9/13/2017. Friction, Springs and Scales. Mid term exams. Summary. Investigating friction. Physics 1010: Dr. Eleanor Hodby

Size: px
Start display at page:

Download "9/13/2017. Friction, Springs and Scales. Mid term exams. Summary. Investigating friction. Physics 1010: Dr. Eleanor Hodby"

Transcription

1 Day 6: Friction s Friction, s and Scales Physics 1010: Dr. Eleanor Hodby Reminders: Homework 3 due Monday, 10pm Regular office hours Th, Fri, Mon. Finish up/review lecture Tuesday Midterm 1 on Thursday - Hour eams in Duane G1B30 on Sept 21, Oct 19, Nov 16 (In class) - 40 multiple choice questions, worth 80 points. -There will be no early or late eams given and no make-up eams. - Eam will be closed book. Mid term eams - ONE 3 by 5 inch formula card. You can WRITE anything on it BY HAND. - Calculator. - Basic scientific calculator only. NO graphical calculators. If in doubt, check with me this week. - Calculator cannot connect to outside world. No calculators on cell phones or laptops allowed. - No sharing of calculators. - No spare calculators available - Your lowest midterm score will be dropped. - There will be no makeups and it is NOT possible for you to miss 2 midterms. - Eam grades and solutions will be posted after the eam on D2L. Midterm preparation Prepare by applying the principles we have learned practice. You CANNOT memorize answers to specific questions. Make a formula card now with the important equations. Go over homeworks, class clicker questions, questions in the book. - Not sure how to get the answer take it to the helproom. At least half of Tuesday s lecture will be a review lecture - Lots of clicker questions - Do your revision BEFORE Tuesday and treat Tuesday as a practice eam. No HW on eam week (week 4). Office hours will be rescheduled as review sessions in week 4. Upcoming office hours this week and net EH: pm Thursday 14 th (Helproom) IH: 12-2pm Friday 15 th (Lounge) IL: 11-1pm, Monday 18 th (Helproom) AJ: 2-4pm, Monday 18 th (Lounge) AJ: 2-4pm Tuesday 19 th (Lounge) IL: 1-3pm Wednesday 20 th (Helproom) IH, pm Wednesday 20 th (Lounge) EH: am Thursday 21 st (Helproom) NO office hours on Friday 22 nd, Monday 25 th Regular hours for HW3 Eam review Details about office hours and review sessions etc are always posted on the website. Summary Investigating friction Last time Gravity Net force Today All about force of friction - How big is it? - What causes it - How to reduce/increase it All about springs - How is spring force related to etension of spring - How to make a spring scale Block has a mass of 2.5 kg, It weighs appro. how many N? (How much force needed to lift it?) a. 2.5 b. 25 c. 1.5/2.5 d. (1.5/2.5) 9.8 Force sensor Block 1

2 Applied Force Force 9/13/2017 Investigating friction Block weight = 25N Block weight = 25N Friction between and. Predict graph of force which we must apply by pulling on sensor in order to move along at a constant speed prediction should include force from before starting to pull until is moving at constant speed across the. (Make guess as to specific value as well as shape.)? N 0 time -? N time Block weight = 25N Block weight = 25N F F slidef pull Sliding (kinetic) friction How big is the force of sliding friction? - Often calculated as μ*weight of moving object. - μ is the coefficient of sliding friction, describes roughness of surfaces - A good guess for μ, if both surfaces are reasonably smooth is But this is just an approimation..higher for rough surfaces and lower if smooth - Make sense.much easier to push say heavy bo across wooden floor than lift it. Using data from our previous eperiment, what is the value of μ for a wooden sliding along the lab bench? a) 0.05 b) 0.2 c) 0.4 d) 0.6 e) 0.8 Sliding (kinetic) friction Increase the mass of the to 5 kg, what pulling force (appro) is needed to keep moving at a constant speed? a. 0 N, b. 5N c. 10N d. 49N c. 100N It takes a pulling force of ~5N to keep the moving in a straight line across the at a constant speed of 0.2 m/s. Now I double the speed to a steady 0.4 m/s. What constant pulling force is required now? a. 0N b. less than 5N c. about 5N d. more than 5N 2

