A Viewpoint on the Decoding of the Quadratic Residue Code of Length 89

Similar documents
TECHNICAL REPORTS from the ELECTRONICS GROUP at the UNIVERSITY of OTAGO. Table of Multiple Feedback Shift Registers

Capacity-Achieving Accumulate-Repeat-Accumulate Codes for the BEC with Bounded Complexity

Capacity-Achieving Accumulate-Repeat-Accumulate Codes for the BEC with Bounded Complexity

INDUCTION motors are widely used in various industries

Optimal Power Flow Formulation in Market of Retail Wheeling

Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles

Recent Developments in Coding for Distributed Storage

Cost-Efficiency by Arash Method in DEA

Design of Integrated Power Module for Electric Scooter

Vibration Analysis of Gear Transmission System in Electric Vehicle

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online:

ACTIVE NOISE CONTROL EXPERIMENTS IN A FORK-LIFT TRUCK CABIN

IMA Preprint Series # 2035

Fourth Grade. Multiplication Review. Slide 1 / 146 Slide 2 / 146. Slide 3 / 146. Slide 4 / 146. Slide 5 / 146. Slide 6 / 146

The Fundamentals of DS3

Fourth Grade. Slide 1 / 146. Slide 2 / 146. Slide 3 / 146. Multiplication and Division Relationship. Table of Contents. Multiplication Review

Data envelopment analysis with missing values: an approach using neural network

Complex Power Flow and Loss Calculation for Transmission System Nilam H. Patel 1 A.G.Patel 2 Jay Thakar 3

Some new distance-4 constant weight codes

Integrated Control Strategy for Torque Vectoring and Electronic Stability Control for in wheel motor EV

A Simple Approach for Hybrid Transmissions Efficiency

Algebraic Integer Encoding and Applications in Discrete Cosine Transform

China. Keywords: Electronically controled Braking System, Proportional Relay Valve, Simulation, HIL Test

Optimization of Seat Displacement and Settling Time of Quarter Car Model Vehicle Dynamic System Subjected to Speed Bump

VECTOR CONTROL OF THREE-PHASE INDUCTION MOTOR USING ARTIFICIAL INTELLIGENT TECHNIQUE

Unit 1 Chapter 3 Factors and Products

DEVELOPMENT OF A CONTROL MODEL FOR A FOUR WHEEL MECANUM VEHICLE. M. de Villiers 1, Prof. G. Bright 2

Low-power TPMS Data Transmission Technique Based on Optimal Tire Condition

Some new distance-4 constant weight codes

Intelligent Power Management of Electric Vehicle with Li-Ion Battery Sheng Chen 1,a, Chih-Chen Chen 2,b

Benchmarking Inefficient Decision Making Units in DEA

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors

Modeling, Design and Simulation of Active Suspension System Frequency Response Controller using Automated Tuning Technique

Optimization of Three-stage Electromagnetic Coil Launcher

Abstract- In order to increase energy independency and decrease harmful vehicle emissions, plug-in hybrid electric vehicles

Predicting Solutions to the Optimal Power Flow Problem

\<0$ Ö25. Binary Weight Distributions of Low Rate Reed-Solomon Codes. Charles T. Retter. ARL-TR-915 December 1995 ARMY RESEARCH LABORATORY

Multi-Line power Flow Control Using Interline Power Flow Controller (IPFC) in Power Transmission system

SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x

The Application of UKF Algorithm for type Lithium Battery SOH Estimation

The Fundamentals of DS3

837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines

Numerical Optimization of HC Supply for HC-DeNOx System (2) Optimization of HC Supply Control

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

Efficiency Increment on 0.35 mm and 0.50 mm Thicknesses of Non-oriented Steel Sheets for 0.5 Hp Induction Motor

Capacity Design of Supercapacitor Battery Hybrid Energy Storage System with Repetitive Charging via Wireless Power Transfer

Battery Charger for Wind and Solar Energy Conversion System Using Buck Converter

Investigation in to the Application of PLS in MPC Schemes

International Journal of Advance Engineering and Research Development A THREE PHASE SENSOR LESS FIELD ORIENTED CONTROL FOR BLDC MOTOR

A New Control Algorithm for Doubly Fed Induction Motor with Inverters Supplied by a PV and Battery Operating in Constant Torque Region

Identification of a driver s preview steering control behaviour using data from a driving simulator and a randomly curved road path

PID-Type Fuzzy Control for Anti-Lock Brake Systems with Parameter Adaptation

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System)

United Power Flow Algorithm for Transmission-Distribution joint system with Distributed Generations

Fractional Factorial Designs with Admissible Sets of Clear Two-Factor Interactions

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Design and Analysis of 32 Bit Regular and Improved Square Root Carry Select Adder

Available online at ScienceDirect. Energy Procedia 36 (2013 )

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle

Research Article. ISSN (Print)

PREDICTION OF FUEL CONSUMPTION

Study on Flow Characteristic of Gear Pumps by Gear Tooth Shapes

Aerodynamically induced power loss in hard disk drives

Kinematics and Force Analysis of Lifting Mechanism of Detachable Container Garbage Truck

Implementation Soft Switching Bidirectional DC- DC Converter For Stand Alone Photovoltaic Power Generation System

Analysis and Design of a Isolated Bidirectional DC-DC Converter for Hybrid Systems

DOT HS Summary of Statistical Findings November Statistical Methodology to Make Early Estimates of Motor Vehicle Traffic Fatalities

A Method for Determining the Generators Share in a Consumer Load

Analysis of Switch Gear and Validation

Induction Motor Condition Monitoring Using Fuzzy Logic

Notes. January February March Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa

Numerical Simulation of the Thermoelectric Model on Vehicle Turbocharged Diesel Engine Intercooler

Available online at ScienceDirect. Energy Procedia 42 (2013 ) Mediterranean Green Energy Forum MGEF-13

Analysis of minimum train headway on a moving block system by genetic algorithm Hideo Nakamura. Nihon University, Narashinodai , Funabashi city,

Vehicle's Velocity Time Series Prediction Using Neural Network

Study of Motoring Operation of In-wheel Switched Reluctance Motor Drives for Electric Vehicles

Modeling, Design and Simulation of Active Suspension System Root Locus Controller using Automated Tuning Technique.

MOTOR VEHICLE HANDLING AND STABILITY PREDICTION

Fig. 1 Classification of rotor position estimation methods

IN EVERY application where batteries are deployed, the state

The Institute of Mechanical and Electrical Engineer, xi'an Technological University, Xi'an

Simulation of Voltage Stability Analysis in Induction Machine

Sliding Mode Control of Boost Converter Controlled DC Motor

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID

Transverse Distribution Calculation and Analysis of Strengthened Yingjing Bridge

Dual-Rail Domino Logic Circuits with PVT Variations in VDSM Technology

arxiv: v1 [physics.atom-ph] 12 Feb 2018

Steering performance of an inverted pendulum vehicle with pedals as a personal mobility vehicle

Study on V2V-based AEB System Performance Analysis in Various Road Conditions at an Intersection

Analysis and Design of Independent Pitch Control System

An Adaptive Nonlinear Filter Approach to Vehicle Velocity Estimation for ABS

Apollonian circle packings: Dynamics and Number theory

Improving CERs building

Study on State of Charge Estimation of Batteries for Electric Vehicle

Comparison of Karanja, Mahua and Polanga Biodiesel Production through Response Surface Methodology

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method

A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE

Transcription:

International Journal of Networks and Communications 2012, 2(1): 11-16 DOI: 10.5923/j.ijnc.20120201.02 A Viewpoint on the Decoding of the Quadratic Residue Code of Length 89 Hung-Peng Lee Department of Computer Science and Information Engineering, Fortune Institute of Technology, Kaohsiung, 83160, Taiwan Abstract A viewpoint on the weight-6 error patterns of the algebraic decoding of the (89, 45, 17) quadratic residue (QR) code with reducible generator polynomial, proposed by Truong et al. (2008), is presented in this paper. Some weight-6 error patterns will cause a zero value in the syndrome S 1. However, in this case, the inverse-free Berlekamp-Massey (IFBM) algorithm is still valid to determine the error-locator polynomial of six errors in the finite field GF(2 11 ). An example demonstrates the fact. Keywords Quadratic Residue Code, Algebraic Decoding Algorithm, Error Pattern, Syndrome 1. Introduction The famous QR codes, introduced by Prange [1] in 1957, are cyclic BCH codes with code rates greater than or equal to one-half. In addition, the codes generally have large minimum distances so that most of the known QR codes are the best-known codes. In the past decades, several decoding skills have been developed to decode the binary QR codes. The ADAs most used to decode the QR codes are the Newton identities with either Sylvester resultants [3-6,10-11] or Gröbner bases [13], or IFBM algorithm [7-9,12] to determine the error-locator polynomial. The ADA of the (89, 45, 17) QR code [9,12] can correct up to eight errors in GF(2 11 ), because the error-correcting capability of the code is t = ( d 1) / 2 = (17 1) / 2 = 8 errors, where x denotes the greatest integer less than or equal to x, and d = 17 is the minimum Hamming distance of the code. In each decoding procedure, the IFBM algorithm[14] is used to determine the error-locator polynomial of the received sequence[9,12]. Finally, the Chien algorithm[15] is applied to find the roots of the error-locator polynomial. For the QR codes with irreducible generator polynomial, syndrome S 1 = 0 means that the received word has no errors. However, for the (89, 45, 17) QR codes, the syndrome S 1 = 0 means that S 2, S 4,, are all equal to zero and the zero S 1 does not cause a decoding failure in decoding weight-6 error patterns while using the IFBM algorithm to determine the error-locator polynomial. The rest parts of the paper are organized as follows: The background of (89, 45, 17) QR codes is briefly given in Section 2. The discussion of the weight-6 error patterns is * Corresponding author: hpl@center.fotech.edu.tw (Hung-Peng Lee) Published online at http://journal.sapub.org/ijnc Copyright 2012 Scientific & Academic Publishing. All Rights Reserved presented in Section 3. Finally, this paper concludes with a brief summary in Section 4. 2. Background of the Binary (89, 45, 17) QR Code The codeword of the binary (n, k, d) QR code is defined algebraically as a multiple of its generator polynomial g(x) with coefficients in GF(2). Let the length of the code n be a prime number of the form n = 8m ± 1, where m is a positive integer and m be the smallest positive integer such that 2 m 1 (mod n). Thus, GF(2 m ) is the extension field of GF(2). Also, let k = (n+1)/2 be the message length and d be the minimum Hamming distance or Hamming weight of the code. The generator polynomial as a cyclic code is given by i g = ( x β ), (1) i Q n where the element β is a primitive nth root of unity in GF(2 m ) and Q n denotes the set of quadratic residues given by Q n = {j j x 2 mod n for 1 x (n 1)/2}. The set Q n can thus be represented as a disjoint union of cyclotomic cosets, modulo n. These cyclotomic cosets are defined as Q r = {r2 j j = 0, 1,, n r 1}, where n r is the r smallest positive integer such that r2 r mod n, n r divides (n 1)/2, and r is the smallest element in Q r. The element r is called the representative element of the cyclotomic cosets Q r. The set S, consisting of all representatives of the QR code, is called the base set of the QR code. These definitions and properties cause the equality Q n = r S Q r relating Q n to the cyclotomic cosets, modulo n. Let an element α GF(2 11 ) be a root of the primitive polynomial p(x) = x 11 2 + 1. Then, α generates the multiplicative group of nonzero elements in GF(2 11 ). Also, let an element β = α u, where u = (2 m 1)/n = (2 11 1)/89 = 23, is a primitive 89th n

