Locomotive Allocation for Toll NZ

Size: px
Start display at page:

Download "Locomotive Allocation for Toll NZ"

Transcription

1 Locomotive Allocation for Toll NZ Sanjay Patel Department of Engineering Science University of Auckland, New Zealand Abstract A Locomotive is defined as a self-propelled vehicle for pulling freight or passenger cars along railroad tracks. A Locomotive is considered separate from the train itself which comprises carriages or wagons. Locomotives are required to pull trains to their destination. The trains the locomotives are scheduled to take is known as the Locomotive Plan and it ensures that every train has the correct number of locomotives allocated. However, unforeseen events, such as delays or breakdowns, occur frequently which disrupt the Locomotive Plan. The objective of this project was to develop an optimization model for Toll New Zealand (NZ) that re-allocates trains to locomotives due to these daily unforeseen events. The model is to make alterations to the plan ensuring that the correct number of locomotives is assigned to each train and that the alterations are optimal according to preferences indicated by Toll NZ. The optimization model and solution process involved a priori column generation and zero-one integer programming. The model was successfully able to reallocate the locomotives to the trains for a range of possible disruptions at varying times during the week in the Electric Route (coves the Central North Island). Results showed indications towards the model producing a better re-allocation, in terms of the preferred changes, than what is done manually by a Locomotive Controller at Toll NZ. 1 Introduction A locomotive is defined as a self propelled engine that pulls or pushes freight or passenger cars along railway tracks. In this project, a locomotive is considered a separate part from the trains, consisting of wagons or carriages, which the locomotives are required to pull. A Locomotive Plan determines the sequence of trains that a locomotive is to pull. It ensures that every train has the required number of locomotives allocated. This is termed a feasible solution. When there is an unforeseen occurrence, the plan can no longer be adhered to. The aim of this project was to create a model for Toll NZ to identify the optimal reallocation of locomotives to trains based on unforeseen occurrences whenever they arise. Toll NZ have expressed their preferences associated with altering the locomotive plan. At present, these changes are made manually by a Locomotive Controller. Master Coupling Sheets currently exist which can be used to determine the Master Plan. This comprises sequences of trains for each of the locomotives to pull assuming no disruptions and is the preferred Locomotive Plan for the week by Toll NZ.

2 The Locomotive re-allocation problem requires sequences of train duties to be allocated to the particular locomotives so that all the duties are covered and every locomotive has just one sequence assigned. It can therefore be viewed as a scheduling application and more specifically, the rostering model for crew scheduling. The locomotives correspond to the people and the trains that need to be pulled, correspond to the duties. The solution approach first involves a priori column generation of the possible train sequences each locomotive can now pull given the disruption. The second part of the solution process is the optimisation and involves selecting the best sequence for each locomotive, while ensuring all the train duties are covered. The solution becomes the new locomotive plan. This paper outlines the modelling of the Locomotive re-allocation problem. Section 2 describes the actual problem encountered by Toll NZ. Section 3 gives details on how the data was used to set up the model, the a priori column generation and the ZIP optimisation. Results are presented and discussed for different unforeseen occurrences at different times during the week in Section Previous Work The model used in this project is a special case of the set partitioning problem, in particular rostering people. Similar models and solution techniques have been used in many different applications of scheduling including locomotive engineers to trains and airline crew scheduling. 1.2 Background Information Toll NZ operates in four different zones around the country. They hire locomotives from ALSTOM and the fee is based on the total number of kilometres travelled by the locomotives. There are nine different classes of locomotives that are available all with different characteristics. Over the four zones there are approximately nine hundred trains that require a locomotive to be allocated to them throughout the week. This paper looks in detail at one of the four routes - the Electric Route. This runs from Hamilton to Palmerston North. This is shown in Figure 1.1. Only one of the nine types of locomotive is able to travel along this route - the EF Electric Class Locomotive. Figure 1.1: The Electric Route (Runs from Hamilton to Palmerston North) The Master Coupling sheets are supplied by Toll NZ. They indicate the subsequent train for a locomotive to pull given that it comes into a depot pulling a certain train. For example in Table 1.1 the Locomotive arriving pulling train 220 into Hamilton is scheduled to arrive Friday 23:43pm. This locomotive is scheduled to next pull train 221 departing Saturday 02:58am. Two identical rows indicate that two locomotives are