3 Microscopic details of static and sliding friction Atoms of same material (color) all hooked together by forces like tiny springs Viewed at atomic level surfaces are never perfectly smooth The atoms from the two surfaces catch and drag against each other producing a force that opposes motion called friction friction force on opposing motion Motion of Dragging surfaces across each other causes atoms to start vibrating= heat! Heat energy produced = work done = F friction distance moved. Eamples: -Rubbing hands together to keep warm - Rubbing 2 sticks to start a fire - Spinning tires on car Friction and heat Motion of Why is maimum static friction force greater than sliding friction force? When stationary, atoms at surfaces can get embedded and stuck more than when sliding. So maimum static friction force bigger than sliding friction force. What if you increase the weight of an object? Frictional force increases proportional to weight More force pushing surfaces together atoms at surface mesh together more more friction Size of frictional force also depends on material in each surface Increased weight force How does a lubricant affect friction? A lubricant is: A layer of slimy stuff between surfaces Doesn t stick to either surface, flows out of way of surface atoms Keeps surfaces apart e.g. oil, snow, water Reduces friction between the 2 surfaces Physics that might save your life Why are you supposed to pump your brakes when stopping on wet or icy road? a. to avoid brakes overheating and wearing out faster b. to keep tires rolling so do not skid and wear out tires c. to make brake lights flash on and off to get attention of drivers behind you. d. to keep tires rolling so will slow down more quickly 3

4 Physics that might save your life Rolling wheels Why are you supposed to pump your brakes when stopping on wet or icy road? a. to avoid brakes overheating and wearing out faster b. to keep tires rolling so do not skid and wear out tires c.to make brake lights flash on and off to get attention of drivers behind you. d. to keep tires rolling so will slow down more quickly Why does keeping tires rolling allow you to slow down more quickly? Seems counterintuitive. All about static and sliding friction. (rolling tires also enable you to steer handy, but not so interesting for this course) v rotation What is the velocity of the point of the wheel in contact with the ground? a. 0 b. c. d. something else There are 2 components to the velocity of the wheel at this point 1. V car forwards 2. V rotation backwards Add the 2 component vectors to get final velocity They have the same magnitude and eactly cancel! Point on wheel touching ground is instantaneously stationary! If not then skidding/spinning tires Back to wheels and friction Friction allows cars to speed up or slow down. - Car tires eert frictional force on road - Road eerts frictional force on tires and hence car which changes velocity - If rolling, tire in contact with road is stationary use static friction force - If skidding tire is moving relative to road use sliding friction force Ma static frictional force > sliding friction force. If wheel rolling and using static friction you can acc/decelerate more rapidly s another kind of force Speeding up: Force of tire on road Slowing down: Force of road on tire (and car) Drive engine rotates tire. Tire pushes backwards on road. Force of road on tire (and car) Braking tire rotation slows down Tire pushes forwards on road Force of tire on road Everything you need to know about springs spring Identical stretched spring (Hooke s Law) Hand holding spring at etension Hand pulling to right pulling to left In equilibrium: F hand = F spring F spring F hand From eperiment we know: F spring Etension (m) Force of spring (N) F spring = - k Minus sign: force opposes etension Vectors in opposite directions constant Postive number Units: N/m Pull down on spring with 1N of force measured by probe Force Probe stretches 0.07m How much would it stretch if pull down on spring with force of 0.5 N? a m b m c. 0.07m d. 0.12m e. 0.20m Investigating springs 4

5 Weight (N) 9/13/2017 Investigating springs Scales Attach 0.1 kg mass 0.1 kg mass stretches??? meters. How much would it stretch if we hang a 0.1 kg mass on the spring? a. same distance as for 1 N force b. ½ as far c. 2 times as far d. more than 2 times as far e. Less than ½ as far Scale relates to weight (N) k Scales (eg bathroom scales) are just calibrated springs. On scales, mass is stationary and in eqm. Net force = 0 force balances weight force In equilibrium: F net = 0 F net = k = 0 = k directly related to weight force,. So if you have a spring and measure the value of k (calibrate it), then you can hang any weight on it, and from can calculate the weight () and (if on earth) the mass (m) Eample I hang a 2 kg mass from a spring and it stretches 2cm. What is the spring constant (k) of the spring? (assume g = 10m/s 2 ) a) 10 N/m b) 100 N/m c) 1000N/m d) N/m e) None of these. : Zero etension Stretched spring k Eample I hang a 2 kg mass from a spring and it stretches 2cm. This implies that k = 1000N/m. I remove the first mass and hang a different, unknown mass off the same spring. It stretches 8cm from its natural length. What is the second mass in kg? a) 2 kg b) 2/3 kg c) 4kg d) 8kg e) Not enough information given : Zero etension Stretched spring k More spring questions More spring questions X? Now hang 0.2 kg mass (2N of force) off 2 different springs. They are both initially the same length but one is made of thick stiff wire and the other is made of thin bendy wire. Which spring will stretch more? a. They will stretch the same distance b. Thick wire spring stretches less c. Thick wire spring stretches more X X? k What about squashing the spring? When I hang a 0.2 kg mass on the spring it stretches an amount hang How much would it compress if we placed a 0.2 kg mass on top of it? a. squash smaller than hang b. They are about the same c. squash bigger than hang d. I still haven t figured out the buttons on my clicker. 5

