practice

Gröna Tåg 2007 Instrumented Wheelset Technology (IWT)

Traffic Micro-Simulation Assisted Tunnel Ventilation System Design

Price Coupling of Regions PCR. System Design to be used in NWE. Rickard Nilsson, Nord Pool Spot

Design and evaluate vehicle architectures to reach the best trade-off between performance, range and comfort. Unrestricted.

Offshore Application of the Flywheel Energy Storage. Final report

GB NDT AXLE TESTING & DEFECT TYPES FOUND

Design and Calculation of Fast-Running Shunting Locomotives

Data Collection Technology at ARRB Transport Research

Pre-normative research on resistance to mechanical impact of composite overwrapped pressure vessels. Dr. Fabien Nony CEA

Experimental investigation on vibration characteristics and frequency domain of heavy haul locomotives

Detection of Faults on Off-Road Haul Truck Tires. M.G. Lipsett D.S. Nobes

DB BR261 - Voith Gravita 10BB

Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation

ROAD SAFETY RESEARCH, POLICING AND EDUCATION CONFERENCE, NOV 2001

Brussels, 14 September ACEA position and recommendations for the standardization of the charging of electrically chargeable vehicles

TSC INSPECTION SYSTEMS

Midterm Event. Holger Czuday, Bayern Innovativ 7th February Automotive Battery Recycling and 2nd Life

Performance Based Design for Bridge Piers Impacted by Heavy Trucks

Measurement methods for skid resistance of road surfaces

Journal of Emerging Trends in Computing and Information Sciences

Regulatory Impacts of Advanced Lighting Systems. Stephan Berlitz, AUDI AG

CEMA position on draft braking regulation, 4 June 2008 ENTR/F1/ /rev16

Intermediate results

(Non-legislative acts) DECISIONS

Permanent Multipath Clamp-On Transit Time Flow Meter

Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation

DEFECTS OF FREIGHT LOCOMOTIVE WHEELS AND MEASURES OF WHEEL TYRE LIFE EXTENTION

Building Fast and Accurate Powertrain Models for System and Control Development

MIT ICAT M I T I n t e r n a t i o n a l C e n t e r f o r A i r T r a n s p o r t a t i o n

Study Group WAGON USERS Groupe d Etudes UTILISATEURS WAGONS Studiengruppe WAGENVERWENDER

Challenge H: For an even safer and more secure railway. SADCAT, a contactless system for OCS monitoring

Interrelation between Wavelengths of Track Geometry Irregularities and Rail Vehicle Dynamic Properties

Traffic Data Services: reporting and data analytics using cellular data

Maintenance. Education Program Basic Skills Series Module Eight

Rail Accident Investigation: Interim Report. Fatal accident involving the derailment of a tram at Sandilands Junction, Croydon 9 November 2016

GPS-GSM Based Intelligent Vehicle Tracking System Using ARM7

WHITE PAPER Autonomous Driving A Bird s Eye View

WP5 - Computational Mechanics B1 (ESP-N2) Barrier Steel N2 MAIN REPORT Volume 2 of 2

The SUSTRAIL high speed freight vehicle: Simulation of novel running gear design

ASEP Development Strategy for ASEP Revision 2 Development of a Physical Expectation Model Based on UN R51.03 Annex 3 Performance Parameters

PORT TYRE CRANE. SANY Industrial Park, Gaolan Port Economic and Development Zone, Zhuhai, Guangdong, China

Axle Load Checkpoints (ALC) in Denmark

Methodology and Practice

Table of Contents Air Brake Tests Basic Conductor/Certification Course Basic Conductor/Mechanical (Combination Package) Basic Hazardous Materials

Detection of rash driving on highways

Tram Driver. Mentor s Q&A

Transmitted by the expert from Germany

Appendix 3. DRAFT Policy on Vehicle Activated Signs

AUTOCITS. Regulation Study for Interoperability in the Adoption the Autonomous Driving in European Urban Nodes. LISBON Pilot

RISK AND SAFETY ASSESSMENT

ANALYZING THE DYNAMICS OF HIGH SPEED RAIL

SYSTEM CONFIGURATION OF INTELLIGENT PARKING ASSISTANT SYSTEM

Preventing Road Accidents and Injuries for the Safety of Employees Case Study: ALSA FACTFILE. Company: ALSA

Electric traction energy metering on German Railways and the impact of European standardisation on the energy billing process in Germany

Automobile Body, Chassis, Occupant and Pedestrian Safety, and Structures Track

Procedure for assessing the performance of Autonomous Emergency Braking (AEB) systems in front-to-rear collisions

Simulation of a Narrow Gauge Vehicle using SIMPACK, Model Validation using Scaled Prototypes on Roller-Rig

ABB MEASUREMENT & ANALYTICS. Predictive Emission Monitoring Systems The new approach for monitoring emissions from industry

Loaded Car Hunting and Suspension Systems

W heel climb in switches remains

Transcription:

REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS D-Rail Final Workshop 12 th November - Stockholm Monitoring and supervision concepts and techniques for derailments investigation Antonella Semerano (MERMEC) Antonella.semerano@mermecgroup.com