3 required to pull the train. The Master Plan can be determined by linking the trains to form sequences (as shown in bold in Table 1.1) from the Master Couplings for each of the locomotives. Loco's Location Arriving Service Arrival Day Arrival Time Depart Service Depart Day Depart Time Layover Ef Hamilton 220 Fri Fri 23: Sat Sat 02:58 3:15 Ef Hamilton 220 Fri Fri 23: Sat Sat 02:58 3:15 Ef Hamilton 222 Sat Sat 01: Sat Sat 05:21 3:23 Ef : : : : : : : : Ef : : : : : : : : Ef Palm Nth 229 Fri Fri 23: Sat Sat 03:30 3:53 Ef Palm Nth 231 Sat Sat 02: Sat Sat 05:50 3:48 Ef Palm Nth 211 Sat Sat 04: Sat Sat 08:48 4:20 Ef : : : : : : : : Ef Palm Nth 221 Sat Sat 11: Sat Sat 18:05 6:41 Ef Palm Nth 221 Sat Sat 11: Sat Sat 18:05 6:41 Ef : : : : : : : : Table 1.1 Excerpts from the Master Couplings 1.3 Sequence Representation This project deals with the allocation of locomotives to trains. A concise way of representing the sequences for each of the locomotives has been chosen. Each locomotive has a particular identification number and the trains have characteristic parameters (such as departure and arrival times and towns). To simplify these representations, numbers are assigned to each locomotive to distinguish them from one another and similarly to each train. A sequence for a locomotive is represented as shown: e.g. Loco If locomotive 7 was assigned this sequence, the trains for the locomotive to pull are 1, followed by 5, 9 then The Problem A plan is feasible and can be adhered to as long as there are no unforeseen disruptions. Each day however there are events which disrupt the locomotive plan. The model is to identify the optimal way of reallocating the trains to the EF electric class locomotives on the Electric Route to obtain feasibility again. The possible disruptions that need to be modelled and the measures which determine an optimal change are outlined in this section. 2.1 Possible Disruptions The possible disruptions that make the plan infeasible are: A delay in the arrival time of a train. A locomotive breakdown (Tags) Tags are a term used by Toll NZ that indicate that a particular locomotive is partly or fully damaged and cannot work at full capacity. Different letters denote different tags. An extra freight train needing to be added to the schedule. Cancelling a freight train from the schedule. Locomotive scheduled maintenance. Altering the number of locomotives required for each of the trains.

4 2.2 Quality of the Alterations as denoted by Toll NZ In altering the Locomotive Plan, the following measures of quality in priority order are: Ensuring all the trains depart on time all the trains are to have the correct number of locomotives assigned to pull them to their destinations. Minimising the number of kilometres travelled The trains that are required to run are fixed therefore this objective requires minimising the number of kilometres each locomotive travels by itself to reposition. Trying to incorporate locomotive maintenance service checks into the schedule Maximising the compliance with the Master Couplings. Maximising the utilisation of the available locomotives this provides robustness in terms of the system recovery from a disruption. 3 The Model The requirement of the model was to determine the optimal way to reallocate locomotives to trains. It was to provide solutions to the possible different circumstances such as the various disruptions and the times at which these occur throughout the week in the Electric Route. The aim is to produce better quality changes to the plan than those that are made manually by the Loco Controller. Certain assumptions were made to allow the optimisation model to be formulated: There is always a locomotive engineer available to drive a locomotive Locomotives are always able to pass each other along the track Linking up of trains and locomotives at the boundaries of the four routes is ignored. Changing the departure times of trains is not considered directly. The model aims to find the optimal reallocation to cover only the trains within a set planning horizon. This is typically one to two days. The process to determine the optimal reallocation initially involved transforming the necessary inputs into a workable form. Two parts to the model then followed. The first is the a priori generation which creates all the feasible sequences of trains that each locomotive can now take. The second is the optimisation which finds the optimal sequence for each locomotive so that all the trains have the required number of locomotives allocated. The process is outlined in Figure 3.1 and explained in more detail in the following sections. Disruption encountered Provide the necessary input data Generate all the feasible sequences for each locomotive due to the disruption A Priori Generation Optimisation New Sequence of trains to pull for each Locomotive found Figure 3.1: Outline of the model to get to the solution

5 3.1 Adjusting the Input Parameters The required attributes for the trains that were stored were: Identification number Departure and arrival times Departure and arrival days Departure and arrival towns Number of locomotives required to pull the train Delay in arrival time Indications as to the type of train (e.g. freight, passenger, extra heavy etc) The following characteristics for the locomotives were required: Tags assigned In-repair maintenance check details Maintenance check requirement details Breakdown details 3.2 A Priori Column Generation A Priori column generation is basically an enumeration process which involves generating possible sequences of trains that a locomotive can now take based on the disruption and its current placement. Sequences of trains that cannot be pulled by a locomotive are not generated. All the sequences are created before entering them into an optimisation package. Costs are then assigned to each of the sequences. If a locomotive arrives pulling a certain train, there are several following trains that can then be allocated to the locomotive dependent on the disruption. These following trains form a list known as the subsequence list. A subsequence list can therefore be created for every train. The list sizes were limited by applying practicality rules. This decreased the time taken to generate all the possible sequences. From the subsequence lists, the possible sequences of trains for each of the locomotives can be generated given the disruption. Each disruption has a different effect on the system and therefore needs to be dealt with in a different way. The algorithm for generating all the possible sequences is shown in Figure 3.2. Each of the sequences of trains that were generated was assigned a total cost. An individual cost was calculated for each of the objectives explained in section 2.2 and each was weighted in terms of its importance to give the total cost. The total cost corresponded to how favourable or unfavourable the sequence was in terms of the measures of quality outlined by Toll NZ (section 2.2). 3.3 Optimisation The objective of the optimisation process is to determine the optimal sequences of trains such that each train has the required number of locomotives and each locomotive is given exactly one sequence of train duties. This problem was modelled as a zero-one integer programming model which can be solved with the ZIP 4.0 optimisation package (Ryan 1981). Allocating trains to locomotives can be accomplished by modelling the problem as a generalised set partitioning problem. This is a special form of a zero-one integer programming problem. The problem involves allocating a set of trains to each of the locomotives. Each sequence of trains that is generated in the a priori generation comprises a subset of all the trains that require pulling within the planning horizon. The optimal feasible solution selects a set of sequences so that each train is covered by the