6 s in ropes what s good choice of rope For climbing, best to use a. rope with soft spring (lots of stretch) b. rope with stiff spring (not much stretch) c. doesn t matter any spring is good. Important note about vectors in diagrams and equations In diagrams: Always define ve direction Arrow represents direction (sign of vector) Letter is the MAGNITUDE so always represents a POSITIVE number F spring F hand In equilibirum: Net force = F hand F spring = 0 F hand = F spring In equations: Arrow in diagram relates to sign infront of letter in equation (±) Letter represents a positive number 6

Friction. Coefficients of friction for rubber on roads are listed in the table. asphalt road) Dry road Wet road 0.53

Friction. Coefficients of friction for rubber on roads are listed in the table. asphalt road) Dry road Wet road 0.53 Conceptual questions Friction 1 Most bikes have normal tires: some have fats. a Suppose the wheels on both a normal bike (not shown) and the bikes above have outside diameters of 67 cm. By using your own

More information

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Name: Group: Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted,

More information

Stopping distance = thinking distance + braking distance.

Stopping distance = thinking distance + braking distance. Q1. (a) A driver may have to make an emergency stop. Stopping distance = thinking distance + braking distance. Give three different factors which affect the thinking distance or the braking distance. In

More information

4.2 Friction. Some causes of friction

4.2 Friction. Some causes of friction 4.2 Friction Friction is a force that resists motion. Friction is found everywhere in our world. You feel the effects of when you swim, ride in a car, walk, and even when you sit in a chair. Friction can

More information

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in.

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in. Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in. (a) Choose from the following words to complete the sentences below. distance energy force speed time You

More information

Draft copy. Friction and motion. Friction: pros and cons

Draft copy. Friction and motion. Friction: pros and cons As you have learned, moving objects often slow down because there is a force acting on them. The force is acting in the opposite direction to the way the objects are moving. This force is called friction.

More information

Roehrig Engineering, Inc.

Roehrig Engineering, Inc. Roehrig Engineering, Inc. Home Contact Us Roehrig News New Products Products Software Downloads Technical Info Forums What Is a Shock Dynamometer? by Paul Haney, Sept. 9, 2004 Racers are beginning to realize

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Hovercraft

Hovercraft 1 Hovercraft 2017-2018 Names: Score: / 44 Show all equations and work. Point values are shown in parentheses at the end of the question. Assume g=9.8 m/s/s for all calculations. Include units in your answer.

More information

Heat Engines Lab 12 SAFETY

Heat Engines Lab 12 SAFETY HB 1-05-09 Heat Engines 1 Lab 12 1 i Heat Engines Lab 12 Equipment SWS, 600 ml pyrex beaker with handle for ice water, 350 ml pyrex beaker with handle for boiling water, 11x14x3 in tray, pressure sensor,

More information

Q1. The graph shows the speed of a runner during an indoor 60 metres race.

Q1. The graph shows the speed of a runner during an indoor 60 metres race. Q1. The graph shows the speed of a runner during an indoor 60 metres race. (a) Calculate the acceleration of the runner during the first four seconds. (Show your working.) (b) How far does the runner travel

More information

4.4. Forces Applied to Automotive Technology. The Physics of Car Tires

4.4. Forces Applied to Automotive Technology. The Physics of Car Tires Forces Applied to Automotive Technology Throughout this unit we have addressed automotive safety features such as seat belts and headrests. In this section, you will learn how forces apply to other safety

More information

ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI

ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI YR. 9 / YR. 10 PHYSICS REVISION WORKSHEET 1. (a) In 2009 the sprinter Usain Bolt ran the 100m sprint in a time of 9.58s. Calculate his average speed during this race.

More information

Friction and Momentum

Friction and Momentum Lesson Three Aims By the end of this lesson you should be able to: understand friction as a force that opposes motion, and use this to explain why falling objects reach a terminal velocity know that the

More information

PHY152H1S Practical 3: Introduction to Circuits

PHY152H1S Practical 3: Introduction to Circuits PHY152H1S Practical 3: Introduction to Circuits Don t forget: List the NAMES of all participants on the first page of each day s write-up. Note if any participants arrived late or left early. Put the DATE

More information

2.007 Design and Manufacturing I

2.007 Design and Manufacturing I MIT OpenCourseWare http://ocw.mit.edu 2.007 Design and Manufacturing I Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 4 2.007 Design

More information

2.007 Design and Manufacturing I

2.007 Design and Manufacturing I MIT OpenCourseWare http://ocw.mit.edu 2.7 Design and Manufacturing I Spring 29 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 8 2.7 Design

More information

distance travelled circumference of the circle period constant speed = average speed =

distance travelled circumference of the circle period constant speed = average speed = Lecture 6 Circular motion Instantaneous velocity and speed For an object travelling in the uniform circular motion, its instantaneous velocity is not constant because the direction of the object is continuously

More information

The graph shows how far the car travelled and how long it took. (i) Between which points was the car travelling fastest? Tick ( ) your answer.