Inspection and monitoring techniques Objectives: Provide critical and detailed assessment of current and emerging inspection and monitoring techniques, Examine prevention and mitigation for the total freight system (vehicle, track and their interaction), Develop from previous findings suitable cost effective technical improvements, Provide forward functional and operational requirement specifications. Pilot testing of new technologies 2

Methodology Survey about monitoring techniques to provide a detailed review of current inspection and monitoring techniques related to derailment prevention and mitigation. These technologies have been further investigated and assessed regarding derailment main causes (WP1), Cost analysis (WP2) and most relevant parameters (WP3) to determine suitability to capture key derailment parameters. A matrix with causes to derailment v.s. preventive inspection and monitoring techniques has been formed (commented by different railway experts). By means of a gap analysis, missing technical functions or functions that could be improved have been highlighted. Among potential technological improvements efficient to monitor critical derailment parameters, some selected promising technologies have been tested and validated.

Assessment matrix for monitoring systems Results: Causes related to Infrastructure : High effectiveness of existing technologies Rail failure Track geometry parameters Causes with highest potential for technological improvements: Wheel failure Spring & suspension failure Skew loading

Assessment matrix for monitoring systems Experts general comments Development of information handling systems gathering data from different systems Analysis and sending an alarm to the right user Harmonization of limit values. Develop international standards for each detection method is necessary to support interoperability. Starting point for technology enhancement Overall effectiveness Potential for improvement

Improvement of monitoring techniques Which functionalities in existing systems require further development? => Identification and proposition of potential improvements of existing systems: Axle load checkpoints, Hot box detectors, Wheel profile and diameter systems, Track geometry measurement systems Which functions in existing systems are missing today? => Identification of missing functions by means of gap analysis Analysis done for scenarios from WP3: Wheel failures, Flange climbing in line operations, S&C, Rail failures Proposition of promising techniques or innovative solution to meet these gaps and improve the derailment detection: Ex: Reinforce, complement and integrate onboard systems with ground systems 7

DRAIL innovative propositions Selection and testing Link between WP4 results (functional specifications for system application) and WP6 (validation through testing of derailment prevention technology) The purpose is to provide an industrial and critical point of view of the following innovations validation. Among all innovative technologies efficient to monitor critical derailment parameters, DRAIL focused on, tested and validated the following: MERMEC: Wheel checker FAIVELEY: Derailment Prevention Device DAKO: Derailment detection Cross-border testing by DB and Trafikverket 8

MERMEC Wheel Checker MERMEC wheel surface defects inspection system was tested in Barrow Hill Non-contact wheel surface inspection system able to perform an automatic visual inspection of the wheelsets in service, Automatically detect and identify surface defects on the wheels of trains passing in revenue service (also cracks on the tread of the wheel shelling, spalling, flat spots ), Derailment cause: Wheel breaks. Proposed adaptation for DRAIL: Focus on flange defects Physical principle: high definition cameras. 9

MERMEC Wheel Checker Test equipment 10

MERMEC Wheel Checker Test equipment 11

MERMEC Wheel Checker Wheel checker installation and tests Installation, then leave the system running to capture data automatically for a period of months and tune the image processing Capture data from traffic between depot and national network for a period of months, including capturing vehicles which visit repeatedly Including a group of 8 class 20 locos and tank wagons which visit between regular periods operating on the network Different background lighting and environmental conditions 12

MERMEC Wheel Checker Wheel checker installation and tests Flange defects have been artificially created on the wheel of a vehicle to replicate a flange broken in service. To run this vehicle through the system, to capture data and tune the image processing. 13

MERMEC Wheel Checker Results of the test sessions The system has acquired detailed images of the wheel tread and flange and has successfully detected the artificial defects on the wheel flange Wheel Flange Wheel Tread Raw Picture of the wheel Straightened picture Processed picture with detected flange defect 14

MERMEC Wheel Checker Results of flange defects Raw pictures of the wheel and processing results 15

MERMEC Wheel Checker Other results Straightened pictures and processing results 16

MERMEC Wheel Checker Conclusions The system was successfully integrated into a railway site No special adaptations to vehicles or operations were required The system successfully captured images and detected defects, especially broken flange defects. Future testing and validation Other kind of defects on the wheel wear. Exploitation and future improvements: Improve robustness of the system Improving the image processing for automatic defect identification and creating alerts 17

FAIVELEY BOGIE STABILITY SENSORS FAIVELEY instability sensor on-board prevention device aiming at detecting abnormal conditions of vibration and/or shock. At the actual design level the sensor is able to log the 3 axis acceleration rates and to detect high acceleration pattern in time domain one possibility to detect conditions for derailment is to equip each car with a scrutiny device, organised to take the best for range of signals of accelerometers and gyroscope, and to establish comparison rules, algorithms and tables in order to detect the moment when the conditions turn from normal to abnormal the proposed device is an intelligent safety sensor designed to be installed on the bogie frame and on the car body 18

FAIVELEY BOGIE STABILITY SENSORS FAIVELEY instability sensor 19

FAIVELEY BOGIE STABILITY SENSORS FAIVELEY instability sensor three sensors were installed on the flat car one on the bogie frame and two on the car body and were left running to simulate both normal operation and abnormal conditions Sensor s/n 3 (floor above bogie pivot) Sensor s/n 2 (floor above bogie pivot) Sensor s/n 1 (bogie frame above 2 nd axle) 20

FAIVELEY BOGIE STABILITY SENSORS FAIVELEY instability sensor Test objectives To record the bogie and body acceleration levels in normal wagon operation including stressing track section as bad line junction, track switches, not frequently used section etc. To set up the detection parameter according to the previous point from tests logged data. And to test the detection by simulating bogie abnormal acceleration values, including derailment. To analyse off line the logged data to verify that: the detector works correctly acceleration sampling filtering and span is well suited for the detection compare the bogie and body vibration levels to be able to estimate if one unit mounted on body is enough to check both bogies. 21

FAIVELEY BOGIE STABILITY SENSORS FAIVELEY instability sensor test conditions Normal operation test - several test runs at different speeds were performed on the small test circuit Test runs with not well tightened coupler - the test train was prepared by releasing the coupler links between the test and VUZ measuring car. Test runs were performed on the small test circuit 22

FAIVELEY BOGIE STABILITY SENSORS FAIVELEY instability sensor test conditions Coins test - on the left rail 5 round flat metal pieces, about 25 mm x 1 mm in size were placed 10 m from each other. Test runs were performed on the small test circuit Wheel flat - A flat of about 2 cm length on the wheel under sensor 1 was produced by manual abrasion tool. The flat was checked to be well audible. Test runs were performed on the small test circuit 23

FAIVELEY BOGIE STABILITY SENSORS FAIVELEY instability sensor test conditions Derailmentest - two real derailments were performed using the derail device. During the test the wagon was being pushed by VUZ diesel locomotive at very low speed (about 8 km/h). Tests performed on the auxiliary yard in the VUZ test centre. t 24

FAIVELEY BOGIE STABILITY SENSORS FAIVELEY instability sensor test results Examples of acceleration signal from the sensor Coins test Derailment (filtered 5 Hz) coins 25

FAIVELEY BOGIE STABILITY SENSORS Conclusions Exploitation perspectives The device was easily implemented on a wagon Lots of recordings have been gathered at different speeds, reflecting real running conditions and providing a solid database FT has confirmed his confidence for the sensitiveness of the sensors. Future improvements Use the Velim tests recordings as input data to simulate real running conditions Optimize the algorithm and the fine tuning of the instability sensor Determine if body installation is sufficient or if bogie installation is necessary Develop wireless transmission to locomotive FT system could be mixed with GPS and GSM-R systems in order to provide important messages for maintenance (vehicles and track) 26

DAKO DETECTING SYSTEM DAKO detecting system is a newly developed device which is designed to detect derailment and significantly reduce the impact of derailment integrated sensor is able to detect high acceleration values in time domain two sensors have been installed on both headstocks of a tank wagon and connected to the brake pipe. In addition one accelerometer was attached next to the detector in order to measure the acceleration of wagon headstock where the detector was installed. The value of vertical acceleration at which the detector is activated was set on 9.5 g. 27

DAKO DETECTING SYSTEM Test objectives to check if the detector is not activated during normal operation running including stressing track section as track switches, not frequently used section etc. to check if the detector is activated when the vertical acceleration of wagon headstock reaches value of 9.5 g. For this purpose the wagon was running over wedges of various heights 28

DAKO DETECTING SYSTEM The tests were carried out under two load conditions: unladen (25,6 t) laden (77,5 t) normal operation test - several test runs at different speeds were performed both on the small and large test circuit at unladen and laden condition test speeds: 50, 60, 70, 80, 90, 100, 120, 132 km/h during normal operation test at unladen and laden condition none of the detectors was activated maximum value of acceleration measured by the parallel accelerometer at unladen weight was 2.6 g maximum value of acceleration measured by the parallel accelerometer at laden weight was 4.4 g 29

DAKO DETECTING SYSTEM test runs over wedges - test wedges of various heights were put on both rails and the test wagon ran over them at different speeds at unladen and laden weight. The wagon was pushed by the locomotive until the first wheelset ran over wedges wedge height: 4, 6, 15, 30 mm test speed: 5, 10, 15, 20, 25, 30, 40 km/h 30

DAKO DETECTING SYSTEM during runs over wedges at unladen weight none of the detector was activated during runs over wedges at laden weight the detector above the first wheelset was activated for wedge height 30 mm and speed 20 km/h 31

DAKO DETECTING SYSTEM Test runs over wedges results Wedge height [mm] Speed [km/h] Vertical acceleration 10 1.1 g 4 20 1.3 g 25 2.3 g 20 1.5 g 6 40 2.6 g 5 1.3 g 15 15 2.0 g 30 10 2.0 g Wedge height [mm] Speed [km/h] Vertical acceleration 4 10 1.8 g 6 20 2.8 g 15 5 5.5 g 10 7.0 g 30 15 7.1 g 20 9.3 g After successful tests the DAKO device is ready for a trial operation. 32

REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS THANK YOU FOR YOUR ATTENTION 33