6 required number of locomotives and each locomotive is assigned just one sequence of trains at minimum total cost. START Generate for next locomotive until finished Start the sequence with the locomotive s initial / current train(s) Limited subsequence lists already generated for Locomotive no Remove the last train added yes More than one train in the outputted sequence? Output the sequence no Check the last train in the sequences subsequence list for any more trains to add? yes Update the sequence yes no Feasible to add? Check whether the train to add to the sequence departs within the time window and the locomotive is able to take the train Figure 3.2 Algorithm for generating the sequences for each of the locomotives The mathematical model used to solve the locomotive allocation problem is acquired from the set partitioning model. The set partitioning model is as follows: Minimise: Subject to: Z = C T x Ax = B x j {0,1} Where: -x j is the variable corresponding to sequence j -C j is the cost of sequence j as described in section 3.2 -A ij = 1 if sequence j includes pulling train i, 0 otherwise or 1 if sequence j is for locomotive i, 0 otherwise The columns of the A matrix correspond to each of the possible sequences created in the a priori generation. Each sequence generated is transformed into a column which completely represents the information shown by the sequence. The variable x j corresponds to sequence j. If sequence j is included in the feasible solution, x j =1 otherwise x j =0. Each row in the A matrix represents a separate constraint. Two forms of constraints are required for the locomotive allocation problem being locomotive constraints and train constraints. C j is the associated cost of sequence j and the objective is to choose the set of sequences to minimise the total cost while ensuring the constraints are satisfied. The locomotive constraints ensure that exactly one sequence is chosen for each locomotive:

7 n j= 1 a x ij j = 1 for i = 1,2,,L (L= number of locomotives), n = # variables The train constraints ensure the correct number of locomotives is allocated to each train: n a ij x j = j=1 for i = 1,2,,z; z = # of trains within the planning horizon, n = # variables t i represents the number of locomotives required for train i ZIP 4.0 solves the Linear Program (LP) relaxation (ignores the integer constraints) and then applies Branch and Bound to achieve integer solutions. Due to the characteristics of the set partitioning problem, the solution to the LP relaxation produced near-integer solutions so minimal work was required in the Branch and Bound component. The output from the model is a new Locomotive Plan that is feasible taking into account the disruption. 4 Results The model is able to provide a solution for all known disruptions at any point throughout the week. Two scenarios are used to show the scope of the solutions generated. Also a comparison is made between the quality of the model solution and the solution created using the current process (performed manually by a Loco Controller) at Toll NZ. Each of the schedules produced are analysed in terms of quality. The objectives used to optimise the quality of the schedules, in order of priority, were to: Maximise the number of trains that depart on time (i.e. % of trains that have the correct number of assigned locomotives) Minimise the number of times a locomotive moves on its own to a different depot Maximise the number of locomotives that are available for their maintenance check Maximise the couplings in the schedule produced that comply with the Master Couplings Maximise the utilisation of the locomotives that are available 4.1 Example of Solutions to Different Hypothetical Scenarios A particular example of a train delay is as follows: Currently the time is 13:20pm on Thursday and it is found out that train 84 has been delayed and will be arriving 8 hours 20 minutes behind its scheduled arrival (i.e. 06:46am on Friday) Locomotives 16 and 17 are currently in scheduled maintenance. The locomotives are currently following the schedule determined by the master couplings as this has been feasible up till now. The train delay makes the original plan infeasible. i.e. The next train that was supposed to be pulled by the delayed locomotive does not have a locomotive to pull it. To regain feasibility, a proposed solution is found by the model and is shown in Figure 4.1. t i

8 Trains Locomotives X X X 2 X X X 3 X X X X X 5 X X 6 X X X 7 X X 8 X X X 9 X X 10 X X 11 X X 12 X X X 13 X X 14 X X X 15 X X X 16 IN SCHEDULED MAINTENANCE X 17 IN SCHEDULED MAINTENANCE - Represents a train that is to be pulled by the locomotive X Original Plan (based on Master Couplings) Represents the delayed train Locomotive travels on its own to reposition in between pulling the two scheduled trains Figure 4.1: Train Delay Example The delay disrupts the schedule as locomotive 10 can no longer pull train 95. The only way to resolve this issue was to send locomotive 3 from Palmerston North to Hamilton without pulling a train. Statistics of the solution to the train delay example are shown in Figure 4.1. The model is able to find a feasible re-allocation to ensure all the trains have the required number of locomotives assigned which is very favourable (shown by 100% of the trains that will depart on time). As a high priority, the model tries to minimise the number of times a locomotive repositions. A locomotive is required to travel on its own to account for the delay in train 84. A large proportion of the schedule complies with the Master Couplings which is very attractive. Planning Horizon 1 Day % of the Scheduled Trains that have an assigned 100% locomotive(s) that will depart on time Number of times a Locomotive travels on its own 1 to reposition without pulling a train % of Locomotives that are available for their No Maintenance Checks scheduled maintenance check % of train changeovers that comply with the 87.50% Master Couplings % utilisation of the available locomotives 94% Table 4.1: Statistics from the Train Delay Example Another example is a locomotive breakdown: On Tuesday 24 th August at 06:40 am it is found out that Locomotive 11 has fully broken down 59km from Palmerston North pulling train number 40 (Service 221 on Tuesday). It cannot pull any more trains until it is repaired. Train Service 221 required two locomotives to pull it and therefore the other attached locomotive, number 6 is stranded with the train and broken locomotive 11. It cannot do anything until another locomotive is sent to replace the pulling power