The graph shows how far the car travelled and how long it took. (i) Between which points was the car travelling fastest? Tick ( ) your answer. Q1. This question is about a car travelling through a town. (a) The graph shows how far the car travelled and how long it took. (i) Between which points was the car travelling fastest? Tick ( ) your answer.

More information

Scientific Notation. Slide 1 / 106. Slide 2 / 106. Slide 3 / th Grade. Table of Contents. New Jersey Center for Teaching and Learning

Scientific Notation. Slide 1 / 106. Slide 2 / 106. Slide 3 / th Grade. Table of Contents. New Jersey Center for Teaching and Learning New Jersey Center for Teaching and Learning Slide 1 / 106 Progressive Mathematics Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students

More information

P5 STOPPING DISTANCES

P5 STOPPING DISTANCES P5 STOPPING DISTANCES Practice Questions Name: Class: Date: Time: 85 minutes Marks: 84 marks Comments: GCSE PHYSICS ONLY Page of 28 The stopping distance of a car is the sum of the thinking distance and

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Newton s 2 nd Law Activity

Newton s 2 nd Law Activity Newton s 2 nd Law Activity Purpose Students will begin exploring the reason the tension of a string connecting a hanging mass to an object will be different depending on whether the object is stationary

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

Chapter: Electricity

Chapter: Electricity Chapter 13 Table of Contents Chapter: Electricity Section 1: Electric Charge Section 2: Electric Current Section 3: Electrical Energy 1 Electric Charge Positive and Negative Charge Atoms contain particles

More information

Chapter 9 Motion Exam Question Pack

Chapter 9 Motion Exam Question Pack Chapter 9 Motion Exam Question Pack Name: Class: Date: Time: 63 minutes Marks: 63 marks Comments: Page of 49 The graphs in List A show how the velocities of three vehicles change with time. The statements

More information

Simple Gears and Transmission

Simple Gears and Transmission Simple Gears and Transmission Simple Gears and Transmission page: of 4 How can transmissions be designed so that they provide the force, speed and direction required and how efficient will the design be?

More information

Bill the Cat, tied to a rope, is twirled around in a vertical circle. Draw the free-body diagram for Bill in the positions shown. Then sum the X and

Bill the Cat, tied to a rope, is twirled around in a vertical circle. Draw the free-body diagram for Bill in the positions shown. Then sum the X and Assignment (a) No assigned WH. (b)read motion in the presence of resistive forces (finish the chapter). Go over problems covered in classes. (c)read: System and Environments, Work done by a constant force,

More information

Physics 2. Chapter 10 problems. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Chapter 10 problems. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 2 Chapter 10 problems 10.6 A machinist is using a wrench to loosen a nut. The wrench is 25cm long, and he exerts a 17-N force at the end of the handle. a) What torque does the machinist exert about

More information

Deriving Consistency from LEGOs

Deriving Consistency from LEGOs Deriving Consistency from LEGOs What we have learned in 6 years of FLL by Austin and Travis Schuh Objectives Basic Building Techniques How to Build Arms and Drive Trains Using Sensors How to Choose a Programming

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

FRONTAL OFF SET COLLISION

FRONTAL OFF SET COLLISION FRONTAL OFF SET COLLISION MARC1 SOLUTIONS Rudy Limpert Short Paper PCB2 2014 www.pcbrakeinc.com 1 1.0. Introduction A crash-test-on- paper is an analysis using the forward method where impact conditions

More information

Eddy Currents and Magnetic Damping *

Eddy Currents and Magnetic Damping * OpenStax-CNX module: m42404 1 Eddy Currents and Magnetic Damping * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain the magnitude

More information

ELECTRICITY: ELECTROMAGNETISM QUESTIONS

ELECTRICITY: ELECTROMAGNETISM QUESTIONS ELECTRICITY: ELECTROMAGNETISM QUESTIONS The flying fox (2017;3) Sam has a flying fox (zip line) that he wants to use in the dark. Sam connects a 12.0 V battery to a spotlight, using two 1.60-metre-long

More information

Name: Period: Due Date: Physics Project: Balloon Powered Car

Name: Period: Due Date: Physics Project: Balloon Powered Car Name: Period: Due Date: Physics Project: Balloon Powered Car Challenge: Design and build a balloon car that will travel the greatest distance in the Balloon Car Cup. To do this, you must combine key concepts

More information

1103 Per 9: Simple Machines-Levers

1103 Per 9: Simple Machines-Levers Name Section 1103 Per 9: Simple Machines-Levers 9.1 How do Levers Work? 1) Fulcrums and forces a) Place a meter stick on the plastic tube with the 50 cm mark directly above the tube. Place a 5 newton weight

More information

Page 2. The go-kart always had the same mass and used the same motor.