12 Hung-Peng Lee: A Viewpoint on the Decoding of the Quadratic Residue Code of Length 89 root of unity in GF(2 11 ); that is, β = α 23. The base set of this code is S = {1, 3, 5, 9, 11, 13, 19, 33} and r S. Therefore, the eight cyclotomic cosets Q r are shown in Table 1. Table 1. The cyclotomic cosets of the (89, 45, 17) QR code r Q r r Q r 1 1,2,4,8,16,32,64,39,78,67,45 3 3,6,12,24,48,7,14,28,56,23,46 5 5,10,20,40,80,71,53,17,34,68,47 9 9,18,36,72,55,21,42,84,79,69,49 11 11,22,44,88,87,85,81,73,57,25,50 13 13,26,52,15,30,60,31,62,35,70,51 19 19,38,76,63,37,74,59,29,58,27,54 33 33,66,43,86,83,77,65,41,82,75,61 Let T = {1, 5, 9, 11} and r T, the quadratic residue set of the code is given by Q = Q Q Q Q 89 1 5 9 11 = {1,2,4,8,16,32,64,39,78,67,45,5,10,20,40,80, 71,53,17,34,68,47,9,18,36,72,55,21,42,84, 79,69,49,11,22,44,88,87,85,81,73,57,25,50}. The minimal polynomial g r (x) can also be expressed as = 10 i = 0 2 r gr i ( x β ) ; therefore, the g(x) consists of four minimum polynomials given below: g( x) = i Q 89 = x x x 44 31 22 13 ( x β ) = g g 42 30 21 11 i 29 10 41 20 1 7 39 28 19 g g x + 1. Since the codeword of the QR code is a multiple of the g(x), the codeword polynomial of the QR code of length 89 can be represented by = 88 = 0 i C i Ci x = m( x) g( x ), where C i GF(2) for 0 i 88, and m(x) = m 44 x 44 + + m 1 x + m 0 denotes information polynomial, where m i GF(2) for 0 i 44. In such a representation, this type of codeword is called the non-systematic encoding. In practice, the encoding procedure is often implemented by the use of systematic encoding. Let p(x) = p 43 x 43 + + p 1 x + p 0 be the parity-check polynomial, where p i GF(2) for 0 i 43. Also, let m(x)x n-k divide by g(x), then we get the following identity: m(x)x n-k = q(x)g(x) + d(x) (4) Multiplying both sides of (4) by x k and using x n = 1, Then, it yields d(x)x k + m(x) = (q(x)x k )g(x). The term d(x)x k + m(x), which is a multiple of g(x), has m(x) in its lower k bits and p(x) = d(x)x k in its higher n k bits. Thus, the codeword can be represented by the equation below. c(x) = d(x)x k + m(x) = p(x) + m(x) (5) As shown in (5), this form of the codeword is called systematic encoding. Now, let a codeword be transmitted through an additive white Gaussian noise (AWGN) channel, and obtain a received word of the form r(x) = c(x) + e(x), where e(x) = e 88 x 88 + + e 1 x + e 0 is the error polynomial and e i GF(2). For simplification, the polynomial form can be expressed as the vector form. For example, c(x) can be expressed as c = (c 88,, c 1, c 0 ). The syndromes or known syndromes of the code are defined by i i i j S r β ) = e( β ) = e ( β ), (6) 5 5 37 26 18 3 9 34 25 16 88 i = ( j= 0 2 11 j 33 24 15 + 23 where i (mod 89) Q 89. If i Q 89, the syndromes are called 14 + + (2) (3) unknown syndromes. All the known and unknown syndromes can be expressed as some powers of S 1, S 5, S 9, S 11, and S 3, S 13, S 19, S 33, called the primary known and unknown syndromes, respectively. Notice that S 0 = 0 or 1 depends on the fact that v is even or odd, where v t is the actual number of errors to be corrected and 1 v 8. If there are v errors in r(x), then e(x) has v nonzero terms v over GF(2); that is, r 1 e = x r2 + + x r, where 0 r 1 < r 2 <... < r v n 1. For i Q n, the syndrome can be written as i i i S i = X1 + X 2 + + X v. Assuming that v errors occur, the error-locator polynomial L v (x) is defined by v Lv = (1 X j x) = σv x + + σ1x + σ0, (7) r j= 1 j where X j = β are called the error locators, the σ j are called the elementary symmetric functions for 1 j v, and σ 0 = 1. The roots of L v (x) are the inverse of the v error locators {X j }. To determine the error-locator polynomial, the steps of the IFBM algorithm [14] are summarized as below: 1. Initialize k = 0, μ (0) (x) = 1, λ (0) (x)=1, l (0) = 0, γ (0) = 1. 2. Set k = k + 1. If k > 2t, then go to stop. Otherwise Compute ( k 1) l j = 0 j k j v δ = µ S, (8) where μ (k 1) j is the coefficient of μ (k 1) (x). 3. Compute μ (k) (x) = γ (k 1) μ (k 1) (x) δ (k) λ (k 1) (x)x. (9) 4. Compute xλ, if δ = 0 or 2l > k 1 λ = µ, if δ 0 and 2l k 1 l ( k l = k l 1), if δ, if δ = 0 or 2l 0 and 2l > k 1 k 1 γ, if δ = 0 or 2l > k 1 γ = δ, if δ 0 and 2l k 1 5. Set k = k + 1. If k 2t, then go to 2. Otherwise stop. 3. Discussion of the Weight-6 Error Patterns (10) The ADA given in [9,12] utilized the IFBM algorithm to determine the error-locator polynomial. In order to apply the IFBM algorithm, the consecutive syndromes S i for 1 i 16 need to be computed. Among them, the unknown syndromes S 3, S 6, S 7, S 12, S 13, S 14, and S 15 can be expressed as some powers of the primary unknown syndrome S 3 or S 13 that cannot be computed directly from the received word. The determination of the S 3 and S 13 is given in [9,12]. For the (89, 45, 17) QR code, a C++ program shows that over 200,000 weight-6 error patterns will cause a zero S 1. However, the zero S 1 does not cause a decoding failure while using the IFBM algorithm to determine the error-locator polynomial. The following example demonstrates the fact. Example 1