9 of locomotive 11 and help move the entire train to Palmerston North (repair location). Locomotive 2 has a P-Tag - restricted in the trains it can pull Locomotives 14 and 15 are required for scheduled maintenance checks. Locomotive 16 and 17 are currently in scheduled maintenance. The sequences determined by the master couplings have been feasible up to this point in time. This was the plan in place. Based on the breakdown, a new plan must be generated by the model to regain feasibility. This requires rescuing the broken down locomotive and re-allocating the locomotives to the trains so that each train has the required number of locomotives assigned to it. The proposed solution is shown in Figure 4.2. Trains Locomotives 1 X X 2 X X X 3 X X 4 X X X 5 X X 6 X X X 7 X X X 8 X X X 9 X X X 10 X X X 11 X BROKEN 12 X X X 13 X X X 14 X X CHECK 15 X X REQ D FOR CHECK 16 IN SCHEDULED MAINTENANCE 17 IN SCHEDULED MAINTENANCE X X - Represents a train that is to be pulled by the locomotive X Original Plan (based on Master Couplings) Represents the locomotive that rescues the broken down locomotive Figure 4.2: Locomotive Breakdown Example Points to note concerning the solution: Locomotive 13 rescues the breakdown (3rd locomotive to train number 40). Locomotive 6 is back at Palmerston North in time to pull train 51 Locomotive 11 is damaged and cannot pull any more trains. Statistics were formed from the optimal solution in Figure 4.2 to determine the quality of the schedule produced. Table 4.2 shows that the solution generated by the model is of high quality. The re-allocation allocates the locomotives so that all the trains have the required number assigned. All of the locomotives are available for their scheduled maintenance checks when required. The master couplings do not incorporate maintenance checks. Therefore when the plan must be altered to include maintenance checks, compliance with the master couplings is degraded. However 70.21% compliance with the master couplings is of high standard.

10 Time Window 2 Days % of the Scheduled Trains that have an assigned locomotive(s) that will depart on time 100% Number of times a Locomotive travels on its own to reposition without pulling a train 0 % of Locomotives that are available for their scheduled maintenance check 100% % of train changeovers that comply with the Master Couplings 70.21% % utilisation of the available locomotives 100% Table 4.2: Statistics from the locomotive breakdown example 4.2 Comparison with Toll NZ s Schedule Table 4.3 gives a comparison of the details of the solution (schedule) produced by model and that created manually by the Locomotive Controller at Toll NZ. The reallocation proposed by the model is of higher quality than Toll NZ s solution in terms of a much higher percentage of the couplings complying with the master couplings in the model solution. Both the figures for the compliance with the master couplings are low due to the cancellations in certain trains. Both solutions effectively allocate the locomotives to ensure that all the scheduled trains have the required number assigned. Toll NZ s Solution Model Solution Time Window 1 ½ Days % of the Scheduled Trains that have assigned locomotive(s) that will depart on time 100% 100% Number of times a Locomotive travels on its own to reposition without pulling a train 0 0 % of Locomotives that are available for their scheduled maintenance check 100% 100% % of train changeovers that comply with the Master Couplings 8.00% 56.52% % utilisation of the available locomotives 87.5% 93.75% Table 4.3: Comparison of the Statistics from the solutions from 11:40 August Conclusions The model successfully produced results that were in compliance with the objectives set by Toll NZ. Assigning component costs and weightings to the sequences produced from the a priori generation allowed the objectives to be taken into account simultaneously and forced the schedule to prioritise certain characteristics. The statistics from the hypothetical examples showed that the new schedules produced to account for the disruption, achieve feasibility and are of high quality. Only very weak conclusions can be made on the model producing better quality results than with the current situation at Toll NZ despite the favourable statistics. The model only takes into account one zone and one type of locomotive. Currently at Toll NZ, all four zones are considered together and demands for different types of locomotives and changeovers of trains at the borders of the zones are incorporated. Possible future work is to extend the model to include the four different zones so more valid comparisons can be made.

Vehicle Rotation Planning for Intercity Railways

Vehicle Rotation Planning for Intercity Railways Vehicle Rotation Planning for Intercity Railways Markus Reuther ** Joint work with Ralf Borndörfer, Thomas Schlechte and Steffen Weider Zuse Institute Berlin May 24, 2011 Markus Reuther (Zuse Institute

More information

IMA Preprint Series # 2035

IMA Preprint Series # 2035 PARTITIONS FOR SPECTRAL (FINITE) VOLUME RECONSTRUCTION IN THE TETRAHEDRON By Qian-Yong Chen IMA Preprint Series # 2035 ( April 2005 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA

More information

REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS

REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS D-Rail Final Workshop 12 th November - Stockholm Monitoring and supervision concepts and techniques for derailments investigation Antonella

More information

06IP/IM74 OPERATIONS RESEARCH. UNIT - 3: Transportation Problem

06IP/IM74 OPERATIONS RESEARCH. UNIT - 3: Transportation Problem 06IP/IM74 OPERATIONS RESEARCH UNIT - 3: Transportation Problem Introduction: The objective of the transportation problem is to transport various quantities of a single homogenous commodity, which are initially

