Feasibility Study on Improving of Helicopter Forward Flight Speed via Modification of the Blade Dimension and Engine Performance

Similar documents
THE EFFECT OF VORTEX TRAP ON HELICOPTER BLADE LIFT

Robot Dynamics Rotary Wing UAS: Introduction, Mechanical Design and Aerodynamics

EXPERIMENTAL RESEARCH ON HELICOPTER TAIL SHAKE PHENOMENON

POWER ESTIMATION FOR FOUR SEATER HELICOPTER

Power Estimation for a Two Seater Helicopter

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR

CONCEPTUAL DESIGN OF UTM 4-SEATER HELICOPTER. Mohd Shariff Ammoo 1 Mohd Idham Mohd Nayan 1 Mohd Nasir Hussain 2

Wind Tunnel Measurement Of Aerodynamic Characteristics Of A Generic Eurocopter Helicopter

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols

(1) Keywords: CFD, helicopter fuselage, main rotor, disc actuator

A CFD-Based Approach to Coaxial Rotor Hover Performance Using Actuator Disks. Jonathan Chiew

Propeller blade shapes

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

This is the author s final accepted version.

New Design Concept of Compound Helicopter

SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL

FLIGHT TEST RESULTS AT TRANSONIC REGION ON SUPERSONIC EXPERIMENTAL AIRPLANE (NEXST-1)

STRUCTURAL DESIGN AND ANALYSIS OF ELLIPTIC CYCLOCOPTER ROTOR BLADES

How Do Helicopters Fly? An Introduction to Rotor Aeromechanics

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

Gyroplane questions from Rotorcraft Commercial Bank (From Rotorcraft questions that obviously are either gyroplane or not helicopter)

BERP IV Aerodynamics, Performance and Flight Envelope

Hover Flight Helicopter Modelling and Vibrations Analysis

AE 451 Aeronautical Engineering Design I Estimation of Critical Performance Parameters. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Fall 2015

Rotary-Wing Flight Mechanics

Research in hydraulic brake components and operational factors influencing the hysteresis losses

Aerodynamics and Flight Dynamics of Aircraft in Vortex Wake of Helicopter

DESIGN AND DEVELOPMENT OF A MICRO AIR VEHICLE (µav) CONCEPT: PROJECT BIDULE

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE

A SOLAR POWERED UAV. 1 Introduction. 2 Requirements specification

Performance and Design Investigation of Heavy Lift Tilt-Rotor with Aerodynamic Interference Effects

Swashplateless Helicopter Rotor with Trailing-Edge Flaps

Appenidix E: Freewing MAE UAV analysis

AE 451 Aeronautical Engineering Design Final Examination. Instructor: Prof. Dr. Serkan ÖZGEN Date:

DESIGN OF AN ARMAMENT WING FOR A LIGHT CATEGORY HELICOPTER

CONCEPTUAL DESIGN AND FEASIBILITY FOR A MINIATURE MARS EXPLORATION ROTORCRAFT

10th Australian International Aerospace Congress

HELICOPTER TAIL ROTOR ANALYSIS: EXPERIENCE IN AGUSTA WITH ADAMS

Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go?

Numerical Simulation Study on Propeller Slipstream Interference of High Altitude Long Endurance Unmanned Air Vehicle

AN ADVANCED COUNTER-ROTATING DISK WING AIRCRAFT CONCEPT Program Update. Presented to NIAC By Carl Grant November 9th, 1999

APPLICATION OF A NEW TYPE OF AERODYNAMIC TILTING PAD JOURNAL BEARING IN POWER GYROSCOPE

A Technical Essay on the Gyroplane

Research Article Performance and Vibration Analyses of Lift-Offset Helicopters

Die Lösungen müssen manuell überpüft werden. Die Buchstaben stimmen nicht mehr überein.

THE INVESTIGATION OF CYCLOGYRO DESIGN AND THE PERFORMANCE

Design and Test of Transonic Compressor Rotor with Tandem Cascade

ECO-CARGO AIRCRAFT. ISSN: International Journal of Science, Engineering and Technology Research (IJSETR) Volume 1, Issue 2, August 2012

Bosko Rasuo University of Belgrade, Faculty of Mechanical Engineering, Aeronautical Department, Belgrade 35, Serbia

FLIGHT DYNAMICS AND CONTROL OF A ROTORCRAFT TOWING A SUBMERGED LOAD

Innovating the future of disaster relief

Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations

CHAPTER 11 FLIGHT CONTROLS

Systems Group (Summer 2012) 4 th Year (B.Eng) Aerospace Engineering Candidate Carleton University, Ottawa,Canada Mail:

Tilt-rotor Ducted Fans and their Applications

FABRICATION OF CONVENTIONAL CYLINDRICAL SHAPED & AEROFOIL SHAPED FUSELAGE UAV MODELS AND INVESTIGATION OF AERODY-

Renewable Energy 42 (2012) 140e144. Contents lists available at SciVerse ScienceDirect. Renewable Energy

Electric Drive - Magnetic Suspension Rotorcraft Technologies

NUmERiCAL STUdY Of HELiCOPTER fuselage AEROdYNAmiC CHARACTERiSTiCS WiTH influence Of main ROTOR

AIRCRAFT DESIGN SUBSONIC JET TRANSPORT

Primary control surface design for BWB aircraft

A Comparison of Coaxial and Conventional Rotor Performance

Theory of helicopter flight

31 st Annual American Helicopter Society Student Design Competition: Graduate Submission

Presse-Information. The mycopter project points the way towards Personal Aerial Vehicles

DESIGN AND EXPERIMENT OF TWO-ROTORED UAV CYCLOCOPTER

THE INFLUENCE OF THE BLADES LEADING EDGE ANTI-EROSION PROTECTION ON MAIN ROTOR PERFORMANCES

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

Introduction to Aerospace Engineering

In response to. 34th Annual AHS International Student Design Competition IIT KANPUR INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

Flight Stability and Control of Tailless Lambda Unmanned Aircraft

Evaluation of the Applicability of the Vortex Lattice Method to the Analysis of Human Powered Aircraft

Prop effects (Why we need right thrust) Torque reaction Spiraling Slipstream Asymmetric Loading of the Propeller (P-Factor) Gyroscopic Precession

Analysis and evaluation of a tyre model through test data obtained using the IMMa tyre test bench

850. Design and numerical analysis of a novel coaxial rotorcraft UAV

Evaluation of the Effect of Rotor Solidity on the Performance of a H-Darrieus Turbine Adopting a Blade Element-Momentum Algorithm

Civil Engineering Hydraulics. Radial Flow Devices

The Airplane That Could!

CONCEPTUAL DESIGN OF ECOLOGICAL AIRCRAFT FOR COMMUTER AIR TRANSPORTATION

Chapter 11: Flow over bodies. Lift and drag

arxiv: v1 [cs.sy] 7 Jan 2018

The Pennsylvania State University. The Graduate School. Department of Aerospace Engineering

Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads

Slipstream Measurements of Small-Scale Propellers at Low Reynolds Numbers

Wind turbine aerodynamics, continued (Part 4/4)

Autonomous Mobile Robot Design

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018

Aerodynamics & Flight Mechanics Research Group

DEVELOPMENT OF THE AUTOGIRO: ATECHNICAL PERSPECTIVE

Air Buzz. 32nd Annual AHS International Student Design Competition

Design of Ultralight Aircraft

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Forced vibration frequency response for a permanent magnetic planetary gear

American International Journal of Research in Science, Technology, Engineering & Mathematics INDIA

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x

β 2 β 1 k = 1 k = 0 β 3 k = 3 β & >0 β <0 β & =0 β >0 β =0 β & <0

Optimization of Design Based on Tip Radius and Tooth Width to Minimize the Stresses on the Spur Gear with FE Analysis.

Chapter 4 Engine characteristics (Lectures 13 to 16)

Transcription:

Feasibility Study on Improving of Helicopter Forward Flight Speed via Modification of the Blade Dimension and Engine Performance Nik Mohd N.A.R. * and Wahab A.A. Dept. of Aeronautic & Automotive Eng., Faculty of Mechanical Engineering, Universiti eknologi Malaysia, 81310 Skudai, Johor. el: 07-5534879, Fax: 07-5566159. Abstract: he purpose of this paper is to study the feasibility on improving a 5-seaterr helicopter forward flight speed via applying the different combination between rotor and engine. he emphasis of this study is given to the increment in the main rotor number of blade from 3 to 4 blades and blade sizing at which to meet the better forward flight speed than the existing rotor design. he performance of the helicopter and the aerodynamic of rotor at steady and level flight was analysed by using the closed-form equation derived from the blade element theory (BE). he improvements in forward flight speed performance for every rotor-engine combinations were examined and detail documented in this paper. he percentage of improvements then was compared with the existing rotor data obtained from the helicopter flight manual and found that they were in good agreement. Keywords: Aerodynamic, forward flight, helicopter, speed performance. 1.0 Introduction Helicopter is designed to be well operating at different flight mission that requires the aircraft to fly at various flying modes (i.e.: hovering, vertical climb and descent, and different range of forward flight speed). Unlike the fixedwing aircraft, the helicopter rotor requires to provide both propulsive and lifting forces. In term of flight performance, it is greatly influenced by rotor and fuselage aerodynamic and also engine performance. During forward flight, the disk of helicopter rotor is operated at two different environments i.e., high (closed to transonic) and low subsonic airspeed regime. he high subsonic regime normally occurred at the disk of the rotor at which the blade is advance to the flight direction (or advancing side) and the low subsonic regime however occurred at the disk at which the blade is retreat away to the flight direction (or retreating side). As the speed of flight is increased, it is difficult to operate the helicopter rotor blade below or closed to the blade stall angle. Blade stalling is among the factors that potential to restrict the forward flight speed of helicopter and it is caused by the asymmetrical loading that had generated between advancing and retreating rotor disk side [1]. he development of high speed helicopter by principal is to reduce the travelling time. here were 3 major areas that could be used to improve the helicopter flight speed (i.e., (i) aerodynamics such as good aerodynamics shape, (ii) engine such as powerful engine performance, and (iii) structure such as light and stiff structure). It was observed that in high forward speed of flight the 1) Compressibility effect, ) Retreating blade stall and 3) Reverse flow region may restrict the forward flight speed [1]. o realize the helicopter with better flight speed, several design concepts were introduced, where, recently the helicopter was designed incorporated with an additional propulsive system as a pusher [], tilted-rotor [3], tilted-wing [4], and fitted with additional fixed-wing. hese concepts have successfully improved the helicopter flight speed but finally have encountered with economical conflict. After that, the new approach such as blade planform modification [5-9], flow control over the blade [10, 11], nose-droop concept [1] and variable diameter rotor [4] were introduced. hese approaches seem more useful on improving the helicopter flight speed performance with less economical conflict. For the example the concept of blade planform modification (known as the British Experimental Rotor Program (BERP)) rotor that used by GKN-Westland Super Lynx helicopter was designed to meet the conflicting aerodynamic requirements of advancing and retreating blade [13]. Assembled with BERP rotor and improved engine performance, the new world absolute speed record for a conventional helicopter was achieved by a GKN-Westland Super Lynx in 1986 at speed of 400.87 km/h (previous record is 367km/h). Nowadays, the helicopter at comparable gross weight can be designed with different number of blades. In this paper however, the 5-seater Eurocopter AS 355F [14] helicopter main rotor number of blade was increased from 3 to 4 * MSc. Student, E-mail: ridhwan@fkm.utm.my Prof. Ir. Dr., MIEM, E-mail: abas@fkm.utm.my

blades and four different combinations of rotor and engine was proposed to study its influence on the forward flight speed performance. he improvement in forward flight speed, the effects on the blade dynamic coefficients and retreating blade stall will considered and discussed with detail in this paper..0 Methodology he aerodynamic environment of helicopter rotor in forward flight is very complex as the rotor is subjected to free dynamic flapping, lagging and pitching motion. he unsteady on aerodynamic environment has leads to the complexity on both the rotor aerodynamic and performance analysis. o closely analyze the aerodynamic loads (e.g.; rotor thrust, lift and drag coefficient, induced velocity and rotor disc loading) and dynamic coefficients (e.g.; lateral and longitudinal flapping coefficient, pitching, sectional blade angle of attack, collective pitch and rotor coning angle) acting on 5 sections of blade element, the closed form equation of blade element theory (BE) was used [15]. he total thrust, as represented in Eq. 1 shows that the amount of thrust force developed by the rotor will affect by the presence of N number of blade [16,17]. he increments in rotor blades drag, H however influenced both by the presence of N number of blade and airfoil profile drag, C. π R N L = drdψ (1) π r 00 U P H = D L sin Ψ Lβ cos Ψ U () 1 D = ρ U Cd c r (3) 1 r U P L = ρu a θo + θtw + c r R U (4) where U p is the perpendicular velocity, U is the tangential velocity, a is airfoil lift curve slope (for Onera 09 airfoil, a=5.3/rad), r is radial blade station, Ψ is azimuth angle and θ tw is blade twist angle. he helicopter main rotor blade flapping coefficient (i.e.; longitudinal flapping, an and lateral flapping, b n ), rotor coning angle, a o and the cyclic pitch coefficient (i.e.; longitudinal cyclic, B1 and lateral cyclic, A 1 ) as a function of blade azimuth angle can respectively be modelled using Eq. 5 and Eq. 6. By allowing the blade to freely flapping about its rotational axis, this phenomenon permit both the blade at advancing and retreating side to produce equal amount of lift force to encounter the asymmetry of flow field generated in both rotor blade sides. d ( Ψ) = a ( a cos nψ b sin nψ). β (5) 0 n=1 n s he blade pitch (or feathering) motion can be described as the Fourier series [18] r R ( r Ψ) = θ o + θ A 1 cos Ψ B sin Ψ, tw 1 n s θ (6) where, in forward flight, the value of the collective pitch θ o increase with increasing in forward flight speed. Based on the performance study, the total power P for the forward flight is influenced by profile power, P o induced power, P i and parasite power, P p as given in Equation.1. P P + P + P + P = (7) o i p c

he profile profile power, P o induced power, P i and parasite power, P p in general, are influenced by the blade solidity, σ airfoil profile drag, C do and the rotor thrust coefficient, C advanced ratio, µ and the helicopter fuselage drag, f. Directly, the total power presented in non-dimensional form as the total power coefficient, C P empirically can be written as: C = C + C + C + C P po Pi kc σc = + µ 8 do Pp Pc 1 f 3 ( 1 + Kµ ) + µ A + 0 (8) where thrust coefficient, C ; solidity, σ; equivalent flat plat area, f; advanced ratio, µ; induced power, P i ; profile power, P o ; parasite power, P p and climb power, P c. his performance equation (Eq. 8) are incorporated with numerical value of K = 4.7, the empirical correction to account for a multitude of aerodynamic phenomena mainly those resulting from tip losses and nonuniform inflow, κ = 1.15 and the constant momentum induced velocity were used [18]. able 1 and depict the configuration of blade [19], engine and combination between blade and engine used for analysis. he selection of new turboshaft engine, the Allison 50-C47B engine for Eurocopter AS 355F helicopter was made primarily based on the slightly high output shaft rotational speed. able 1: Current and New Configuration of Eurocopter AS 355F. Eurocopter AS 355F Blade [19] Current configuration Radius: 5.345m Chord : 0.35m Airfoil: Onera 09 Number of blade: 3 New configuration Radius: 4.80m Chord : 0.31m Airfoil: Onera 09 Number of blade: 4 Engine Allison C50-0F Power: 450 shp Ω output: 6016 rpm Allison C50-47B Power: 650 shp Ω output: 6317 rpm able : Combination between Blade and Engine. Design Approach Rotor Engine Combination Current New Current New (A) (B) (C) (D) 3.0 Result and Discussion able 3.0 concludes the result of analysis of the Eurocopter AS 355F helicopter with different rotor-engine combination. According to the able, the cruising speed performance of this particular aircraft has improved by applying the different combination between rotor and engines. Modifying the blade dimension by reducing the blade radius about 10.19% and chord about 11.4% (combination (C)) improve the maximum cruising speed by about 6.687%. o realize a better forward flight speed, a better performance engines were used. he selection of the engine was based on the same manufacturer, C50 engine family and slightly higher engine shaft rotational output. wo Allison C50-47B was chosen to replace the Allison C50-0F engines that are currently used by Eurocopter AS 355F helicopter. Using this new engine, the cruising speed performance has abruptly been increased. his is apparently revealed by using the combination

(B) and (D). By using combination (B), the cruising speed has improved up to 8.09%. his increment however, requires a slightly higher collective pitch control (16.79), longitudinal flapping (-7.669 o ), lateral flapping (1.63 o ) angle, and longitudinal cyclic input of about 14.44 o to trim the aircraft. Combination (D) is the combination between new rotor configuration and new engine performance. Increment up to 33.54% and equal to 89.67 m/s on cruising speed was observed. As combination (B), a slightly higher collective (0.6 o ) are required to ensure the helicopter are flying at steady and level flight. As the forward speed is increased the production of reverse flow area also increases. he higher dynamic flapping on both lateral and longitudinal axis and collective pitch are required to produce enough of moment about centre of gravity to balance or trim the helicopter. From the aerodynamic analysis, the effect of compressibility at advancing side is not taken into account, however the blade angle of attack at retreating side are carefully checked. he static stall of this particular airfoil is 14 o. Fig. 3.0 (a) to Fig. 3.0 (h) shows the distributions of sectional main rotor blade angle of attack and blade lift during forward flight. From these Figures, the large blade angle of attack is found occurring at outer portion and the reverse flow area at inner portion of the blade span. It was found also that the higher speed of flight will generate the bigger reverse flow area. ABLE 3.0: Dynamic coefficient and performance table of Eurocopter AS 355F helicopter with Different Bladeengine Combinations VNE (m/s) Combination Manual 14 (A) (B) (C) (D) 77. 73.87 9.48 77.80 95.80 Max. cruise speed (m/s) at MCP 61.67 67.15 86.01 71.64 89.67 % of max. cruise speed compared with combination (1) rotor. - 0 +8.09 +6.687 +33.54 Collective pitch required (Deg.) - 15.64 16.79 18.10 0.6 Angle of tip path plane, PP (Deg.) - -5.91-9.67-6.7-10.50 Longitudinal cyclic pitch (Deg.) - 9.05 14.44 1.07 17.67 Lateral cyclic pitch (Deg.) - 0 0 0 0 Longitudinal flapping - -3.91-7.67-4.7-8.497 Lateral flapping (Deg.) - 1.6 1.6 1.71 1.70 10.0 Local Angle of Attack, deg Retreating Blade Ψ = 70 deg 8.0 6.0 4.0.0 Advancing Blade Ψ = 90 deg µ = 0.304 C /σ = 0.075 ΩR = 0.53 m/s N = 3 c = 0.35m θo = 15.637 deg f/a = 0.0104 0.0-1.0-0.8-0.6-0.4-0. 0.0 0. 0.4 0.6 0.8 1.0 -.0 Radial Station, r/r Fig. 3.0 (a): Local blade angle of attack measured at advancing and retreating blade side of Combination A.

0.050 0.040 0.030 µ = 0.304 C /σ = 0.075 ΩR = 0.53 m/s N = 3 c = 0.35m θo = 15.637 deg f/a = 0.0104 0.00 0.010 0.000 0 45 90 135 180 5 70 315 360-0.010 (deg.) r/r=0.8 r/r=0.41 r/r = 0.60 r/r = 1.0 Fig. 3.0 (b): Sectional blade Lift of Combination A. Angle of Attack, Deg Retreating Blade Ψ = 70 deg 1.0 10.0 8.0 6.0 4.0.0 Advancing Blade Ψ = 90 deg µ = 0.371 C/σ = 0.069 ΩR = 31.58 m/s N = 3 c = 0.35m θo = 17.898 deg f/a = 0.0104 0.0-1.0-0.8-0.6-0.4-0. 0.0 0. 0.4 0.6 0.8 1.0 -.0 Radial Station, r/r Fig. 3.0 (c): Local blade angle of attack measured at advancing and retreating blade side of Combination B.

0.050 0.040 0.030 µ = 0.371 C/σ = 0.069 ΩR = 31.58 m/s N = 3 c = 0.35m θo = 17.898 deg f/a = 0.0104 0.00 0.010 0.000 0 45 90 135 180 5 70 315 360-0.010-0.00 (deg.) r/r = 0.41 r/r = 0.6 r/r = 0.8 r/r = 1.0 Fig. 3.0 (d): Sectional blade Lift of Combination B. 14.0 Angle of Attack, Deg Retreating Blade Ψ = 70 deg 1.0 10.0 8.0 6.0 4.0.0 Advancing Blade Ψ = 90 deg µ = 0.36 C/σ = 0.0878 ΩR = 198.05 m/s N = 4 c = 0.31m θo = 18.101 deg f/a = 0.018 0.0-1.0-0.8-0.6-0.4-0. 0.0 0. 0.4 0.6 0.8 1.0 -.0-4.0 Radial Station r/r Fig. 3.0 (e): Local blade angle of attack measured at advancing and retreating blade side of Combination C.

0.060 0.050 0.040 µ = 0.36 C/σ = 0.0878 ΩR = 198.05 m/s N = 4 c = 0.31m θo = 18.101 deg f/a = 0.018 0.030 0.00 0.010 0.000 0 45 90 135 180 5 70 315 360-0.010 (deg.) r/r = 0.41 r/r = 0.60 r/r = 0.8 r/r = 1.0 Fig. 3.0 (f): Sectional blade Lift of Combination C. Angle of Attack, Deg. Retreating Blade Ψ = 70 deg 14 1 10 8 6 4 Advancing Blade Ψ = 90 deg µ = 0.431 C/σ = 0.081 ΩR = 07.97 m/s N = 4 c = 0.31m θo = 0.6 deg f/a = 0.018 0-1.0-0.8-0.6-0.4-0. 0.0 0. 0.4 0.6 0.8 1.0 - -4 Radial Station, r/r Fig. 3.0 (g): Local blade angle of attack measured at advancing and retreating blade side of Combination D.

0.060 0.045 0.030 µ = 0.431 C/σ = 0.081 ΩR = 07.97 m/s N = 4 c = 0.31m θo = 0.6 deg f/a = 0.018 0.015 0.000 0 45 90 135 180 5 70 315 360-0.015-0.030 (deg.) r/r = 0.4 r/r = 0.6 r/r = 0.8 r/r = 1.0 Fig. 3.0 (h): Sectional blade Lift of Combination D. 4.0 Conclusion he forward flight speed of Eurocopter AS 355F helicopter was studied based on the different rotor-engine combinations. Assessments were performed by using the closed-form equation from blade element theory. From the study, it was found that there were two possible approaches can be used on improving the Eurocopter helicopter forward flight speed; i. Increase its number of blade from 3 to 4 blades ii. Use the high performance engine From this study, by increasing the main rotor number of blade from 3 to 4 blades or by using combination B, will improve forward flight speed by about +8.09%. For rotor-engine combination, combination C is suggested; this is because of combination D generates the large reverse flow area at retreating blade side. he large ratio between reverse flow to the rotor area will cause the helicopter become unstable. 5.0 Acknowledgement his study is supported by Malaysia Ministry of Science, echnology and Innovation (MOSI) through the National Science Fellowship (NSF) scholarship programme. 6.0 References [1] Hooper, W.E., 1987. echnology for Advanced Helicopter. SAE Paper No. 87370: 6.1668-6.1675. [] Newman, S., 1997. he Compound helicopter Configuration and the Helicopter Speed trap. Aircraft Engineering and Aerospace echnology. 69(5): pp 407-413. [3] Chana, W. F. and Sullivan,. M., 199. he ilt-wing Advantage-For High Speed VSOL Aircraft. SAE Paper No 91911: pp 1535-1543. [4] Fradenburgh, E.A., 1991. he High Speed Challenge for Rotary Wing Aircraft. SAE Paper No. 911974: pp 1969-1987. [5] Duque, Earl P. N., 199. A Numerical Analysis of the British Experimental Rotor Program Blade. Journal of American Helicopter Society, 37(1): pp 46-54. [6] Leishman, J.G., 1989. Modeling Sweep effect on Dynamic Stall. Journal of American Helicopter Society, 34(3): pp 18-9. [7] Amer, K.B., 1989. High-Speed Rotor Aerodynamics. Journal of American Helicopter Society, echnical Note. 34(1): pp 63. [8] Perry, F.J., 1989. he Contribution of Planform Area to the Performance of the BERP Rotor. Journal of American Helicopter Society, 34(1). [9] Preiur, J., Lafon, P., Caplot, M., Desopper, A., 1989. Aerodynamics and Acoustic of Rectangular and Swept Rotor Blade ips. Journal of American Helicopter Society, 34(1): pp 4-51. [10] Lorber, P., McCormick, D., Anderson,., Wake, B., MacMartin, D., Pollack, M., Corke,. and Bruer, K., 000. Rotorcraft Retreating Blade Stall Control. AIAA 000-475.

[11] Magill, J., Bachmann, M., Rixon, G., and McManus, K., 001. Dynamic Stall Control Using a Model-Based Observer. AIAA 001-051. [1] Geissler, W., Sobieczky, H., and renker, M., 000. New Rotor Airfoil Design Procedure for Unsteady Flow Control. Duetches Zentrum für Luft-und Raumfahrt e.v., Institut für Strömungsmechanik, Bunsenstr. 10 D-37073 Göttingen, Germany. [13] Perry, F.J., 1987. he Aerodynamics of the World Speed Record. Presented at the 43 rd Annual Forum of the American Helicopter Society, St. Louis. [14] winstar AS 355 Instruction Manual, Aerospatiale. Issue 1986. [15] Prouty, R.W., 1986. Helicopter Performance, Stability, and Control, PWS Engineering, Boston. [16] Gray F., 001. Derivation of the Aerodynamic Forces for the Mesicopter Simulation. [17] Stepniewski, 1984. Rotary-Wing Aerodynamics, Dover Publications, Inc., New York. [18] Leishman, G., 00. Principles of Helicopter Aerodynamics. Cambridge Aerospace Series, United Kingdom. [19] A.A. Wahab and N.A.R. Nik Mohd, 004. he Effect of Blade Solidity on Helicopter Cruising Speed. Presented at he Malaysian Science and echnology Congress (MSC), Kuala Lumpur.