International Journal of Networks and Communications. 2012; 2(1): 11-16 13 If a message m(x) = 10, by (4) and (5), then one obtains the systematic codeword c(x) = x 86 85 84 81 77 + x 75 72 65 62 60 56 53 52 51 47 45 + x 3. If there is a weight-6 error pattern e(x) = x 26 15 + x 3 2 + 1 occurred in the received word, then one obtains r(x) = x 86 85 84 81 77 75 72 65 62 + x 60 56 53 52 51 47 45 26 15 2 + 1. By (6), one obtains S 1 = S 2 = S 4 = S 8 = 0, S 3 = 57, S 5 = 746, S 6 = S 3 2 = 1345, S 7 = S 3 32 = 1938, S 9 = 711, S 10 = S 5 2 = 1766, S 11 = 376, S 12 = S 3 4 = 686, where the values of all syndromes are expressed in decimal number. Then, by using the IFBM algorithm to obtain the error-locator polynomial L 6 (x), one has the following detailed steps. 1. Define the initial values as follows: k = 0, μ (0) (x) = 1, λ (0) (x)=1, l (0) = 0, and γ (0) = 1. 2. Set k = 1. By (8), one has δ (1) = 0. 3. By (9), compute μ (1) (x) = γ (0) μ (0) (x) δ (1) λ (0) (x)x = γ (0) μ (0) (x) = 1 1 = 1. 4. By (10), δ (1) = 0. Then, compute λ (1) (x) = xλ (0) (x) = x1 = x, l (1) = l (0) = 0, and γ (1) = γ (0) = 1, respectively. Go to step 2. 2. Set k = 2. By (8), one has δ (2) = 0. 3. By (9), compute μ (2) (x) = γ (1) μ (1) (x) δ (2) λ (1) (x)x = γ (1) μ (1) (x) = 1 1 = 1. 4. By (10), δ (2) = 0. Then, compute λ (2) (x) = xλ (1) (x) =x 2, l (2) = l (1) = 0, and γ (2) = γ (1) = 1, respectively. Go to step 2. 2. Set k = 3. By (8), one has δ (2) = S 3. 3. By (9), compute μ (3) (x) = γ (2) μ (2) (x) δ (3) λ (2) (x)x = 1 1 S 3 x 2 x = 1 + S 3 x 3. Notice that the addition and subtraction are the same in GF(2). 4. By (10), δ (3) = S 3 0 and 2l (2) = 0 k 1 = 3 1 = 2. Then, compute λ (3) (x) = μ (k-1) (x) = μ (2) (x) = 1, l (3) = k l (2) = 3 0 = 3, and γ (3) = δ (3) = S 3, respectively. Go to step 2. 2. Set k = 4. By (8), one has δ (4) = 0. 3. By (9), compute μ (4) (x) = γ (3) μ (3) (x) δ (4) λ (3) (x)x = γ (3) μ (3) (x) = S 3 (1 + S 3 x 3 ) = S 3 + S 3 2 x 3. 4. By (10), δ (4) = 0. Then, compute λ (4) (x) = xλ (3) (x) = x, l (4) = l (3) = 3, and γ (4) = γ (3) = S 3, respectively. Go to step 2. 2. Set k = 5. By (8), one has δ (5) = S. 3. By (9), compute μ (5) (x) = γ (4) μ (4) (x) δ (5) λ (4) (x)x = S 3 (S 3 +S 3 2 x 3 ) S xx = S 3 2 + S x 2 + S 3 3 x 3. 4. By (10), 2l (4) = 6 > k 1 = 5 1 = 4. Then, compute λ (5) (x) = xλ (4) (x) = xx = x 2, l (5) = l (4) = 3, and γ (5) = γ (4) = S 3, respectively. Go to step 2. 2. Set k = 6. By (8) and S 6 = S 3 2, one has δ (6) = 0. 3. By (9), compute μ (6) (x) = γ (5) μ (5) (x) δ (6) λ (5) (x)x = γ (5) μ (5) (x) = S 3 (S 3 2 + S x 2 + S 3 3 x 3 ) = S 3 3 + S 3 2 S 5 x 2 + S 3 4 x 3. 4. By (10), δ (6) = 0. Then, compute λ (6) (x) = xλ (5) (x) = x 3, l (6) = l (5) = 3, and γ (6) = γ (5), respectively. Go to step 2. 2. Set k = 7. By (8) and S 7 = S 3 32, one has δ (7) = S 3 35 + S 3 2 S 5 2. 3. By (9), compute μ (7) (x) = γ (6) μ (6) (x) δ (7) λ (6) (x)x = S 3 (S 3 3 + S 3 2 S 5 x 2 + S 3 4 x 3 ) (S 3 35 + S 3 2 S 5 2 )x 3 x = S 3 4 + S 3 x 2 + S 3 5 x 3 + (S 3 35 + S 3 2 S 5 2 )x 4. 4. By (10), δ (7) 0 and 2l (6) = 6 k 1 = 7 1 = 6. Then, compute λ (7) (x) = μ (6) (x) = S 3 3 + S 3 2 S 5 x 2 + S 3 4 x 3, l (7) = k l (6) = 7 3 = 4, and γ (7) = δ (7), respectively. Go to step 2. 2. Set k = 8. By (8), one has δ (8) = 0. 3. By (9), compute μ (8) (x) = γ (7) μ (7) (x) δ (8) λ (7) (x)x = γ (7) μ (7) (x) = (S 35 3 + S 2 3 S 2 5 )(S 4 3 + S 3 x 2 + S 5 3 x 3 + (S 35 3 + S 2 3 S 2 5 )x 4 ) = (S 39 3 + S 6 3 S 2 5 ) + (S 38 S 5 3 S 3 5 )x 2 + (S 40 3 + S 7 3 S 2 5 )x 3 + (S 70 3 + S 4 3 S 4 5 )x 4. 4. By (10), δ (8) = 0. Then, compute λ (8) (x) = xλ (7) 3 (x) = x(s 3 + S 2 x 2 + S 4 3 x 3 ) = S 3 3 x + S 2 x 3 + S 4 3 x 4, l (8) = l (7) = 4, and γ (8) = γ (7) = S 35 3 + S 2 3 S 2 5, respectively. 2. Set k = 9. By (8), one has δ (9) = S 39 3 S 9 + S 6 3 S 2 S 37 3 +S 42 3 + S 9 3 S 2 5 + S 4 5. 3. By (9), compute μ (9) (x) = γ (8) μ (8) (x) δ (9) λ (8) (x)x = (S 35 3 + S 2 3 S 2 5 )((S 39 3 + S 6 3 S 2 5 ) + (S 38 S 5 3 S 3 5 )x 2 (S 40 3 + S 7 3 S 2 5 )x 3 + (S 70 3 + S 4 3 S 4 5 )x 4 ) (S 39 3 S 9 + S 6 3 S 2 S 37 3 S 3 5 +S 42 3 + S 9 2 + S 4 5 )(S 3 3 x + S 2 x 3 + S 4 3 x 4 )x = (S 74 3 + S 8 3 S 4 5 ) + (S 73 S 42 3 S 9 + S 9 3 S 2 S 40 3 S 3 5 + S 45 3 + S 12 3 S 2 5 )x 2 + (S 75 3 + S 9 3 S 4 5 )x 3 + (S 105 3 + S 72 3 S 2 5 + S 41 3 S S 8 3 S 3 S 44 S 11 3 S 3 5 )x 4 + (S 43 3 S 9 + S 10 3 S 2 S 41 3 S 3 5 + S 46 3 + S 13 3 S 2 5 + S 8 5 )x 5. 4. By (10), δ (9) 0 and 2l (8) = 8 k 1 = 9 1 = 8. Then, compute λ (9) (x) =μ (8) (x) = (S 39 3 + S 6 3 S 2 5 ) + (S 38 S 5 3 S 3 5 )x 2 + (S 40 3 + S 7 3 S 2 5 )x 3 + (S 70 3 + S 4 3 S 4 5 )x 4, l (9) = k l (8) = 9 4 = 5, and γ (9) = δ (9), respectively. Go to step 2. 2. Set k = 10. By (8) and S 10 = S 2 5, one has δ (10) = 0. 3. By (9), compute μ (10) (x) = γ (9) μ (9) (x) δ (10) λ (9) (x)x = γ (9) μ (9) (x) = (S 39 3 S 9 + S 6 3 S 2 S 37 3 S 3 5 +S 42 3 + S 9 3 S 2 5 + S 4 5 )((S 74 3 + S 8 3 S 4 5 ) + (S 73 S 42 3 S 9 + S 9 3 S 2 S 40 3 S 3 5 + S 45 3 + S 12 3 S 2 5 )x 2 + (S 75 3 + S 9 3 S 4 5 )x 3 + (S 105 3 + S 72 3 S 2 5 + S 41 S 9 + S 8 3 S 3 S 44 S 11 3 S 3 5 )x 4 + (S 43 3 S 9 + S 10 3 S 2 S 41 3 + S 46 3 + S 13 3 S 2 5 + S 8 5 )x 5 ) = (S 113 3 S 9 + S 116 3 + S 12 3 S 9 5 + S 17 3 S 6 5 + S 45 3 S 7 5 + S 50 3 S 4 5 + S 78 5 + S 83 3 S 2 5 + S 111 3 S 3 5 + S 14 3 S 6 S 47 3 S 4 S 80 3 S 2 ) + (S 115 S 112 3 S S 110 3 S 4 5 + S 87 3 + S 82 3 S 3 5 + S 81 3 S 2 9 + S 79 3 S 3 S 49 5 + S 46 S 44 8 S 21 4 S 16 7 S 15 3 S 4 2 S 13 3 S 7 )x 2 + (S 117 3 + S 9 S 114 3 + S 112 3 S 3 5 + S 84 3 S 2 5 + S 9 S 81 3 S 2 5 + S 79 5 + S 51 3 S 4 5 + S 9 S 48 3 S 4 5 + S 46 3 S 7 5 + S 18 3 S 6 5 + S 9 S 15 3 S 6 5 + S 13 3 S 9 5 )x 3 + (S 147 3 + S 144 3 S 9 + S 142 3 S 3 5 + S 86 S 80 S 2 9 + S 76 3 S 7 5 + S 20 5 + S 15 3 S 8 5 + S 14 5 S 2 9 + S 12 3 S 8 )x 4 + (S 88 3 + S 85 3 S 9 + S 80 3 S 3 S 78 3 S 6 5 + S 52 3 S 2 S 49 3 S 2 5 S 2 9 + S 47 + S 45 3 S 9 + S 42 3 S 2 9 + S 40 3 S 3 S 22 3 S 4 5 + S 16 3 S 4 5 S 2 9 + S 12 3 S 10 5 + S 12 3 S 2 S 9 3 S 2 5 S 2 9 + S 7 )x 5. 4. By (10), δ (10) = 0. Then, compute λ (10) (x) = xλ (9) (x) = (S 39 3 + S 6 3 S 2 5 )x + (S 38 S 5 3 S 3 5 )x 3 + (S 40 3 + S 7 3 S 2 5 )x 4 70 + (S 3 + S 4 3 S 4 5 )x 5, l (10) = l (9) = 5, and γ (10) = γ (9), respectively. 2. Set k = 11. By (8), one has δ (11) = S 179 3 + S 176 3 S 9 + S 174 3 S 3 5 + S 118 S 11 S 116 3 + S 115 3 S S 11 S 113 3 S 9 + S 11 S 111 3 S 3 5 + S 110 3 S 4 S 108 3 S 7 5 + S 90 3 + S 87 3 S 9 + S 84 3 S 2 9 + S 11 S 83 3 S 2 5 + S 82 3 S 3 S 81 3 S 3 9 + S 80 3 S 6 5 + S 11 S 80 3 S 2 S 79 3 S 3 5 S 2 9 + S 11 S 78 5 + S 52 5 + S 11 S 50 3 S 4 5 + S 49 S 47 3 S 8 5 + S 11 S 47 3 S 4 S 11 S 45 3 S 7 5 + S 24 3 S 4 5 + S 21 3 S 4 S 18 3 S 4 5 S 2 9 + S 11 S 17 3 S 6 5 + S 16 3 S 7 S 15 3 S 4 5 S 3 9 + S 14 3 S 10 5 + S 11 S 14 3 S 6 S 13 3 S 7 5 S 2 9 + S 11 S 12 3 S 9 5. 3. μ (11) (x) = γ (10) μ (10) (x) δ (11) λ (10) (x)x = (S 39 3 S 9 + S 6 3 S 2 S 37 3 S 3 5 +S 42 3 + S 9 3 S 2 5 + S 4 5 )((S 113 3 S 9 + S 116 3 + S 12 3 S 9 5 + S 17 3 S 6 5 + S 45 3 S 7 5 + S 50 3 S 4 5 + S 78 5 + S 83 3 S 2 5 + S 111 3 S 3 5 + S 14 3 S 6 S 47 3 S 4 S 80 3 S 2 ) + (S 115 S 112 3 S S 110 3 S 4 5 + S 87 3 + S 82 3 S 3 5 + S 81 3 S 2 9 + S 79 3 S 3 S 49 5 + S 46 S 44 3 S 8 5 + S 21 3 S 4 5 + S 16 3 S 7 5 + S 15 3 S 4 5 S 2 9 + S 13 3 S 7 )x 2 + (S 117 3 + S 9 S 114 3 + S 112 3 S 3 5 + S 84 3 S 2 5 + S 9 S 81 3 S 2 5 + S 79 5 + S 51 3 S 4 5 + S 9 S 48 3 S 4 5 +

14 Hung-Peng Lee: A Viewpoint on the Decoding of the Quadratic Residue Code of Length 89 S 46 3 S 7 5 + S 18 3 S 6 5 + S 9 S 15 3 S 6 5 + S 13 3 S 9 5 )x 3 + (S 147 3 + S 144 3 S 9 + S 142 3 S 3 5 + S 86 S 80 S 2 9 + S 76 3 S 7 5 + S 20 5 + S 15 3 S 8 5 + S 14 5 S 2 9 + S 12 3 S 8 )x 4 + (S 88 3 + S 82 3 S 2 9 + S 78 3 S 6 5 + S 22 3 S 4 5 + S 16 3 S 4 5 S 2 9 + S 12 3 S 10 5 )x 5 ) (S 179 3 + S 176 3 S 9 + S 174 3 S 3 5 + S 118 S 11 S 116 3 + S 115 3 S S 11 S 113 3 S 9 + S 11 S 111 3 S 3 5 + S 110 3 S 4 S 108 3 S 7 5 + S 90 3 + S 87 3 S 9 + S 84 3 S 2 9 + S 11 S 83 3 S 2 5 + S 82 3 S 3 S 81 3 S 3 9 + S 80 3 S 6 5 + S 11 S 80 3 S 2 S 79 3 S 3 5 S 2 9 + S 11 S 78 5 + S 52 5 + S 11 S 50 3 S 4 5 + S 49 S 47 3 S 8 5 + S 11 S 47 3 S 4 S 11 S 45 3 S 7 5 + S 24 3 S 4 5 + S 21 3 S 4 S 18 3 S 4 5 S 2 9 + S 11 S 17 3 S 6 5 + S 16 3 S 7 S 15 3 S 4 5 S 3 9 + S 14 3 S 10 5 + S 11 S 14 3 S 6 S 13 3 S 7 5 S 2 9 + S 11 S 12 3 S 9 5 )((S 39 3 + S 6 3 S 2 5 )x + (S 38 S 5 3 S 3 5 )x 3 + (S 40 3 + S 7 3 S 2 5 )x 4 + (S 70 3 + S 4 3 S 4 5 )x 5 )x = (S 158 3 + S 16 3 S 14 5 + S 26 3 S 8 5 + S 148 3 S 6 5 + S 152 3 S 2 9 + S 20 3 S 8 5 S 2 9 ) + (S 218 3 + S 215 3 S 9 + S 213 3 S 3 5 + S 185 3 S 2 5 + S 182 3 S 2 S 180 5 + S 11 S 155 3 + S 154 3 S S 11 S 152 3 S 9 + S 151 S 2 9 + S 11 S 150 3 S 3 5 + S 149 3 S 4 S 86 3 S 8 5 + S 83 3 S 8 S 81 3 S 11 5 + S 53 3 S 10 5 + S 50 3 S 10 S 48 3 S 13 5 + S 11 S 23 3 S 8 5 + S 22 3 S 9 S 11 S 20 3 S 8 S 19 3 S 9 5 S 2 9 + S 11 S 18 11 + S 17 3 S 12 )x 2 + (S 159 3 + S 153 3 S 2 9 + S 149 3 S 6 5 + S 27 3 S 8 5 + S 21 3 S 8 5 S 2 9 + S 17 3 S 14 5 )x 3 + (S 217 S 214 3 S S 212 3 S 4 189 5 + S 3 + S 184 3 S 3 5 + S 183 3 S 2 9 + S 181 3 S 3 S 11 S 154 S 153 3 S 2 S 11 S 151 3 S S 150 3 S 2 5 S 2 9 + S 11 S 149 3 S 4 5 + S 148 S 85 3 S 9 5 + S 82 3 S 9 S 80 3 S 12 5 + S 57 3 S 8 5 + S 52 3 S 11 5 + S 51 3 S 8 5 S 2 9 + S 49 3 S 11 S 11 S 22 3 S 9 5 + S 21 3 S 10 S 11 S 19 3 S 9 S 18 3 S 10 2 + S 11 S 17 3 S 12 5 + S 16 3 S 13 )x 4 + (S 219 3 + S 9 S 216 3 + S 214 3 S 3 5 + S 186 3 S 2 5 + S 9 S 183 3 S 2 5 + S 181 5 + S 158 S 11 S 156 3 + S 9 S 155 + S 11 S 9 S 153 3 + S 11 S 151 3 S 3 5 + S 9 S 150 3 S 4 5 + S 148 3 S 7 5 + S 87 3 S 8 5 + S 9 S 84 3 S 8 5 + S 82 3 S 11 5 + S 54 3 S 10 5 + S 9 S 51 3 S 10 5 + S 49 3 S 13 5 + S 26 9 + S 11 S 24 8 S 9 S 23 9 S 11 S 9 S 21 8 S 11 S 19 11 S 9 S 18 3 S 12 5 + S 16 3 S 15 5 )x 5 + (S 249 3 + S 246 3 S 9 + S 244 3 S 3 5 + S 188 S 11 S 186 3 + S 185 3 S S 183 3 S 4 5 + S 11 S 183 3 S 9 + S 11 S 181 3 S 3 160 5 + S 3 + S 157 3 S 9 + S 154 3 S 2 9 + S 11 S 153 3 S 2 5 + S 152 3 S 3 S 151 3 S 3 9 + S 150 3 S 6 5 + S 11 S 150 3 S 2 S 149 3 S 3 5 S 2 9 + S 11 S 148 5 + S 117 3 S 8 5 + S 114 3 S 8 S 112 3 S 11 5 + S 56 3 S 9 5 + S 11 S 54 3 S 8 5 + S 53 3 S 9 S 51 3 S 12 5 + S 11 S 51 3 S 8 S 11 S 49 3 S 11 5 + S 28 3 S 8 5 + S 25 3 S 8 S 22 3 S 8 5 S 2 9 + S 11 S 21 3 S 10 5 + S 20 3 S 11 S 19 3 S 8 5 S 3 9 + S 18 3 S 14 5 + S 11 S 18 3 S 10 S 17 3 S 11 5 S 2 9 + S 11 S 16 3 S 13 5 )x 6. 4. By (10), δ (11) 0 and 2l (10) = 10 k 1 = 11 1 = 10. Then, compute λ (11) (x) = μ (10) (x), l (11) = k l (10) = 11 5 = 6, and γ (11) = δ (11), respectively. Go to step 2. 2. Set k = 12. One has δ (12) = 0. 3. By (15) in[14], compute the error-locator polynomial of degree 6, μ (12) (x) = γ (11) μ (11) (x) δ (12) λ (11) (x)x = γ (11) μ (11) (x) = (S 179 3 + S 176 3 S 9 + S 174 3 S 3 5 + S 118 S 11 S 116 3 + S 115 3 S S 11 S 113 3 S 9 + S 11 S 111 3 S 3 5 + S 110 3 S 4 S 108 3 S 7 5 + S 90 3 + S 87 3 S 9 + S 84 2 3 S 9 + S 11 S 83 2 S 82 3 S 3 S 81 3 3 S 9 + S 80 6 S 11 S 80 3 S 2 S 79 3 S 3 5 S 2 9 + S 11 S 78 5 + S 52 5 + S 11 S 50 3 S 4 5 + S 49 S 47 3 S 8 5 + S 11 S 47 3 S 4 S 11 S 45 3 S 7 5 + S 24 3 S 4 5 + S 21 3 S 4 S 18 3 S 4 5 S 2 9 + S 11 S 17 3 S 6 5 + S 16 3 S 7 S 15 3 S 4 5 S 3 9 + S 14 3 S 10 5 + S 11 S 14 3 S 6 S 13 3 S 7 5 S 2 9 + S 11 S 12 3 S 9 5 )((S 158 3 + S 16 3 S 14 5 + S 26 3 S 8 5 + S 148 3 S 6 5 + S 152 3 S 2 9 + S 20 3 S 8 5 S 2 9 ) + (S 218 3 + S 215 3 S 9 + S 213 3 S 3 5 + S 185 3 S 2 5 + S 182 3 S 2 S 180 5 + S 11 S 155 3 + S 154 3 S S 11 S 152 3 S 9 + S 151 S 2 9 + S 11 S 150 3 S 3 5 + S 149 3 S 4 S 86 3 S 8 5 + S 83 3 S 8 S 81 3 S 11 5 + S 53 3 S 10 5 + S 50 3 S 10 S 48 13 + S 11 S 23 8 S 22 3 S 9 S 11 S 20 3 S 8 S 19 3 S 9 2 S 11 S 18 3 S 11 5 + S 17 3 S 12 )x 2 + (S 159 3 + S 153 3 S 2 9 + S 149 3 S 6 5 + S 27 3 S 8 5 + S 21 3 S 8 5 S 2 9 + S 17 3 S 14 5 )x 3 + (S 217 S 214 3 S S 212 3 S 4 5 + S 189 3 + S 184 3 S 3 5 + S 183 3 S 2 9 + S 181 3 S 3 S 11 S 154 S 153 3 S 2 S 11 S 151 3 S S 150 3 S 2 2 S 11 S 149 4 S 148 S 85 3 S 9 5 + S 82 3 S 9 S 80 3 S 12 5 + S 57 3 S 8 5 + S 52 3 S 11 5 + S 51 3 S 8 5 S 2 9 + S 49 3 S 11 S 11 S 22 3 S 9 5 + S 21 3 S 10 S 11 S 19 3 S 9 + S 18 3 S 10 5 S 2 9 + S 11 S 17 3 S 12 5 + S 16 3 S 13 )x 4 + (S 219 3 + S 9 S 216 3 + S 214 3 S 3 5 + S 186 3 S 2 5 + S 9 S 183 3 S 2 5 + S 181 5 + S 158 S 11 S 156 3 + S 9 S 155 S 11 S 9 S 153 3 + S 11 S 151 3 S 3 5 + S 9 S 150 3 S 4 5 + S 148 3 S 7 5 + S 87 3 S 8 5 + S 9 S 84 3 S 8 5 + S 82 3 S 11 5 + S 54 3 S 10 5 + S 9 S 51 3 S 10 5 + S 49 13 + S 26 3 S 9 5 + S 11 S 24 3 S 8 5 + S 9 S 23 3 S 9 5 + S 11 S 9 S 21 3 S 8 5 + S 11 S 19 3 S 11 5 + S 9 S 18 3 S 12 5 + S 16 3 S 15 5 )x 5 + (S 249 3 + S 246 3 S 9 + S 244 3 S 3 5 + S 188 S 11 S 186 3 + S 185 3 S S 183 3 S 4 5 + S 11 S 183 3 S 9 + S 11 S 181 3 S 3 160 5 + S 3 + S 157 3 S 9 + S 154 3 S 2 9 + S 11 S 153 3 S 2 5 + S 152 3 S 3 S 151 3 S 3 9 + S 150 3 S 6 5 + S 11 S 150 3 S 2 S 149 3 S 3 5 S 2 9 + S 11 S 148 5 + S 117 3 S 8 5 + S 114 3 S 8 S 112 3 S 11 5 + S 56 3 S 9 5 + S 11 S 54 3 S 8 5 + S 53 3 S 9 S 51 3 S 12 5 + S 11 S 51 3 S 8 S 11 S 49 3 S 11 5 + S 28 3 S 8 5 + S 25 3 S 8 S 22 3 S 8 5 S 2 9 + S 11 S 21 3 S 10 5 + S 20 3 S 11 S 19 3 S 8 5 S 3 9 + S 18 3 S 14 5 + S 11 S 18 3 S 10 S 17 3 S 11 5 S 2 9 + S 11 S 16 3 S 13 5 )x 6 ) = S 11 S 274 3 + S 276 + S 245 3 S 9 + S 334 3 S 9 + S 248 3 + S 337 3 + S 30 3 S 24 5 + S 50 3 S 12 5 + S 63 3 S 22 5 + S 68 3 S 19 5 + S 73 3 S 16 5 + S 78 3 S 13 5 + S 96 3 S 20 5 + S 116 3 S 8 5 + S 124 3 S 21 5 + S 144 3 S 9 5 + S 162 3 S 16 5 + S 182 3 S 4 5 + S 190 3 S 17 5 + S 210 5 + S 228 3 S 12 5 + S 256 3 S 13 5 + S 322 3 S 9 5 + S 327 3 S 6 5 + S 332 3 S 3 5 + S 233 5 3 S 9 + S 236 3 S 4 9 + S 328 3 S 3 9 + S 331 3 S 2 9 + S 11 S 28 3 S 23 5 + S 11 S 33 3 S 20 5 + S 11 S 38 17 S 11 S 43 14 S 11 S 61 21 S 11 S 66 18 S 11 S 71 15 S 11 S 76 12 S 11 S 94 19 S 11 S 99 16 S 11 S 104 3 S 13 5 + S 11 S 109 3 S 10 5 + S 11 S 127 3 S 17 5 + S 11 S 132 3 S 14 5 + S 11 S 137 11 S 11 S 142 8 S 11 S 160 15 S 11 S 165 12 S 11 S 170 9 S 11 S 175 6 S 11 S 193 13 S 11 S 198 10 S 11 S 203 7 S 11 S 208 4 S 11 S 226 11 S 11 S 231 8 S 11 S 236 5 S 11 S 241 2 S 11 S 259 9 S 11 S 264 6 S 11 S 269 3 S 3 5 + S 11 S 265 3 S 3 9 + S 11 S 268 3 S 2 9 + S 32 3 S 21 S 37 3 S 18 + S 42 3 S 15 S 47 3 S 12 S 65 3 S 19 S 75 3 S 13 S 98 3 S 17 + S 103 3 S 14 S 108 3 S 11 S 113 3 S 8 S 126 3 S 18 S 131 3 S 15 S 136 3 S 12 S 141 3 S 9 S 164 3 S 13 S 169 3 S 10 + S 174 3 S 7 S 179 3 S 4 S 192 3 S 14 S 197 3 S 11 S 202 3 S 8 + S 207 S 230 3 S 9 S 235 3 S 6 S 240 3 S 3 S 258 3 S 10 + S 263 3 S 7 S 267 S 3 9 + S 268 3 S 4 S 270 S 2 9 + S 324 3 S 6 + S 29 3 S 21 5 S 2 9 + S 31 3 S 18 5 S 3 9 + S 33 3 S 15 5 S 4 9 + S 35 3 S 12 5 S 5 9 + S 36 3 S 15 3 S 38 3 S 12 4 S 39 3 S 15 2 S 67 3 S 16 2 S 69 3 S 13 3 S 72 3 S 13 2 S 95 3 S 17 2 S 97 3 S 14 3 S 99 3 S 11 4 S 101 3 S 8 5 S 102 3 S 11 3 S 104 3 S 8 4 S 105 3 S 11 2 S 128 3 S 15 2 S 130 3 S 12 3 S 135 3 S 9 3 S 138 3 S 9 2 S 161 3 S 13 2 S 163 3 S 10 3 S 165 3 S 7 4 S 167 3 S 4 5 S 168 3 S 7 3 S 170 3 S 4 4 S 171 3 S 7 2 S 194 3 S 11 2 S 196 3 S 8 3 S 201 3 S 204 2 S 227 3 S 9 2 S 229 3 S 6 3 S 231 3 S 3 4 S 234 3 S 3 3 S 237 3 S 3 5 S 2 9 + S 260 3 S 7 5 S 2 9 + S 262 3 S 4 5 S 3 9 + S 326 3 S 3 5 S 2 9 + S 11 S 271 3 S 9 + S 273 3 S S 11 S 30 3 S 20 S 11 S 40 3 S 14 S 11 S 63 3 S 18 S 11 S 73 3 S 12 S 11 S 96 3 S 16 S 11 S 106 3 S 10 S 11 S 129 3 S 14 S 11 S 139 3 S 8 S 11 S 162 3 S 12 S 11 S 172 3 S 6 S 11 S 195 3 S 10 S 11 S 205 3 S 4 S 11 S 228 3 S 8 S 11 S 238 3 S 2 S 11 S 261 3 S 6 S 11 S 32 3 S 17 5 S 2 9 + S 11 S 34 3 S 14 5 S 3 9 + S 11 S 37 3 S 14 5 S 2 9 + S 11 S 65 3 S 15 2 + S 11 S 67 3 S 12 3 S 11 S 70 3 S 12 2 S 11 S 98 3 S 13 2 S 11 S 100 3 S 10 3 S 11 S 103 3 S 10 2 S 11 S 131 3 S 11 2 S 11 S 133 3 S 8 5 S 3 9 + S 11 S 136 3 S 8 5 S 2 9 + S 11 S 164 3 S 9 5 S 2 9 + S 11 S 166 3 S 6 3 + S 11 S 169 3 S 6 2 S 11 S 197 3 S 7 2 S 11 S 199 3 S 4 3 S 11 S 202 3 S 4 5 S 2 9 + S 11 S 230 5 S 2 9 + S 11 S 232 3 S 2 5 S 3 9 + S 11 S 235 3 S 2 2 + S 11 S 263 3 S 3 5 S 2 9 + (S 2 11 S 271 3 + S 2 11 S 265 3 S 2 9 + S 2 11 S 261 3 S 6 5 + S 2 11 S 238 3 S 2 5 + S 2 11 S 232 3 S 2 5 S 2 9 + S 2 11 S 228 3 S 8 5 + S 2 11 S 205 3 S 4 5 +

International Journal of Networks and Communications. 2012; 2(1): 11-16 15 S 2 11 S 199 3 S 4 5 S 2 9 + S 2 11 S 195 3 S 10 5 + S 2 11 S 172 3 S 6 5 + S 2 11 S 166 3 S 6 5 S 2 9 + S 2 11 S 162 3 S 12 5 + S 2 11 S 139 3 S 8 5 + S 2 11 S 133 3 S 8 5 S 2 9 + S 2 11 S 129 3 S 14 5 + S 2 11 S 106 3 S 10 5 + S 2 11 S 100 3 S 10 5 S 2 9 + S 2 11 S 96 3 S 16 5 + S 2 11 S 73 3 S 12 5 + S 2 11 S 67 3 S 12 5 S 2 9 + S 2 11 S 63 3 S 18 5 + S 2 11 S 40 3 S 14 5 + S 2 11 S 34 3 S 14 5 S 2 9 + S 2 11 S 30 20 S 11 S 273 S 11 S 270 3 S S 11 S 268 4 S 11 S 267 S 2 9 + S 11 S 264 S 3 9 + S 11 S 263 3 S 7 5 + S 11 S 262 3 S 4 5 S 2 9 + S 11 S 260 3 S 7 S 11 S 258 10 245 + S 11 S 3 + S 11 S 240 3 S 11 S 237 3 S 3 S 11 S 235 3 S 6 5 + S 11 S 234 3 S 3 5 S 2 9 + S 11 S 233 3 S 4 9 + S 11 S 231 3 S 3 5 S 3 9 + S 11 S 230 3 S 9 5 + S 11 S 229 3 S 6 5 S 2 9 + S 11 S 227 3 S 9 S 11 S 207 5 + S 11 S 204 S 11 S 202 3 S 8 5 + S 11 S 201 5 S 2 9 + S 11 S 198 5 S 3 9 + S 11 S 197 3 S 11 5 + S 11 S 196 3 S 8 5 S 2 9 + S 11 S 194 3 S 11 S 11 S 192 3 S 14 5 + S 11 S 179 3 S 4 5 + S 11 S 174 3 S 7 5 + S 11 S 171 3 S 7 S 11 S 169 3 S 10 5 + S 11 S 168 3 S 7 5 S 2 9 + S 11 S 167 3 S 4 5 S 4 9 + S 11 S 165 3 S 7 5 S 3 9 + S 11 S 164 3 S 13 5 + S 11 S 163 3 S 10 5 S 2 9 + S 11 S 161 3 S 13 S 11 S 141 3 S 9 5 + S 11 S 138 3 S 9 S 11 S 136 3 S 12 5 + S 11 S 135 3 S 9 5 S 2 9 + S 11 S 132 3 S 9 5 S 3 9 + S 11 S 131 3 S 15 5 + S 11 S 130 3 S 12 5 S 2 9 + S 11 S 128 3 S 15 S 11 S 126 3 S 18 5 + S 11 S 113 3 S 8 5 + S 11 S 108 3 S 11 5 + S 11 S 105 3 S 11 S 11 S 103 3 S 14 5 + S 11 S 102 3 S 11 5 S 2 9 + S 11 S 101 3 S 8 5 S 4 9 + S 11 S 99 3 S 11 5 S 3 9 + S 11 S 98 3 S 17 5 + S 11 S 97 3 S 14 5 S 2 9 + S 11 S 95 3 S 17 S 11 S 75 3 S 13 5 + S 11 S 72 3 S 13 S 11 S 70 3 S 16 5 + S 11 S 69 3 S 13 5 S 2 9 + S 11 S 66 3 S 13 5 S 3 9 + S 11 S 65 3 S 19 5 + S 11 S 64 3 S 16 5 S 2 9 + S 11 S 62 3 S 19 S 11 S 60 3 S 22 5 + S 11 S 47 3 S 12 5 + S 11 S 42 3 S 15 5 + S 11 S 39 3 S 15 S 11 S 37 3 S 18 5 + S 11 S 36 3 S 15 5 S 2 9 + S 11 S 35 3 S 12 5 S 4 9 + S 11 S 33 3 S 15 5 S 3 9 + S 11 S 32 3 S 21 5 + S 11 S 31 3 S 18 5 S 2 9 + S 11 S 29 3 S 21 397 S 3 + S 391 2 3 S 9 + S 387 3 S 6 5 + S 364 2 S 358 3 S 2 5 S 2 9 + S 354 3 S 8 5 + S 336 S 333 3 S S 331 3 S 4 5 + S 330 S 2 9 + S 327 S 3 9 + S 326 3 S 7 5 + S 325 3 S 4 5 S 2 9 + S 323 3 S 7 S 321 3 S 10 5 + S 308 3 + S 296 3 S 4 9 + S 288 3 S 12 5 + S 275 3 S 2 5 + S 272 3 S 2 S 267 S 266 3 S 2 5 S 3 9 + S 263 3 S 2 5 S 4 9 + S 262 3 S 8 S 261 3 + S 257 3 S 11 S 255 3 S 14 5 + S 244 3 S S 242 3 S 4 5 + S 239 3 S 4 S 234 3 S 7 S 233 3 S 4 5 S 3 9 + S 232 S 5 9 + S 230 3 S 4 5 S 4 9 + S 229 3 S 10 + S 228 3 S 7 5 S 3 9 + S 222 3 S 16 5 + S 209 3 S 6 5 + S 206 3 S 6 S 201 3 S 9 S 200 3 S 6 3 S 197 3 S 6 4 S 196 3 S 12 S 195 3 S 9 3 S 191 3 S 15 S 189 3 S 18 5 + S 178 S 176 3 S 8 5 + S 173 3 S 8 S 168 3 S 11 S 167 3 S 8 3 S 166 5 S 164 3 S 8 4 S 163 3 S 14 S 162 3 S 11 5 S 3 9 + S 156 3 S 20 5 + S 143 3 S 10 5 + S 140 3 S 10 S 135 3 S 13 S 134 3 S 10 3 S 133 16 S 131 3 S 10 4 S 130 3 S 16 S 129 3 S 13 3 S 127 3 S 16 2 S 125 3 S 19 S 112 3 S 9 S 110 3 S 12 5 + S 107 3 S 12 S 102 3 S 15 S 101 3 S 12 3 + S 100 3 S 18 5 + S 100 3 S 9 5 S 5 9 + S 98 3 S 12 5 S 4 9 + S 97 3 S 18 S 96 3 S 15 3 + S 94 3 S 18 5 S 2 9 + S 77 3 S 14 5 + S 74 3 S 14 S 72 3 S 17 5 + S 68 3 S 14 5 S 3 9 + S 67 3 S 20 5 + S 66 3 S 17 5 S 2 9 + S 65 3 S 14 5 S 4 9 + S 64 3 S 20 S 62 3 S 23 5 + S 61 3 S 20 5 S 2 9 + S 46 3 S 13 S 41 3 S 16 S 36 3 S 19 S 35 3 S 16 5 S 3 9 + S 34 3 S 13 5 S 5 9 + S 31 3 S 22 S 30 3 S 19 5 S 3 9 )x 2 + (S 338 3 + S 335 3 S 9 + S 333 3 S 3 5 + S 332 3 S 2 9 + S 329 3 S 3 9 + S 328 3 S 6 5 + S 327 3 S 3 5 S 2 9 + S 325 3 S 6 S 323 3 S 9 5 + S 277 S 11 S 275 3 + S 274 3 S S 11 S 272 3 S 9 + S 271 S 2 9 + S 11 S 270 3 S 3 5 + S 269 3 S 4 S 11 S 269 3 S 2 9 + S 268 3 3 S S 11 S 266 3 3 S 9 + S 11 S 265 6 S 264 3 S 7 S 11 S 264 3 S 3 5 S 2 9 + S 263 3 S 4 5 S 3 9 + S 11 S 262 3 S 6 S 261 3 S 7 5 S 2 9 + S 11 S 260 3 S 9 5 + S 259 3 S 10 S 257 3 S 13 5 + S 249 3 + S 246 3 S 9 + S 11 S 242 2 S 241 3 S 3 S 11 S 239 3 S 2 S 238 3 S 3 2 S 11 S 237 5 + S 237 3 S 4 9 + S 236 3 S 6 S 11 S 236 3 S 2 5 S 2 9 + S 235 3 S 3 3 + S 234 9 + S 11 S 233 3 S 2 5 S 3 9 + S 11 S 232 3 S 8 5 + S 232 3 S 3 5 S 4 9 + S 231 3 S 9 S 11 S 231 2 S 230 3 S 6 3 S 229 12 S 11 S 229 3 S 8 S 228 3 S 9 2 S 11 S 227 11 S 211 5 S 11 S 209 4 S 208 S 11 S 206 3 S 4 S 205 2 S 11 S 204 7 S 203 3 S 8 S 11 S 203 3 S 4 2 S 202 3 S 11 S 200 3 S 4 5 S 3 9 + S 11 S 199 3 S 10 5 + S 198 3 S 11 S 11 S 198 3 S 7 5 S 2 9 + S 197 