More information

Reallocation of Empty PRT Vehicles en Route

Reallocation of Empty PRT Vehicles en Route I. Andréasson 1 Reallocation of Empty PRT Vehicles en Route Dr. Ingmar Andréasson, LogistikCentrum, Taljegardsgatan 11, SE-431 53 Molndal Phone: +46 31 877724, Fax: +46 31 279442, E-mail: ingmar@logistikcentrum.se

More information

HALTON REGION SUB-MODEL

HALTON REGION SUB-MODEL WORKING DRAFT GTA P.M. PEAK MODEL Version 2.0 And HALTON REGION SUB-MODEL Documentation & Users' Guide Prepared by Peter Dalton July 2001 Contents 1.0 P.M. Peak Period Model for the GTA... 4 Table 1 -

More information

K. Shiokawa & R. Takagi Department of Electrical Engineering, Kogakuin University, Japan. Abstract

K. Shiokawa & R. Takagi Department of Electrical Engineering, Kogakuin University, Japan. Abstract Computers in Railways XIII 583 Numerical optimisation of the charge/discharge characteristics of wayside energy storage systems by the embedded simulation technique using the railway power network simulator

More information

1) The locomotives are distributed, but the power is not distributed independently.

1) The locomotives are distributed, but the power is not distributed independently. Chapter 1 Introduction 1.1 Background The railway is believed to be the most economical among all transportation means, especially for the transportation of mineral resources. In South Africa, most mines

More information

The impact of electric vehicle development on peak demand and the load curve under different scenarios of EV integration and recharging options

The impact of electric vehicle development on peak demand and the load curve under different scenarios of EV integration and recharging options The impact of electric vehicle development on peak demand and the load curve under different scenarios of EV integration and recharging options Electricity demand in France: a paradigm shift Electricity

More information

ANNA UNIVERSITY - M.C.A IV SEMESTER Problem Set MC1752/MC9242/ Resource Management Techniques

ANNA UNIVERSITY - M.C.A IV SEMESTER Problem Set MC1752/MC9242/ Resource Management Techniques Sou rce S r i V e n k a t e s w a r a C o l l e g e o f E n g i n e e r i n g, S r i p e r u m b u d u r D e p a r t m e n t o f C o m p u t e r A p p l i c a t i o n s ---------------------------------------------------------------------------------

More information

Driver Speed Compliance in Western Australia. Tony Radalj and Brian Kidd Main Roads Western Australia

Driver Speed Compliance in Western Australia. Tony Radalj and Brian Kidd Main Roads Western Australia Driver Speed Compliance in Western Australia Abstract Tony Radalj and Brian Kidd Main Roads Western Australia A state-wide speed survey was conducted over the period March to June 2 to measure driver speed

More information

Simultaneous Pit and Waste Dump Schedule Optimization

Simultaneous Pit and Waste Dump Schedule Optimization Simultaneous Pit and Waste Dump Schedule Optimization Jim Butler Minemax, Inc. Tim George Metal Mining Consultants, Inc. SME Annual Meeting, Denver Technology: Mine Planning and Optimization Session February

More information

A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and the European Community Social Legislation

A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and the European Community Social Legislation A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and the European Community Social Legislation A. Leendert Kok Operational Methods for Production and Logistics, University

More information

Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway

Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway Energy and Sustainability III 461 Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway G. Bureika & G. Vaičiūnas Department of Railway Transport,

More information

Train turn restrictions and line plan performance

Train turn restrictions and line plan performance Downloaded from orbit.dtu.dk on: Jan 05, 2019 Train turn restrictions and line plan performance Burggraeve, Sofie ; Bull, Simon Henry; Lusby, Richard Martin ; Vansteenwegen, Pieter Publication date: 2016

More information

Proposed Solution to Mitigate Concerns Regarding AC Power Flow under Convergence Bidding. September 25, 2009

Proposed Solution to Mitigate Concerns Regarding AC Power Flow under Convergence Bidding. September 25, 2009 Proposed Solution to Mitigate Concerns Regarding AC Power Flow under Convergence Bidding September 25, 2009 Proposed Solution to Mitigate Concerns Regarding AC Power Flow under Convergence Bidding Background

More information

WORKING TIMETABLE OF PASSENGER TRAIN SERVICES

WORKING TIMETABLE OF PASSENGER TRAIN SERVICES Spa Valley Railway 2018 SECTION WE A DESTINATION AT EVERY STATION! WORKING TIMETABLE OF PASSENGER TRAIN SERVICES SOUTHERN REGION (CENTRAL DIVISION) SPA VALLEY LINE Thursday 2 nd, Friday 3 rd, Saturday

More information

Civil Engineering and Environmental, Gadjah Mada University TRIP ASSIGNMENT. Introduction to Transportation Planning

Civil Engineering and Environmental, Gadjah Mada University TRIP ASSIGNMENT. Introduction to Transportation Planning Civil Engineering and Environmental, Gadjah Mada University TRIP ASSIGNMENT Introduction to Transportation Planning Dr.Eng. Muhammad Zudhy Irawan, S.T., M.T. INTRODUCTION Travelers try to find the best

More information

THE TRANSRAPID MAGLEV MAINTENANCE PROCESS

THE TRANSRAPID MAGLEV MAINTENANCE PROCESS THE TRANSRAPID MAGLEV MAINTENANCE PROCESS (*) Dr.-Ing. Friedrich Löser, (**) Dr.-Ing. Chunguang Xu, (***) Dr. rer. nat. Edmund Haindl (*)ThyssenKrupp Transrapid GmbH, Moosacher Str. 58, 80809 Munich, Germany,