Page 2. The go-kart always had the same mass and used the same motor. Q1.(a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart. The go-kart always had the same mass and used

More information

Using your Digital Multimeter

Using your Digital Multimeter Using your Digital Multimeter The multimeter is a precision instrument and must be used correctly. The rotary switch should not be turned unnecessarily. To measure Volts, Milliamps or resistance, the black

More information

SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM

SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM Dampers are the hot race car component of the 90s. The two racing topics that were hot in the 80s, suspension geometry and data acquisition, have been absorbed

More information

Look at the Line graph below for Sam s weight from January to May.

Look at the Line graph below for Sam s weight from January to May. Look at the Line graph below for Sam s weight from January to May. Q1. What is the title of this line graph? Q2. What is the range of values on the horizontal scale? 1. 2. Q3. How many points are in the

More information

STUDENT ACTIVITY SHEET Name Period Fire Hose Friction Loss The Varying Variables for the One That Got Away Part 1

STUDENT ACTIVITY SHEET Name Period Fire Hose Friction Loss The Varying Variables for the One That Got Away Part 1 STUDENT ACTIVITY SHEET Name Period Fire Hose Friction Loss The Varying Variables for the One That Got Away Part 1 The questions: How does Friction Loss change with the quality of the fire hose? How does

More information

The Mechanical Equivalent of Heat

The Mechanical Equivalent of Heat The Mechanical Equivalent of Heat INTRODUCTION One of the most famous experiments of the 19 th century was Joule s experiment showing that mechanical energy can be converted to heat. This showed that heat

More information

Simple Gears and Transmission

Simple Gears and Transmission Simple Gears and Transmission Contents How can transmissions be designed so that they provide the force, speed and direction required and how efficient will the design be? Initial Problem Statement 2 Narrative

More information

Scientific Notation. Slide 1 / 106. Slide 2 / 106. Slide 4 / 106. Slide 3 / 106. Slide 5 / 106. Slide 6 / th Grade.

Scientific Notation. Slide 1 / 106. Slide 2 / 106. Slide 4 / 106. Slide 3 / 106. Slide 5 / 106. Slide 6 / th Grade. Slide 1 / 106 New Jersey enter for Teaching and Learning Progressive Mathematics Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students

More information

Chapter 7. Magnetic Fields. 7.1 Purpose. 7.2 Introduction

Chapter 7. Magnetic Fields. 7.1 Purpose. 7.2 Introduction Chapter 7 Magnetic Fields 7.1 Purpose Magnetic fields are intrinsically connected to electric currents. Whenever a current flows through a wire, a magnetic field is produced in the region around the wire.

More information

Team Name: Team #: Compound Machines

Team Name: Team #: Compound Machines Team Name: Team #: Names: Compound Machines MIT Science Olympiad Invitational Tournament 2015 1/24/2015-50 Minutes Supervised by Mitchell Gu Mounds View HS 14 MIT 18 mitchgu@mit.edu Co-written by Mitchell,

More information

Crash Cart Barrier Project Teacher Guide

Crash Cart Barrier Project Teacher Guide Crash Cart Barrier Project Teacher Guide Set up We recommend setting the ramp at an angle of 15 and releasing the cart 40 cm away from the barrier. While crashing the cart into a wall works, if this is

More information

(3) When the brake pedal of the car is pushed, brake pads press against very hard steel discs.

(3) When the brake pedal of the car is pushed, brake pads press against very hard steel discs. Q1. A car travels along a level road at 20 metres per second. (a) Calculate the distance travelled by the car in 4 seconds. (Show your working.) (b) When the brake pedal of the car is pushed, brake pads

More information

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Motional emf. as long as the velocity, field, and length are mutually perpendicular. Motional emf Motional emf is the voltage induced across a conductor moving through a magnetic field. If a metal rod of length L moves at velocity v through a magnetic field B, the motional emf is: ε =

More information

Boardworks Ltd Braking Distance

Boardworks Ltd Braking Distance 1 of 23 Boardworks Ltd 2016 Braking Distance Braking Distance 2 of 23 Boardworks Ltd 2016 What is braking distance? 3 of 23 Boardworks Ltd 2016 Stopping distance is the overall distance that a vehicle

More information

C. Brake pads Replaceable friction surfaces that are forced against the rotor by the caliper piston.

C. Brake pads Replaceable friction surfaces that are forced against the rotor by the caliper piston. BRAKES UNIT 1: INTRODUCTION TO BRAKE SYSTEMS LESSON 1: FUNDAMENTAL PRINCIPLES OF BRAKE SYSTEMS I. Terms and definitions A. Brake fading Loss of brakes, usually due to heat. B. Brake lining Material mounted

More information

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups.

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups. Physics 9 2016-04-13 Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups. Today we ll build on what we did Monday with batteries and light bulbs.

More information

1. Measure the length of the track (already set up by your teacher) in meters and record in table 1. Use a meter stick for this.

1. Measure the length of the track (already set up by your teacher) in meters and record in table 1. Use a meter stick for this. Hot Wheels Speed Lab Name: Purpose : To calculate the speed of different hot-wheels cars. Procedure: 1. Measure the length of the track (already set up by your teacher) in meters and record in table 1.

More information

View Numbers and Units

View Numbers and Units To demonstrate the usefulness of the Working Model 2-D program, sample problem 16.1was used to determine the forces and accelerations of rigid bodies in plane motion. In this problem a cargo van with a

More information

VEHICLE TOWING SAFETY

VEHICLE TOWING SAFETY When you've got the correct gear, some practice and confidence, towing can be as easy as single-vehicle driving. Yet safety should always be your main concern when you're pulling a trailer. Because no

More information

BOBSLED RACERS. DESIGN CHALLENGE Build a miniature bobsled that can win a race down a slope.

BOBSLED RACERS. DESIGN CHALLENGE Build a miniature bobsled that can win a race down a slope. Grades 3 5, 6 8 30 minutes BOBSLED RACERS DESIGN CHALLENGE Build a miniature bobsled that can win a race down a slope. MATERIALS Supplies and Equipment: Stopwatch Flat-bottomed 10-foot vinyl gutters (1

More information

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it?

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it? If a moving electron in a magnetic field experiences a force pushing on it at right angles to its motion, what happens when we take a copper wire (with lots of easily dislodged electrons in it) and move

More information

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday 10/26/17 Update Last week Completed Sources of Magnetic Fields (Chapter 30) This week A. B. Kaye, Ph.D. Associate Professor of Physics (Chapter 31) Next week 30 October 3 November 2017 Chapter 32 Induction

More information

Vibrations. Homework 6: shock. 10 to a few. atomic force. range. of slinky. AFM. to have. cantilever. below. Use. mode.

Vibrations. Homework 6: shock. 10 to a few. atomic force. range. of slinky. AFM. to have. cantilever. below. Use. mode. EN4: ynamics and Vibrations Homework 6: Forced Vibrations ue Friday April 5th School of Engineering Brown University 1. Springs are used for many different engineering and science applications. Typical

More information

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The stopping distance of a car is the sum of the thinking distance and the braking distance. FORCES AND BRAKING Q1. The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed.

More information

1. What are some everyday examples (that are NOT listed above) in which you use torque to complete a task?

1. What are some everyday examples (that are NOT listed above) in which you use torque to complete a task? ID: NAME: DATE: CLASS: Chapter 11: Torque Notes POGIL #1 REMEMBER: Throughout this paper, you will see some symbols. The stop sign means STOP and check with a teacher before continuing. The key means THIS

More information

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011.

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011. Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Additional Science Unit Physics P2 Physics Unit Physics P2 Written Paper General Certificate

More information

Physics 12 Circular Motion 4/16/2015

Physics 12 Circular Motion 4/16/2015 Circular Motion Name: 1. It is possible to spin a bucket of water in a vertical circle and have none of the water spill when the bucket is upside down. How would you explain this to members of your family?

More information

ENGR 40M Problem Set 1

ENGR 40M Problem Set 1 Name: Lab section/ta: ENGR 40M Problem Set 1 Due 7pm April 13, 2018 Homework should be submitted on Gradescope, at http://www.gradescope.com/. The entry code to enroll in the course is available at https://web.stanford.edu/class/engr40m/restricted/gradescope.html.

More information

Chapter 12 Vehicle Movement

Chapter 12 Vehicle Movement Chapter 12 Vehicle Movement - FACTORS THAT AFFECT YOUR DRIVING IN: - 3 Major high conditions that require a speed adjustment - 4 components of total stopping distance - Natural Laws Inertia, friction,

More information

Cable Car. Category: Physics: Balance & Center of Mass, Electricity and Magnetism, Force and Motion. Type: Make & Take.

Cable Car. Category: Physics: Balance & Center of Mass, Electricity and Magnetism, Force and Motion. Type: Make & Take. Cable Car Category: Physics: Balance & Center of Mass, Electricity and Magnetism, Force and Motion Type: Make & Take Rough Parts List: 1 Paperclip, large 2 Paperclips, small 1 Wood stick, 1 x 2 x 6 4 Electrical

More information

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System)

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System) Proc. Schl. Eng. Tokai Univ., Ser. E (17) 15-1 Proc. Schl. Eng. Tokai Univ., Ser. E (17) - Research on Skid Control of Small Electric Vehicle (Effect of Prediction by Observer System) by Sean RITHY *1

More information

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect. Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car. The results are shown in the table. Speed in metres per second

More information

Student book answers Chapter 1

Student book answers Chapter 1 Physics P2 Unit Opener Picture Puzzler: Key Words Picture Puzzler: Close up Everest, newtonmeter, Earth, remote, gear, yellow The key word is energy. copper wires P2 1.1 Charging up In-text A positive,

More information

Velocity vs Time. Velocity vs Time

Velocity vs Time. Velocity vs Time Chapter : One Dimensional Motion Graphical Interpretation of Instantaneous and Average Acceleration Explain what happens in each of these graphs. Make sure to record the change in displacement, change

More information

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative. Date: SNC1D: Electricity 11.1 CURRENT ELECTRICITY Define: CIRCUIT: path that electrons follow. CURRENT ELECTRICITY: continuous flow of electrons in a circuit LOAD: device that converts electrical energy

More information

Attached Images. Attached Images

Attached Images. Attached Images Results from May 9 th : I'm sorry to say... I should have stayed home!.. Well, actually I'm glad I went, but the day was NOT a success from a competitive standpoint. It's always risky to take an untested

More information

meters Time Trials, seconds Time Trials, seconds 1 2 AVG. 1 2 AVG

meters Time Trials, seconds Time Trials, seconds 1 2 AVG. 1 2 AVG Constan t Velocity (Speed) Objective: Measure distance and time during constant velocity (speed) movement. Determine average velocity (speed) as the slope of a Distance vs. Time graph. Equipment: battery

More information

Solar Matters III Teacher Page

Solar Matters III Teacher Page Solar Matters III Teacher Page Junior Solar Sprint Wheels, Axles & Bearing Student Objective The student: given a scenario of a design with wheels, will be able to predict how the design will function

More information

Chapter 19: DC Circuits

Chapter 19: DC Circuits Chapter 19: DC Circuits EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Capacitors in Series and in Parallel RC Circuits

More information

Inquiry-Based Physics in Middle School. David E. Meltzer

Inquiry-Based Physics in Middle School. David E. Meltzer Inquiry-Based Physics in Middle School David E. Meltzer Mary Lou Fulton Teachers College Arizona State University Mesa, Arizona U.S.A. Supported in part by a grant from Mary Lou Fulton Teachers College

More information

Topic: Friction. Planes, Trains, and Automobiles. A Poppins Book Nook Science Experiment. My Name Is:

Topic: Friction. Planes, Trains, and Automobiles. A Poppins Book Nook Science Experiment. My Name Is: Planes, Trains, and Automobiles A Poppins Book Nook Science Experiment Topic: Friction My Name Is: ---------------------------------------------------------------------------------------------------------

More information

Safe Braking on the School Bus Advanced BrakingTechniques and Practices. Reference Guide and Test by Video Communications

Safe Braking on the School Bus Advanced BrakingTechniques and Practices. Reference Guide and Test by Video Communications Safe Braking on the School Bus Advanced BrakingTechniques and Practices Reference Guide and Test by Video Communications Introduction Brakes are considered one of the most important items for school bus

More information

Review: Magnetic Flux, EMF

Review: Magnetic Flux, EMF Announcements Professor Reitze taking over for the rest of the semester Occasional classes by Professor Kumar WebAssign HW Set 7 due the Friday Problems cover material from Chapters 20 and 21 Tea and Cookies

More information

SCI ON TRAC ENCEK WITH

SCI ON TRAC ENCEK WITH WITH TRACK ON SCIENCE PART 1: GET GOING! What s It About? The Scout Association has partnered with HOT WHEELS, the COOLEST and most iconic diecast car brand to help Beavers and Cubs explore FUN scientific

More information

Mechanical Systems. Section 1.0 Machines are tools that help humans do work. 1.1 Simple Machines- Meeting Human Needs Water Systems

Mechanical Systems. Section 1.0 Machines are tools that help humans do work. 1.1 Simple Machines- Meeting Human Needs Water Systems Unit 4 Mechanical Systems Section 1.0 Machines are tools that help humans do work. Define: machine- 1.1 Simple Machines- Meeting Human Needs Water Systems Then: Now: The earliest devices were devices.

More information

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured? How Are Values of Circuit Variables Measured? INTRODUCTION People who use electric circuits for practical purposes often need to measure quantitative values of electric pressure difference and flow rate

More information

time in seconds Amy leaves diving board

time in seconds Amy leaves diving board 1 Amy dives from the high diving board at a swimming pool. Look at the graph of her motion. speed in m / s 15 10 Amy enters water P Q 5 0 0 0.5 1.0 1.5 2.0 2.5 time in seconds Amy leaves diving board (a)

More information

Name: New Document 1. Class: Date: 221 minutes. Time: 220 marks. Marks: Comments:

Name: New Document 1. Class: Date: 221 minutes. Time: 220 marks. Marks: Comments: New Document Name: Class: Date: Time: 22 minutes Marks: 220 marks Comments: Q. The diagram shows a boat pulling a water skier. The arrow represents the force on the water produced by the engine propeller.

More information

Rotational Kinematics and Dynamics Review

Rotational Kinematics and Dynamics Review Rotational Kinematics and Dynamics Review 1. The Earth takes slightly less than one day to complete one rotation about the axis passing through its poles. The actual time is 8.616 10 4 s. Given this information,

More information

How to Build with the Mindstorm Kit

How to Build with the Mindstorm Kit How to Build with the Mindstorm Kit There are many resources available Constructopedias Example Robots YouTube Etc. The best way to learn, is to do Remember rule #1: don't be afraid to fail New Rule: don't

More information

Angular Momentum Problems Challenge Problems

Angular Momentum Problems Challenge Problems Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise

More information

FLUID FLOW. Introduction

FLUID FLOW. Introduction FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

PURE PHYSICS ELECTRICITY & MAGNETISM (PART I)

PURE PHYSICS ELECTRICITY & MAGNETISM (PART I) PURE PHYSICS ELECTRICITY & MAGNETISM (PART I) 1 A student walks across a thick carpet and becomes positively charged as his shoes rub on the carpet. When he touches the metal handle of a door, negative

More information

Problem 1: The trouble with DC electrical systems

Problem 1: The trouble with DC electrical systems GEOS 24705 / ENST 24705 / ENSC21100 Problem set #12 Due: Tuesday May 13 Problem 1: The trouble with DC electrical systems In the previous problem set you read about Edison s first electrical company and

More information

Physics 103 Lab MC-11: Elastic Collisions

Physics 103 Lab MC-11: Elastic Collisions Physics 103 Lab MC-11: Elastic Collisions Apparatus: Track 2 carts equipped with magnetic bumpers 2 motion sensors (with stands and cables) 2 cardboard vanes Computer and interface Problem You work at

More information

What is Electricity? Lesson one

What is Electricity? Lesson one What is Electricity? Lesson one Static Electricity Static Electricity: an electrical charge that builds up on an object Most of the time, matter is electrically neutral. The same number of positive and

More information

ME201 Project: Backing Up a Trailer Using Vector Analysis

ME201 Project: Backing Up a Trailer Using Vector Analysis ME201 Project: Backing Up a Trailer Using Vector Analysis Assigned date: January 26, 2018 Due date: March 16, 2018 INTRODUCTION Many drivers use a trial-and-error approach when they back up a vehicle with

More information

Drag Factors in Spins and on Hills

Drag Factors in Spins and on Hills Drag Factors in Spins and on Hills John Daily Jackson Hole Scientific Investigations, Inc. Box 2206 Jackson, WY 83001 (307) 733-4559 jhsi@rmisp.com Drag Factor Adjustment Adjusting the drag factor for

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism What is electricity? The collection or flow of electrons in the form of an electric charge What is static electricity? When two objects rub against each other, electrons transfer

More information

2 Dynamics Track User s Guide: 06/10/2014

2 Dynamics Track User s Guide: 06/10/2014 2 Dynamics Track User s Guide: 06/10/2014 The cart and track. A cart with frictionless wheels rolls along a 2- m-long track. The cart can be thrown by clicking and dragging on the cart and releasing mid-throw.

More information

APPENDIX A: Background Information to help you design your car:

APPENDIX A: Background Information to help you design your car: APPENDIX A: Background Information to help you design your car: Solar Cars: A solar car is an automobile that is powered by the sun. Recently, solar power has seen a large interest in the news as a way

More information

Fluid Power Lab. What s inside? This lab will provide you with experiences in and an understanding of: Cylinders. Friction

Fluid Power Lab. What s inside? This lab will provide you with experiences in and an understanding of: Cylinders. Friction Revision 4.2 luid Power Lab Name: Set: Date: Version: English Measurement System (inches & pounds). metric version also available. What s inside? This lab will provide you with experiences in and an understanding

More information

Wed. 9/12/07. A few words about OWL: It s time to play. Chemistry 6A Fall 2007 Dr. J. A. Mack. mercury. silicon

Wed. 9/12/07. A few words about OWL: It s time to play. Chemistry 6A Fall 2007 Dr. J. A. Mack. mercury. silicon Chemistry 6A Fall 007 Dr. J. A. Mack Chem. 6A this week: Lab: Check-in, Exercise 1 from lab manual (quiz 1) Lecture: Chapter 1 & Wed. 9/1/07 Office Hrs on website. Add s will be signed in lab this week

More information