3 S 8 5 S 3 9 + S 11 S 196 3 S 10 S 195 3 S 11 5 S 2 9 + S 11 S 194 3 S 13 5 + S 193 3 S 14 S 191 3 S 17 5 + S 183 3 S 4 5 + S 180 3 S 4 S 11 S 176 3 S 6 5 + S 175 3 S 7 S 11 S 173 3 S 6 S 172 3 S 7 2 S 11 S 171 9 S 171 3 S 4 5 S 4 9 + S 170 3 S 10 S 11 S 170 3 S 6 5 S 2 9 + S 169 3 S 7 5 S 3 9 + S 168 3 S 4 5 S 5 9 + S 11 S 167 3 S 6 5 S 3 9 + S 11 S 166 3 S 12 5 + S 166 3 S 7 5 S 4 9 + S 165 3 S 13 S 11 S 165 3 S 9 2 S 164 3 S 10 3 S 163 16 S 11 S 163 3 S 12 S 162 3 S 13 2 S 11 S 161 15 S 145 9 S 11 S 143 8 S 142 3 S 9 S 11 S 140 3 S 8 S 139 3 S 9 2 S 11 S 138 3 S 11 5 + S 137 3 S 12 S 11 S 137 3 S 8 5 S 2 9 + S 136 3 S 9 5 S 3 9 + S 11 S 134 3 S 8 5 S 3 9 + S 11 S 133 3 S 14 5 + S 132 3 S 15 S 11 S 132 3 S 11 5 S 2 9 + S 131 3 S 12 5 S 3 9 + S 11 S 130 3 S 14 S 129 3 S 15 5 S 2 9 + S 11 S 128 3 S 17 5 + S 127 3 S 18 S 125 3 S 21 5 + S 117 3 S 8 5 + S 114 3 S 8 S 11 S 110 3 S 10 5 + S 109 3 S 11 S 11 S 107 3 S 10 S 106 3 S 11 5 S 2 9 + S 11 S 105 3 S 13 5 + S 105 3 S 8 5 S 4 9 + S 104 3 S 14 S 11 S 104 3 S 10 5 S 2 9 + S 103 3 S 11 5 S 3 9 + S 102 3 S 8 5 S 5 9 + S 11 S 101 3 S 10 5 S 3 9 + S 11 S 100 3 S 16 5 + S 100 3 S 11 5 S 4 9 + S 99 3 S 17 S 11 S 99 3 S 13 2 S 98 3 S 14 3 S 97 20 S 11 S 97 3 S 16 S 96 3 S 17 5 S 2 9 + S 11 S 95 3 S 19 5 + S 79 3 S 13 5 + S 11 S 77 12 + S 76 3 S 13 S 74 16 S 11 S 74 3 S 12 S 73 3 S 13 2 S 11 S 72 15 S 11 S 71 3 S 12 2 S 70 3 S 13 3 S 69 19 S 68 3 S 16 2 S 11 S 68 3 S 12 3 S 11 S 67 18 S 66 3 S 19 S 11 S 66 3 S 15 5 S 2 9 + S 64 3 S 22 5 + S 11 S 64 3 S 18 S 11 S 62 3 S 21 5 + S 51 12 + S 48 3 S 12 S 11 S 44 3 S 14 5 + S 43 3 S 15 S 11 S 41 3 S 14 S 40 3 S 15 2 S 11 S 39 17 S 39 3 S 12 4 S 38 3 S 18 S 11 S 38 3 S 14 5 S 2 9 + S 37 3 S 15 5 S 3 9 + S 36 3 S 12 5 S 5 9 + S 11 S 35 3 S 14 5 S 3 9 + S 11 S 34 20 S 34 3 S 15 4 S 33 3 S 21 S 11 S 33 3 S 17 2 S 32 3 S 18 3 S 31 24 S 11 S 31 3 S 20 S 30 3 S 21 2 S 11 S 29 3 S 23 5 )x 3 + (S 2 11 S 270 S 2 11 S 264 S 2 9 + S 2 11 S 260 3 S 7 5 + S 2 11 S 237 3 S 3 5 + S 2 11 S 231 3 S 3 5 S 2 9 + S 2 11 S 227 3 S 9 5 + S 2 11 S 204 5 + S 2 11 S 198 5 S 2 9 + S 2 11 S 194 3 S 11 5 + S 2 11 S 171 3 S 7 5 + S 2 11 S 165 3 S 7 5 S 2 9 + S 2 11 S 161 3 S 13 5 + S 2 11 S 138 3 S 9 5 + S 2 11 S 132 3 S 9 5 S 2 9 + S 2 11 S 128 3 S 15 5 + S 2 11 S 105 3 S 11 5 + S 2 11 S 99 3 S 11 5 S 2 9 + S 2 11 S 95 3 S 17 5 + S 2 11 S 72 3 S 13 5 + S 2 11 S 66 3 S 13 5 S 2 9 + S 2 11 S 62 3 S 19 5 + S 2 11 S 39 3 S 15 5 + S 2 11 S 33 3 S 15 5 S 2 9 + S 2 11 S 29 3 S 21 5 + S 11 S 305 3 + S 11 S 302 3 S 9 + S 11 S 300 3 S 3 5 + S 11 S 299 3 S 2 9 + S 11 S 296 3 S 3 9 + S 11 S 295 3 S 6 5 + S 11 S 294 3 S 3 5 S 2 9 + S 11 S 292 3 S 6 S 11 S 290 9 S 11 S 244 S 11 S 232 4 3 S S 11 S 224 13 S 11 S 178 5 + S 11 S 166 5 S 4 9 + S 11 S 158 3 S 17 5 + S 11 S 112 3 S 9 5 + S 11 S 100 3 S 9 5 S 4 9 + S 11 S 92 3 S 21 5 + S 11 S 46 3 S 13 5 + S 11 S 41 3 S 16 5 + S 11 S 38 3 S 16 S 11 S 36 3 S 19 5 + S 11 S 35 3 S 16 5 S 2 9 + S 11 S 34 3 S 13 5 S 4 9 + S 11 S 32 3 S 16 5 S 3 9 + S 11 S 31 3 S 22 5 + S 11 S 30 3 S 19 5 S 2 9 + S 11 S 28 3 S 22 S 396 S 390 S 2 9 + S 386 3 S 7 5 + S 368 3 + S 365 3 S 9 + S 362 3 S 2 9 + S 359 3 S 3 9 + S 358 3 S 6 5 + S 355 3 S 6 S 335 3 S 2 5 + S 332 3 S 2 S 330 5 + S 329 3 S 2 5 S 2 9 + S 326 3 S 2 5 S 3 9 + S 325 3 S 8 5 + S 324 5 S 2 9 + S 322 3 S 8 + S 320 3 S 11 5 + S 304 3 S S 301 S 2 9 + S 299 3 S 4 S 298 S 3 9 + S 295 S 4 9 + S 294 3 S 7 S 293 3 S 4 5 S 3 9 + S 291 3 S 7 5 S 2 9 + S 289 3 S 10 + S 279 3 + S 276 3 S 9 + S 274 3 S 3 5 + S 268 3 S 3 5 S 2 9 + S 267 3 S 4 9 + S 264 9 + S 259 3 S 12 5 + S 258 3 S 9 5 S 2 9 + S 256 3 S 12 S 254 3 S 15 5 + S 243 3 S 2 S 235 2 S 231 3 S 2 5 S 229 4 S 225 3 S 11 2 S 223 3 S 14 S 213 3 S 4 5 + S 210 3 S 4 S 208 3 S 7 5 + S 202 3 S 7 5 S 2 9 + S 201 3 S 4 5 S 4 9 + S 198 3 S 4 5 S 5 9 + S 193 3 S 16 5 + S 192 3 S 13 5 S 2 9 + S 190 3 S 16 + S 188 3 S 19 5 + S 177 3 S 6 S 169 3 S 9 5 S 2 9 + S 165 3 S 6 5 S 5 9 + S 163 3 S 9 4 + S 159 3 S 15 5 S 2 9 + S 157 3 S 18 S 147 3 S 8 5 + S 144 3 S 8 S 142 3 S 11 5 + S 136 3 S 11 5 S 2 9 + S 135 3 S 8 5 S 4 9 + S 132 3 S 17 5 + S 132 3 S 8 5 S 5 9 + S 127 3 S 20 5 + S 124 3 S 20 S 111 3 S 10 S 104 3 S 16 5 + S 103 3 S 13 5 S 2 9 + S 101 3 S 16 + S 99 3 S 10 5 S 5 9 + S 98 3 S 16 5 S 2 9 + S 97 3 S 13 5 S 4 9 + S 95 3 S 16 5 S 3 9 + S 94 22 + S 93 3 S 19 5 S 2 9 + S 81 3 S 12 5 + S 78 3 S 12 S 76 3 S 15 5 + S 71 3 S 18 5 + S 70 3 S 15 5 S 2 9 + S 69 3 S 12 5 S 4 9 + S 68 3 S 18 S 66 3 S 21 5 + S 66 3 S 12 5 S 5 9 + S 65 3 S 18 5 S 2 9 + S 62 3 S 18 5 S 3 9 + S 45 3 S 14 S 40 3 S 17 S 35 3 S 20

16 Hung-Peng Lee: A Viewpoint on the Decoding of the Quadratic Residue Code of Length 89 S 34 3 S 17 3 S 33 3 S 14 5 S 30 3 S 23 S 29 3 S 20 5 S 3 9 )x 4 + (S 2 272 11 S 3 + S 2 11 S 266 2 3 S 9 + S 2 11 S 262 6 S 2 11 S 239 2 S 2 11 S 233 3 S 2 5 S 2 9 + S 2 11 S 229 3 S 8 5 + S 2 11 S 206 3 S 4 5 + S 2 11 S 200 3 S 4 5 S 2 9 + S 2 11 S 196 3 S 10 5 + S 2 11 S 173 3 S 6 5 + S 2 11 S 167 3 S 6 5 S 2 9 + S 2 11 S 163 3 S 12 5 + S 2 11 S 140 3 S 8 5 + S 2 11 S 134 3 S 8 5 S 2 9 + S 2 11 S 130 3 S 14 5 + S 2 11 S 107 3 S 10 5 + S 2 11 S 101 3 S 10 5 S 2 9 + S 2 11 S 97 3 S 16 5 + S 2 11 S 74 3 S 12 5 + S 2 11 S 68 3 S 12 5 S 2 9 + S 2 11 S 64 3 S 18 5 + S 2 11 S 41 3 S 14 5 + S 2 11 S 35 3 S 14 5 S 2 9 + S 2 11 S 31 3 S 20 5 + 246 S 11 S 3 + S 11 S 234 4 3 S 9 + S 11 S 226 12 S 11 S 180 4 S 11 S 168 3 S 4 5 S 4 9 + S 11 S 160 3 S 16 5 + S 11 S 114 3 S 8 5 + S 11 S 102 3 S 8 5 S 4 9 + S 11 S 94 3 S 20 5 + S 11 S 48 3 S 12 5 + S 11 S 36 3 S 12 5 S 4 9 + S 11 S 28 3 S 24 5 + S 398 3 + S 392 3 S 2 9 + S 388 3 S 6 5 + S 365 3 S 2 5 + S 359 3 S 2 5 S 2 9 + S 355 3 S 8 5 + S 309 3 + S 297 3 S 4 9 + S 289 3 S 12 5 + S 270 3 S 2 5 S 2 9 + S 264 3 S 2 5 S 4 9 + S 260 3 S 8 5 S 2 9 + S 248 S 243 3 S 4 5 + S 237 3 S 4 5 S 2 9 + S 236 S 4 9 + S 228 3 S 13 5 + S 227 3 S 10 2 S 223 16 S 204 3 S 6 2 S 198 3 S 6 4 S 194 3 S 12 5 S 2 9 + S 182 5 + S 177 3 S 8 5 + S 171 3 S 8 5 S 2 9 + S 170 5 S 4 9 + S 162 3 S 17 5 + S 161 3 S 14 5 S 2 9 + S 157 3 S 20 5 + S 138 3 S 10 5 S 2 9 + S 134 3 S 16 5 + S 132 3 S 10 5 S 4 9 + S 124 3 S 22 5 + S 116 3 S 9 5 + S 111 3 S 12 5 + S 105 3 S 12 5 S 2 9 + S 104 3 S 9 5 S 4 9 + S 101 3 S 18 5 + S 96 3 S 21 5 + S 72 3 S 14 5 S 2 9 + S 66 3 S 14 5 S 4 9 + S 62 3 S 20 5 S 2 9 + S 50 3 S 13 5 + S 39 3 S 16 5 S 2 9 + S 38 3 S 13 5 S 4 9 + S 33 3 S 16 5 S 4 9 + S 30 25 S 29 3 S 22 5 S 2 9 )x 5 + (S 2 302 11 S 3 + S 2 11 S 296 2 3 S 9 + S 2 11 S 292 3 S 6 5 + S 2 11 S 38 3 S 16 5 + S 2 11 S 32 3 S 16 5 S 2 9 + S 2 11 S 28 3 S 22 5 + S 428 3 + S 422 3 S 2 9 + S 418 3 S 6 5 + S 362 3 S 4 5 + S 356 3 S 4 5 S 2 9 + S 352 3 S 10 5 + S 306 3 S 2 5 + S 300 3 S 2 5 S 2 9 + S 290 3 S 8 5 S 2 9 + S 286 3 S 14 5 + S 250 3 + S 244 2 3 S 9 + S 240 3 S 6 5 + S 238 3 S 4 9 + S 232 3 S 6 9 + S 230 3 S 12 5 + S 228 3 S 6 5 S 4 9 + S 224 3 S 12 5 S 2 9 + S 220 3 S 18 5 + S 184 3 S 4 5 + S 178 3 S 4 5 S 2 9 + S 174 3 S 10 5 + S 172 3 S 4 5 S 4 9 + S 166 3 S 4 5 S 6 9 + S 162 3 S 10 5 S 4 9 + S 118 3 S 8 5 + S 112 3 S 8 2 + S 108 3 S 14 5 + S 106 3 S 8 5 S 4 9 + S 100 3 S 8 5 S 6 9 + S 96 3 S 14 5 S 4 9 + S 52 3 S 12 5 + S 46 3 S 12 5 S 2 9 + S 40 3 S 12 5 S 4 9 + S 36 3 S 18 5 S 2 9 + S 34 3 S 12 5 S 6 9 + S 32 3 S 24 5 + S 30 3 S 18 5 S 4 9 )x 6. 4. By (10), δ (12) = 0. Then, compute λ (12) (x) = xλ (11) (x), l (12) = l (11) = 6, and γ (12) = γ (11), respectively. 2. Set k = 13. Because k = 13 > 2t = 12, the recursion stops. Finally, the error-locator polynomial μ (12) (x) = L 6 (x) of degree 6 is obtained. By applying Chien search method, the roots of L 6 (x) are exactly the inverse of the six error locators {0, 1, 2, 3, 15, 26}. A C++ program shows that the total weight-6 error patterns with S 1 = 0 can be corrected. 4. Conclusions In this paper, a study on the algebraic decoding of the weight-6 error patterns of the algebraic decoding of the (89, 45, 17) QR code with reducible generator polynomial, proposed by Truong et al. (2008), is presented. A detailed example shows that the IFBM algorithm can obtain a valid error-locator polynomial L 6 (x) to correct the all weight-6 error patterns with S 1 = 0 in the (89, 45, 17) QR code. REFERENCES [1] E. Prange, Cyclic error-correcting codes in two symbols, AFCRC-TN-57-103, Air Force Cambridge Research Center, Cambridge, Mass. Sept. 1957. [2] S. B. Wicker, Error Control Systems for Digital Communication and Storage, Englewood Cliffs, NJ: Prentice Hall, 1995. [3] M. Elia, Algebraic decoding of the (23, 12, 7) Golay codes, IEEE Trans. Inf. Theory, vol. 33, no. 1, pp. 150 151, Jan. 1987. [4] I. S. Reed, X. Yin, T. K. Truong, and J. K. Holmes, Decoding the (24, 12, 8) Golay code, Proc. IEE, vol. 137, no. 3, pp. 202 206, May 1990. [5] I. S. Reed, X. Yin, and T. K. Truong, Algebraic decoding of the (32, 16, 8) quadratic residue code, IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 876 880, July 1990. [6] R. He, I. S. Reed, T. K. Truong, and X. Chen, Decoding the (47, 24, 11) quadratic residue code, IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1181 1186, Mar. 2001. [7] Y. Chang, T. K. Truong, I. S. Reed, H. Y. Cheng, and C. D. Lee, Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes, IEEE Trans. on Comm., vol. 51, no. 9, pp. 1463 1473, Sept. 2003. [8] Y. H. Chen, T. K. Truong, Y. Chang, C. D. Lee, and S.H. Chen, Algebraic decoding of quadratic residue codes using Berlekamp-Massey algorithm, J. Inf. Sci. Eng., vol. 23, no. 1, pp. 127 145, Jan. 2007. [9] T. K Truong, P. Y. Shih, W. K. Su, C. D. Lee, and Y Chang, Algebraic decoding of the (89, 45, 17) quadratic residue code, IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 5005 5011, Nov. 2008. [10] T. C. Lin, T. K. Truong, H. P. Lee, and H. C. Chang, Algebraic decoding of the (41, 21, 9) quadratic residue code, Inf. Sci., vol. 179, no. 19, pp. 3451 3459, Sept. 2009. [11] T. C. Lin, H. C. Chang, H. P. Lee, S. I. Chu, and T. K. Truong, Decoding of the (31, 16, 7) quadratic residue code, J. Chin. Inst. Eng., vol. 33, no. 4, pp. 573 580, June 2010. [12] T. C. Lin, W. K. Su, P. Y. Shih, and T. K. Truong, Fast decoding of the (89, 45, 17) quadratic residue code, IEEE Communications Letters, vol. 15, no. 2, pp. 226 228, Feb. 2011. [13] X. Chen, I. S. Reed, T. Helleseth, T. K. Truong, Use of Grobner bases to decode binary cyclic codes up to the true minimum distance, IEEE Trans. on Comm., vol. 40, no. 5, pp. 1654 1661, Sept. 1994. [14] I. S. Reed, M. T. Shih, and T. K. Truong, VLSI design of inverse-free Berlekamp-Massey algorithm, IEE Proc. On Computers and Digital Techniques, vol. 138, no. 5, pp. 295 298, Sept. 1991. [15] R. T. Chien, Cyclic decoding procedure for the Bose- Chaudhuri-Hocquenghem codes, IEEE Trans. on Inf. Theory, vol. 10, no. 4, pp. 357 363, Oct. 1964.