More information

Working Party Hamilton to Auckland Passenger Rail

Working Party Hamilton to Auckland Passenger Rail AGENDA Working Party Hamilton to Auckland Passenger Rail Waikato District Council, Council Chambers, 15 Galileo Street, Ngaruawahia Friday 6 May 2011 2pm Members: Mike Lee Mark Lambert Robin Janson/ Jon

More information

THE DAMAGING EFFECT OF SUPER SINGLES ON PAVEMENTS

THE DAMAGING EFFECT OF SUPER SINGLES ON PAVEMENTS The damaging effect of super single tyres on pavements Hudson, K and Wanty, D Page 1 THE DAMAGING EFFECT OF SUPER SINGLES ON PAVEMENTS Presenter and author Ken Hudson, Principal Pavements Engineer BE,

More information

/CENELEC Phase 3/Generic Preliminary Hazard Analysis Template

/CENELEC Phase 3/Generic Preliminary Hazard Analysis Template Project CENELEC Phase 3 /CENELEC Phase 3/ Version: 6.0 Printed by: Holter Printed on: 22 May 2003 Generated from DOORS V5.2 Copyright (c) 2003 UIC / Euro-Interlocking Contents 1 Introduction 1 1.1 Background

More information

Energy Systems Operational Optimisation. Emmanouil (Manolis) Loukarakis Pierluigi Mancarella

Energy Systems Operational Optimisation. Emmanouil (Manolis) Loukarakis Pierluigi Mancarella Energy Systems Operational Optimisation Emmanouil (Manolis) Loukarakis Pierluigi Mancarella Workshop on Mathematics of Energy Management University of Leeds, 14 June 2016 Overview What s this presentation

More information

TECHNICAL REPORTS from the ELECTRONICS GROUP at the UNIVERSITY of OTAGO. Table of Multiple Feedback Shift Registers

TECHNICAL REPORTS from the ELECTRONICS GROUP at the UNIVERSITY of OTAGO. Table of Multiple Feedback Shift Registers ISSN 1172-496X ISSN 1172-4234 (Print) (Online) TECHNICAL REPORTS from the ELECTRONICS GROUP at the UNIVERSITY of OTAGO Table of Multiple Feedback Shift Registers by R. W. Ward, T.C.A. Molteno ELECTRONICS

More information

Key DRAFT OPERATING CODE 2 LEGAL TEXT

Key DRAFT OPERATING CODE 2 LEGAL TEXT Key DRAFT OPERATING CODE 2 LEGAL TEXT 1) Blue Text From Grid Code 2) Black Text Changes / Additional words 3) Orange/ Brown text From RfG 4) Purple From HVDC Code 5) Green From DCC (not used in this document)

More information

The Roots of Curiosity: Being a Bus Driver

The Roots of Curiosity: Being a Bus Driver Tutorial: Scheduled Service Management The 20 th ISTTT at Noordwijk, The Netherlands July 16, 2013 Outline: 1. Overview - Planning Elements 2. Motivation 3. Frequency Determination 4. Optional Timetables

More information

The Improvement Research of the Freight Train Braking System Li-wei QIAO

The Improvement Research of the Freight Train Braking System Li-wei QIAO 2017 2nd International Conference on Applied Mechanics and Mechatronics Engineering (AMME 2017) ISBN: 978-1-60595-521-6 The Improvement Research of the Freight Train Braking System Li-wei QIA School of

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 CONSERVATION OF ENERGY Conservation of electrical energy is a vital area, which is being regarded as one of the global objectives. Along with economic scheduling in generation

More information

Real-time Bus Tracking using CrowdSourcing

Real-time Bus Tracking using CrowdSourcing Real-time Bus Tracking using CrowdSourcing R & D Project Report Submitted in partial fulfillment of the requirements for the degree of Master of Technology by Deepali Mittal 153050016 under the guidance

More information

Land Transport Rule Omnibus Amendment 2013

Land Transport Rule Omnibus Amendment 2013 DRAFT Omnibus Amendment 2013 Rule 10009 This is the public consultation (yellow) draft of Land Transport Rule: Omnibus Amendment 2013. It contains proposals for making minor technical or other amendments

More information

Responsive Bus Bridging Service Planning Under Urban Rail Transit Line Emergency

Responsive Bus Bridging Service Planning Under Urban Rail Transit Line Emergency 2016 3 rd International Conference on Vehicle, Mechanical and Electrical Engineering (ICVMEE 2016) ISBN: 978-1-60595-370-0 Responsive Bus Bridging Service Planning Under Urban Rail Transit Line Emergency

More information

DECOMPOSITION TECHNIQUES FOR PARKING VEHICLES IN

DECOMPOSITION TECHNIQUES FOR PARKING VEHICLES IN DECOMPOSITION TECHNIQUES FOR PARKING VEHICLES IN DEPOTS Thé-Van Luong, Éric D. Taillard HEIG-Vd, Univ. of Applied Sci. Western Switzerland Decomposition techniques for parking vehicles in depots 2014 Prof.

More information

BEFORE THE CANTERBURY REGIONAL COUNCIL. Act 1991 AND. of Plan Change 3 to the Waitaki Catchment Water Allocation Regional Plan

BEFORE THE CANTERBURY REGIONAL COUNCIL. Act 1991 AND. of Plan Change 3 to the Waitaki Catchment Water Allocation Regional Plan BEFORE THE CANTERBURY REGIONAL COUNCIL IN THE MATTER of the Resource Management Act 1991 AND IN THE MATTER of Change 3 to the Waitaki Catchment Water Allocation Regional STATEMENT OF EVIDENCE OF DAVID

More information

Suburban bus route design

Suburban bus route design University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2013 Suburban bus route design Shuaian Wang University

More information

Application of claw-back

Application of claw-back Application of claw-back A report for Vector Dr. Tom Hird Daniel Young June 2012 Table of Contents 1. Introduction 1 2. How to determine the claw-back amount 2 2.1. Allowance for lower amount of claw-back

More information

Cost-Efficiency by Arash Method in DEA

Cost-Efficiency by Arash Method in DEA Applied Mathematical Sciences, Vol. 6, 2012, no. 104, 5179-5184 Cost-Efficiency by Arash Method in DEA Dariush Khezrimotlagh*, Zahra Mohsenpour and Shaharuddin Salleh Department of Mathematics, Faculty

More information

DRIVER SPEED COMPLIANCE WITHIN SCHOOL ZONES AND EFFECTS OF 40 PAINTED SPEED LIMIT ON DRIVER SPEED BEHAVIOURS Tony Radalj Main Roads Western Australia

DRIVER SPEED COMPLIANCE WITHIN SCHOOL ZONES AND EFFECTS OF 40 PAINTED SPEED LIMIT ON DRIVER SPEED BEHAVIOURS Tony Radalj Main Roads Western Australia DRIVER SPEED COMPLIANCE WITHIN SCHOOL ZONES AND EFFECTS OF 4 PAINTED SPEED LIMIT ON DRIVER SPEED BEHAVIOURS Tony Radalj Main Roads Western Australia ABSTRACT Two speed surveys were conducted on nineteen

More information

Human interaction in solving hard practical optimization problems

Human interaction in solving hard practical optimization problems Human interaction in solving hard practical optimization problems Richard Eglese Professor of Operational Research Department of Management Science Lancaster University Management School Lancaster, U.K.

More information

INTEGER PROGRAMMING APPROACH IN BUS SCHEDULING AND COLLECTION OPTIMIZATION

INTEGER PROGRAMMING APPROACH IN BUS SCHEDULING AND COLLECTION OPTIMIZATION Jurnal Teknologi, 43(C) Dis. 2005: 1 14 Universiti Teknologi Malaysia INTEGER PROGRAMMING APPROACH 1 INTEGER PROGRAMMING APPROACH IN BUS SCHEDULING AND COLLECTION OPTIMIZATION ZUHAIMY ISMAIL 1 & ANG PEI

More information

Optimization of Stopping Patterns and Service Plans for Intercity Passenger Railways

Optimization of Stopping Patterns and Service Plans for Intercity Passenger Railways Slide 1 TRS Workshop: International Perspectives on Railway Operations Research Hong Kong, July 13, 2017 Optimization of Stopping Patterns and Service Plans for Intercity Passenger Railways C.S. James

More information

Restricted dynamic programming for the VRP

Restricted dynamic programming for the VRP Restricted dynamic programming for the VRP A flexible framework for solving realistic VRPS Leendert Kok, Marco Schutten (UT, OMPL) Jelke van Hoorn, Joaquim Gromicho (ORTEC) 1 Overview Introduction DP for

More information

Interface between Rail Vehicle Weights and Underline Bridges

Interface between Rail Vehicle Weights and Underline Bridges Interface between Rail Vehicle Weights and Synopsis This document sets out the requirements for managing the risk of overloading of underline bridges by rail vehicles Submitted by Signatures removed from

More information

WORKING TIMETABLE OF PASSENGER TRAIN SERVICES

WORKING TIMETABLE OF PASSENGER TRAIN SERVICES Spa Valley Railway 08 SECTION WE A DESTINATION AT EVERY STATION! WORKING TIMETABLE OF PASSENGER TRAIN SERVICES SOUTHERN REGION (CENTRAL DIVISION) SPA VALLEY LINE Thursday nd, Friday 3 rd, Saturday 4 th

More information

Traffic and Toll Revenue Estimates

Traffic and Toll Revenue Estimates The results of WSA s assessment of traffic and toll revenue characteristics of the proposed LBJ (MLs) are presented in this chapter. As discussed in Chapter 1, Alternatives 2 and 6 were selected as the

More information

PS 127 Abnormal / Indivisible Loads Policy

PS 127 Abnormal / Indivisible Loads Policy PS 127 Abnormal / Indivisible Loads Policy June 2017 Version 1.5 Statement of legislative compliance This document has been drafted to comply with the general and specific duties in the Equality Act 2010;

More information

ERDF EXPERIENCE IN REDUCING NETWORK LOSSES

ERDF EXPERIENCE IN REDUCING NETWORK LOSSES ERDF EXPERIENCE IN REDUCING NETWORK LOSSES Michel ODDI Frédéric GORGETTE Guillaume ROUPIOZ EDF R&D France ERDF France EDF R&D - France michel.oddi@edf.fr frederic.georgette@erdfdistribution.fr guillaume.roupioz@edf.fr

More information

FEASIBILITY LAND TRANSPORTATION VENTUS ENERGY. from. covering WIND TURBINE EQUIPMENT PORT OF MOUNT MAUNGANUI TO KAIMAI RANGE SITE. for.

FEASIBILITY LAND TRANSPORTATION VENTUS ENERGY. from. covering WIND TURBINE EQUIPMENT PORT OF MOUNT MAUNGANUI TO KAIMAI RANGE SITE. for. FEASIBILITY from covering LAND TRANSPORTATION Of WIND TURBINE EQUIPMENT PORT OF MOUNT MAUNGANUI TO KAIMAI RANGE SITE for VENTUS ENERGY September 2018 TABLE OF CONTENTS 1. PURPOSE AND SCOPE... 1 1.1. Purpose...

More information

New Zealand Transport Outlook. VKT/Vehicle Numbers Model. November 2017

New Zealand Transport Outlook. VKT/Vehicle Numbers Model. November 2017 New Zealand Transport Outlook VKT/Vehicle Numbers Model November 2017 Short name VKT/Vehicle Numbers Model Purpose of the model The VKT/Vehicle Numbers Model projects New Zealand s vehicle-kilometres travelled

More information

TABLE OF CONTENTS. Table of contents. Page ABSTRACT ACKNOWLEDGEMENTS TABLE OF TABLES TABLE OF FIGURES

TABLE OF CONTENTS. Table of contents. Page ABSTRACT ACKNOWLEDGEMENTS TABLE OF TABLES TABLE OF FIGURES Table of contents TABLE OF CONTENTS Page ABSTRACT ACKNOWLEDGEMENTS TABLE OF CONTENTS TABLE OF TABLES TABLE OF FIGURES INTRODUCTION I.1. Motivations I.2. Objectives I.3. Contents and structure I.4. Contributions

More information

= an almost personalized transit system

= an almost personalized transit system Flexible many-to-few + few-to-many = an almost personalized transit system T. G. Crainic UQAM and CRT Montréal F. Errico - Politecnico di Milano F. Malucelli - Politecnico di Milano M. Nonato - Università

More information

Aging of the light vehicle fleet May 2011

Aging of the light vehicle fleet May 2011 Aging of the light vehicle fleet May 211 1 The Scope At an average age of 12.7 years in 21, New Zealand has one of the oldest light vehicle fleets in the developed world. This report looks at some of the

More information

WORKING TIMETABLE OF PASSENGER TRAIN SERVICES

WORKING TIMETABLE OF PASSENGER TRAIN SERVICES Spa Valley Railway 2017 SECTION WE A DESTINATION AT EVERY STATION! WORKING TIMETABLE OF PASSENGER TRAIN SERVICES SOUTHERN REGION (CENTRAL DIVISION) SPA VALLEY LINE Thursday 3 rd, Friday 4 th, Saturday

More information

VBS3 Frequently Asked Questions (Updated March 2014)

VBS3 Frequently Asked Questions (Updated March 2014) VBS3 Frequently Asked Questions (Updated March 2014) 1. What is VBS? 2. Why is it necessary? 3. How do I register? 4. What if I arrive at the Port of Felixstowe without a VBS booking? 5. How many bookings

More information

A Personalized Highway Driving Assistance System

A Personalized Highway Driving Assistance System A Personalized Highway Driving Assistance System Saina Ramyar 1 Dr. Abdollah Homaifar 1 1 ACIT Institute North Carolina A&T State University March, 2017 aina Ramyar, Dr. Abdollah Homaifar (NCAT) A Personalized

More information

The Voice of European Railways POSITION PAPER. Revision of Appendix T of TSI OPE (decision /EU) January 2013

The Voice of European Railways POSITION PAPER. Revision of Appendix T of TSI OPE (decision /EU) January 2013 POSITION PAPER Revision of Appendix T of TSI OPE (decision 2012-757/EU) January 2013 1. REFERENCE DOCUMENTS Commission Decision 2012-757/EU concerning the technical specification for interoperabilityrelating

More information

Allocation of Buses to Depots : A Case Study

Allocation of Buses to Depots : A Case Study Allocation of Buses to Depots : A Case Study R Sridharan Minimizing dead kilometres is an important operational objective of an urban road transport undertaking as dead kilometres mean additional losses.

More information

TERMS OF USE OF THE RAIL NETWORK for the user of the railway siding the infrastructure manager

TERMS OF USE OF THE RAIL NETWORK for the user of the railway siding the infrastructure manager TERMS OF USE OF THE RAIL NETWORK for the user of the railway siding the infrastructure manager Wagon Opole Sp. z o.o. ul. Tadeusza Rejtana 7 45-332 Opole p. 1 Opole, August 2, 2017 p. 2 Table of contents:

More information

Shortening total trip time by short station dwell time and passing local trains

Shortening total trip time by short station dwell time and passing local trains Shortening total trip time by short station dwell time and passing local trains T.Katori, T.Izumi & Y.Takahashi Department of Electronics and Computer Science, College of Science and Technology, Nihon

More information

I101 Motorsport Precinct

I101 Motorsport Precinct I101. Motorsport I101.1. Precinct description The Motorsport Precinct applies to three of Auckland s motorsport parks: Colin Dale Park; Rosebank Road; and Waikaraka Park. The precinct does not include

More information

Adaptive Routing and Recharging Policies for Electric Vehicles

Adaptive Routing and Recharging Policies for Electric Vehicles Adaptive Routing and Recharging Policies for Electric Vehicles Timothy M. Sweda, Irina S. Dolinskaya, