Combination of ORC System and Electrified Auxiliaries on a Long Haul Truck Equipped with 48-Volt Board Net

Similar documents
UPCOMING CO2 LEGISLATION FOR COMMERCIAL VEHICLES IN EUROPE AND US. Lukas Walter, AVL

Porsche Engineering driving technologies

Vehicle Powertrain CO 2 Emissions in Review

Holistic 1D-Model for Cooling Management and Engine Analysis of a Heavy-Duty Truck

GT Conference 2017: Simulation Tool for Predictive Control Strategies for an ORC- System in Heavy Duty Vehicles

Greenhouse Gas Emissions Model (GEM) User Guide

INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM

USE OF 1D SIMULATION IN THE COOLING SYSTEMS DESIGN PROCESS

Overview of International HDV Efficiency Standards

Integrated Powertrain Simulation for Energy Management of Hybrid Electric Vehicles

MODELING ENGINE FRICTION WITH TEMPERATURE DEPENDENCE FOR VEHICLE THERMAL MANAGEMENT

The European Commission s science and knowledge service. Joint Research Centre. VECTO - Overview VECTO Workshop Ispra, November, 2018

12V / 48V Hybrid Vehicle Technology Steven Kowalec

Internal Combustion Engines ERTRAC Workshop, 2 June Project title: CORE. Coordinator Johan Engström, Volvo. Status May 2015

Well-to-Wheel Analysis of Electrified Drivetrains under Realistic Boundary Conditions and User Behaviour

INTRODUCTION TO NEAR TERM TECHNOLOGIES FOR LD DIESEL EFFICIENCY

FE151 Aluminum Association Inc. Impact of Vehicle Weight Reduction on a Class 8 Truck for Fuel Economy Benefits

State of the art cooling system development for automotive applications

ROAD KING TECHNOLOGIES T.: F.:

Model-Based Design and Hardware-in-the-Loop Simulation for Clean Vehicles Bo Chen, Ph.D.

Engineering Center Steyr GmbH & CoKG. Dr. techn. Dipl.-Ing. Christoph Brenner, VDI June 1 st, 2010

General In-line four stroke diesel engine with direct injection. Rotation direction, counterclockwise viewed towards flywheel

Evolution of HDV GHG / Fuel Economy Standards: The Importance of US HDV Rule

Predictive Control Strategies using Simulink

POWERTRAIN SOLUTIONS FOR ELECTRIFIED TRUCKS AND BUSES

Real-world to Lab Robust measurement requirements for future vehicle powertrains

ELECTRIFICATION TESTING SYSTEMS

Early Stage Vehicle Concept Design with GT-SUITE

On-Going Development of Heavy-Duty Vehicle GHG / Fuel Economy Standards

EPA/NHTSA UPDATE ON PHASE II GHG AND FUEL EFFICIENCY RULES FOR MEDIUM AND HEAVY DUTY VEHICLES. Houshun Zhang U.S. Environmental Protection Agency

10/13/2016 5:33 PM. Radiator (B205L/R, B235R) To remove

General In-line four stroke diesel engine with direct injection. Rotation direction, anti-clockwise viewed towards flywheel

All-in-one Simulation and DoE Methodology for the Evaluation and Optimisation of HEV Configurations. W.-R. Landschoof, M. Kämpfner, Dr. M.

Simulation Model for a Gasoline Engine with Advanced Thermal Control

Thermoelectric Network Meeting Engineering Challenges and the Thermoelectric Roadmap Market Applications and Future Activities

TES (Thermo Efficiency System)

Hot Gas Tests. In-house Hot Gas Test Center Turn-key Hot Gas Test Benches

MODELING ELECTRIFIED VEHICLES UNDER DIFFERENT THERMAL CONDITIONS

EGVIA Workshop: European funded project results - Reduction of CO2 emissions from Heavy-Duty Trucks.

Powertrain Efficiency Technologies. Turbochargers

Recovering Wasted Heat. Double Arrow Engineering

Integrated Engine and Aftertreatment System Technology for EPA 2010 Heavy-duty Emissions Regulations

ANNEX VII VERIFYING TRUCK AUXILIARY DATA

Investigation of a coolant circuit with controlled water pump and fan Josua Lidzba, Deutz AG, Cologne

Modelling and Simulation Specialists

GT-Suite European User Conference

Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines

Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains

Balancing operability and fuel efficiency in the truck and bus industry

Workshop on Emerging Technologies for Heavy-Duty Vehicle Fuel Efficiency Complete Vehicle Efficiency

Integrated Engine and Coolant Circuit Modeling with GT-SUITE. Oliver Roessler Vincenzo Bevilacqua, Raymond Reinmann

Impact of BEV Powertrain architectures on energy consumption in various driving cycles Stackpole Powertrain International GmbH

Modeling the Electrically Assisted Variable Speed (EAVS) Supercharger

Analysis of Sequential Turbocharger Systems for Diesel Engines Rob Stalman, Vanco Smiljanowski, Uwe Späder, Ford Research & Advanced Europe

Installation manual. Cooling system. Industrial engines DC09, DC13, DC16 OC16. 01:05 Issue 12 en-gb. Scania CV AB 2018, Sweden

REMOVAL AND INSTALLATION

Evaluation of Greenhouse Gas Emission Certification Options for Phase 2

Green Transportation Summit & Expo SuperTruck Program 1 & 2. Justin Yee, Principal Investigator April 11th, Daimler Trucks

HIGH PERFORMANCE 800V E-MOTOR

Vehicle simulation with cylinder deactivation

Energy Efficiency of Automobiles A Pragmatic View

THERMAL MANAGEMENT SYNERGY THROUGH INTEGRATION PETE BRAZAS

Paving the way for a cleaner, more energy-efficient world.

AVL S NEW APPROACH FOR ELECTRIFIED UTILITY VEHICLES Solution Portfolio. Public

Ultraboost: Investigations into the Limits of Extreme Engine Downsizing Dr J.W.G. Turner

MODULAR WATER CHARGE AIR COOLING FOR COMBUSTION ENGINES

Taking on the Leadership Challenge in Class 8 Trucking

DIESEL GENERATOR SET MTU 12V4000 DS2250

DESTA - Demonstration of 1 st European SOFC Truck APU Jürgen Rechberger AVL List GmbH

DIESEL GENERATOR SET MTU 12V4000 DS1650

MHI-MME WHRS - STG. Environment friendly and economical solution MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

Greenhouse gas Emission Model (GEM) A Compliance Vehicle Model for Certification

Virtual Testing for Automotive Components and its Integration into the OEM s Product Creation Process. Dr. Gerald Seider Dr.

FOR MARINE APPLICATIONS

FAG Active Magnetic Bearing

Integrated Architectures Management, Behavior models, Controls and Software

NITIN CORPORATION 402, 4 th Floor, Bezzola Commercial Complex, Sion Trombay Road, Chembur, Mumbai , India.

Dr. Terry Alger. Southwest Research Institute. Southwest Research Institute. San Antonio, Texas

DIESEL GENERATOR SET MTU 12V4000 DS1750

ELECTRICAL 48 V MAIN COOLANT PUMP TO REDUCE CO 2 EMISSIONS

GT-Suite Users International Conference Frankfurt a.m., October 22 nd 2012

Powertrain & Thermal Systems

DIESEL GENERATOR SET MTU 16V4000 DS2500

CORE. Chris Such, Ricardo

FORTERRA FORTERRA CL FORTERRA HSX FORTERRA HD INEXHAUSTIBLE POWER. Tractor is Zetor. Since 1946.

EE Architecture for Highly Electrified Powertrain

NEBRASKA OECD TRACTOR TEST 2183 SUMMARY 1107 CLAAS AXION 880 DIESEL CONTINUOUSLY VARIABLE TRANSMISSION

DIESEL GENERATOR SET MTU 16V4000 DS2250

Analysis and Simulation of a novel HEV using a Single Electric Machine

DIESEL GENERATOR SET MTU 20V4000 DS4000

Controlled Power Technologies. COBRA FC Water Cooled Electric Compressor (Fuel Cell Air Supply)

Optimising Aeristech FETT (Fully Electric Turbocharger Technology) for Future Gasoline Engine Requirements

Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application

1013ec. The engine for construction equipment.

HERGOTT Julien & MOISY Alexandre EHRS modelling with GT-Suite European GT Conference 2015

EPA Heavy Duty Vehicle Emissions Program

Efficiency Enhancement of a New Two-Motor Hybrid System

UltimateCooling System Application for R134a and R744 Refrigerant

Volkswagen > Golf, Jetta, GTI, Cabrio > Heating Air Conditioning 87 - A/C controls and mechanical components, servicing

C87 ENT 260 kw ( rpm rpm Stage IIIA / Tier 3

Transcription:

Combination of ORC System and Electrified Auxiliaries on a Long Haul Truck Equipped with 48-Volt Board Net IV International Seminar on ORC Power Systems Oliver Dingel, Tobias Töpfer, Jan Treutler, Milano, September 2017 IAV 08/2017 TP-C od Status: draft 1

Contents Motivation US GHG II CO 2 rules Main ORC Components Simulation Model with Variable Auxiliaries Modular architecture and sub-models Boundary conditions Electric architecture and operating strategy Fundamental variants Results Summary Outlook IAV 08/2017 TP-C od Status: draft 2

EPA and NHTSA Fuel Economy and CO 2 - Emissions Standards Model Year Tractor Engine Standards (SET- Cycle) BSFC / (g/kwh) BTE / (%) CO2 / (g/kwh) Reduction compared to Phase 1 2021-2023 2024-2026 2027- later 189.5 44.4 599-1.8% 184.8 45.5 584-4.2% 183.1 45.9 579-5.1% *due to new cycle no reference to phase 1 possible Future engine fuel economy standards demand high thermal efficiency (i.e. ORC) IAV 08/2017 TP-C od Status: draft 3

EPA and NHTSA Fuel Economy and CO 2 - Emissions Standards Model Year Diesel / (gallons / 1000 tonmiles) 2021-2023 2024-2026 2027- later Tractor Engine Standards (SET- Cycle) BSFC / (g/kwh) BTE / (%) CO2 / (g/kwh) Reduction compared to Phase 1 Class 8 High Roof Sleeper Cab (GEM-Cycle) CO2 / (g / ton-mile) 189.5 44.4 599-1.8% 7.436 75.7 Reduction compared to MY 2021* 184.8 45.5 584-4.2% 6.945 70.7-6.6% 183.1 45.9 579-5.1% 6.316 64.3-15,1% *due to new cycle no reference to phase 1 possible Future engine fuel economy standards demand high thermal efficiency (i.e. ORC) Vehicles need further measures (i.e. reduced parasitic losses) IAV 08/2017 TP-C od Status: draft 4

EPA GHG II Final Rule: Projected Engine Technologies and Reduction WHR (Rankine cycle) offers highest fuel consumption reduction potential Reduction of parasitic losses by variable auxiliaries will be mandatory Variable power on demand use of auxiliaries can be realized on mechanical way or by electrification ORC expander can also be coupled in mechanical or electrical way What is the most promising combination for a long haul truck? IAV 08/2017 TP-C od Status: draft 5

Model Structure in Velodyn4ComApps Simulation Environment IAV 08/2017 TP-C od Status: draft 6

Simulation Submodels: Vehicle, Engine, Air Conditioning and Drive Cycles IAV 08/2017 TP-C od Status: draft 7

Data for Vehicle, Engine, Air Conditioning and Drive Cycle Vehicle 40 tons Long Haul Truck Engine 12,4 liter, 6-cylinder engine Rated torque: 2300 Nm / 1000 1400 rpm Rated power: 377 kw / 1800 rpm Boundaries for Air Conditioning Average spring/autumn day in Berlin Start time 07:00 am Cycle Sequence of IAV long-haul cycles (~1 h each cycle) Total duration: 9 h including 45 minutes break Boundary conditions were constant for all investigated variants IAV 08/2017 TP-C od Status: draft 8

Simulation Submodel: Cooling Circuit IAV 08/2017 TP-C od Status: draft 9

Engine Cooling Circuit Bypass EGR cooler Main thermostat Long circuit High-temperature cooler High-temperature circuit Low-temperature circuit Vent lines Gearbox oil cooler Cylinder head Lowtemperature cooler Compensating reservoir Crankcase HT-CAC thermostat Air compressor Oil cooler LT-CAC thermostat Complex cooling system with HT / LT circuit Reference vehicle had rigid coupled water pump IAV 08/2017 TP-C od Status: draft 10

Engine Cooling Circuit Bypass EGR cooler Main thermostat Long circuit High-temperature cooler High-temperature circuit Low-temperature circuit Vent lines Gearbox oil cooler Cylinder head Lowtemperature cooler Compensating reservoir Crankcase HT-CAC thermostat Air compressor Oil cooler LT-CAC thermostat At low engine loads pump speed was reduced by visco clutch or E-drive At high loads water pump switches back to ridged mechanical drive IAV 08/2017 TP-C od Status: draft 11

Simulation Submodel: ORC-System IAV 08/2017 TP-C od Status: draft 12

IAV Main ORC Components Models of ORC components have been validated by test results from engine dyno Exhaust-HX can be bypassed 13

Simulation Submodel: 48 Volt Boardnet IAV 08/2017 TP-C od Status: draft 14

Electric Architecture and Operating Strategy Use of electric power from ORC has highest priority Limitation of ORC power, when there is restricted demand from electrical consumers Max. ORC power limited by power demand of fan Battery is charged up to max. SOC when sufficient ORC power is available Discharging of battery when ORC-power is too low 48V BSG is activated during braking and when ORC- and battery power too low and/or if 50% < SOC < 30% BSG only operated if h > 80% ORC P max =12 kw Battery Cap.=1.1 kwh 48V BSG P max = 9.5 kw h max = 0.87 WaPu AC ACC 24 Volt Switches to mechanical drive, at very high power demands IAV 08/2017 TP-C od Status: draft 15

ACC ORC ACC AC ACC AC ORC AC Fundamental System Variants Reference Variant Variant 1 Variant 2 G 48V M 48V 48V G M 48V M ORC no yes / no yes / no 48 Volt no no yes WaPu, AC mech. rigid mech. variable electro-mech. variable ACC mech. variable mech. variable electrically variable Entire matrix is result of fundamental variants in different combinations with subsystems (total of 82 variants) IAV 08/2017 TP-C od Status: draft 16

Results of Mechanical Coupled Variants -4,5-4 -3,5-3 -2,5-2 -1,5-1 -0,5 0 Fuel Consumption Reduction in % Mechanical coupled ORC + mec. Variable WP and AC Mechanical coupled ORC Mecanical variable air compressor (AC) Mechanical variable water pump (WP) Max. of 4.1% can be achieved by combining all measures IAV 08/2017 TP-C od Status: draft 18

Results of Electrical Coupled Variants -4,5-4 -3,5-3 -2,5-2 -1,5-1 -0,5 0 Fuel Consumption Reduction in % Electrical coupled ORC + electric driven auxiliaries Electric driven water pump (e-wp) Electric driven AC compressor (e-acc) Electric driven auxiliaries (e-wp+e-ac+e-acc) Electric driven air compressor (e-ac) Combination of ORC and electrified auxiliaries provides 3.8% FE benefit Electric conversion losses and demand for BSG limit FE benefit IAV 08/2017 TP-C od Status: draft 19

Summary Due to the higher transmission efficiency, mechanical coupled auxiliaries and ORC expander show slightly bigger potential to reduce fuel consumption compared to electrical coupled variants. Electrified auxiliaries only make sense in combination with an electrically coupled ORC system By optimizing the operating strategy of the electrical system, enlarging the battery capacity and improving the efficiency of the electric components a further improvement of the electrical coupled approach is expected. A combined mechanical/electrical coupling could combine the advantages of both concepts but increases complexity Enhanced power supply from the ORC system would lead to less use of the 48-Volt BSG during engine operation and could therefore also improve the electrical approach. This can be achieved by integrating the engine coolant circuit into the ORC! IAV 08/2017 TP-C od Status: draft 20

Serial Heat Exchanger Arrangement for Conventional HER-Concept Turbocharger EAT Tailpipe HX Bypass EGR HX Clutch Expansion machine Charge-air cooler Pump Condenser Cooling-water cooler Cooling-water Charge air Exhaust gas Steam cycle IAV 08/2017 TP-C od Status: draft 21

Serial Heat Exchanger Arrangement for ATM + HER-Concept Turbocharger EAT Tailpipe HX Bypass EGR HX Clutch Expansion machine Charge-air cooler Pump Condenser Cooling-water cooler Cooling-water Charge air Exhaust gas Steam cycle IAV 08/2017 TP-C od Status: draft 22

Thank You Oliver Dingel IAV GmbH Kauffahrtei 45, 09120 CHEMNITZ (GERMANY) Phone +49 371 237-34480 Oliver.Dingel@iav.de www.iav.com IAV 08/2017 TP-C od Status: draft 23

Parallel Heat Exchanger Arrangement for EHR + ATM Concept Turbocharger EAT Tailpipe HX Bypass EGR HX Clutch Expansion machine Charge-air cooler Pump Condenser Cooling-water cooler Cooling-water Charge air Exhaust gas Steam cycle IAV 08/2017 TP-C od Status: draft 24

Variante 2 (48V-System) Variante 1 (mechanisch) SIM.name m Truck [kg] m Trailer [kg] truck tyre no. trailer tyre no. Inertia Tyre [kgm²] Rolling drag cw A [m²] ES48V.Sig_on Battery Num Series Battery Num Parallel Battery SOC Init [%] Battery SOC min [%] Battery SOC max [%] CS mode P ewapu limit [W] Factor WaPu map WHR mode AC mode Pneumatic mode Air_req [Nl/min] Start Stop eta Visco cl WaPu Sensitivitätsanalyse Parameter-Matrix 001_HD_40_0t_IAV_Berlin_mid_standard_St_St_off 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 1 60 0 0,8 002_HD_40_0t_IAV_Berlin_mid_standard 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 1 60 1 0,8 003_HD_40_0t_IAV_Berlin_mid_standard_Visco_Cl 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 2 2000 2 0 1 1 60 1 0,8 004_HD_40_0t_IAV_Berlin_mid_standard_Visco_Cl_eta_red 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 2 2000 2 0 1 1 60 1 0,5 005_HD_40_0t_IAV_Berlin_mid_standard_Compr_Cl 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 2 60 1 0,8 006_HD_40_0t_IAV_Berlin_mid_standard_WHR_Compound 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 2 1 1 60 1 0,8 007_HD_20_0t_IAV_Berlin_mid_standard_St_St_off 8000 12000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 1 60 0 0,8 008_HD_20_0t_IAV_Berlin_mid_standard 8000 12000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 1 60 1 0,8 009_HD_20_0t_IAV_Berlin_mid_standard_Visco_Cl 8000 12000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 2 2000 2 0 1 1 60 1 0,8 010_HD_20_0t_IAV_Berlin_mid_standard_Visco_Cl_eta_red 8000 12000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 2 2000 2 0 1 1 60 1 0,5 011_HD_20_0t_IAV_Berlin_mid_standard_Compr_Cl 8000 12000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 2 60 1 0,8 012_HD_20_0t_IAV_Berlin_mid_standard_WHR_Compound 8000 12000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 2 1 1 60 1 0,8 013_HD_40_0t_IAV_Berlin_col_standard_St_St_off 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 1 60 0 0,8 014_HD_40_0t_IAV_Berlin_col_standard 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 1 60 1 0,8 015_HD_40_0t_IAV_Berlin_hot_standard_St_St_off 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 1 60 0 0,8 016_HD_40_0t_IAV_Berlin_hot_standard 8000 32000 6 6 14,9 0,00537 0,53 10 0 13 4 80 20 80 1 2000 2 0 1 1 60 1 0,8 017_HD_40_0t_IAV_Berlin_mid_48V_WHR 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 4 80 20 80 3 2000 2 1 3 3 60 1 0,8 018_HD_40_0t_IAV_Berlin_mid_48V_WHR_WaPu_adapted 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 4 80 20 80 4 2000 2 1 3 3 60 1 0,8 019_HD_40_0t_IAV_Berlin_mid_48V_WHR_WaPu_13_8 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 8 80 20 80 3 2000 2 1 3 3 60 1 0,8 020_HD_40_0t_IAV_Berlin_mid_48V_WHR_WaPu_13_12 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 12 80 20 80 3 2000 2 1 3 3 60 1 0,8 021_HD_40_0t_IAV_Berlin_mid_48V_WHR_WaPu_13_16 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 3 2000 2 1 3 3 60 1 0,8 022_HD_40_0t_IAV_Berlin_mid_48V_WHR_WaPu_13_2 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 2 80 20 80 3 2000 2 1 3 3 60 1 0,8 023_HD_40_0t_IAV_Berlin_mid_48V_WHR_all_func 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 1 3 3 60 1 0,8 024_HD_40_0t_IAV_Berlin_col_48V_WHR_all_func 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 1 3 3 60 1 0,8 025_HD_40_0t_IAV_Berlin_hot_48V_WHR_all_func 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 1 3 3 60 1 0,8 026_HD_20_0t_IAV_Berlin_mid_48V_WHR_all_func 8000 12000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 1 3 3 60 1 0,8 027_HD_20_0t_IAV_Berlin_col_48V_WHR_all_func 8000 12000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 1 3 3 60 1 0,8 028_HD_20_0t_IAV_Berlin_hot_48V_WHR_all_func 8000 12000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 1 3 3 60 1 0,8 029_HD_40_0t_IAV_Berlin_mid_48V_all_func 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 0 3 3 60 1 0,8 030_HD_40_0t_IAV_Berlin_col_48V_all_func 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 0 3 3 60 1 0,8 031_HD_40_0t_IAV_Berlin_hot_48V_all_func 8000 32000 6 6 14,9 0,00537 0,53 10 1 13 16 80 20 80 4 2000 2 0 3 3 60 1 0,8 IAV 08/2017 TP-C od Status: draft 25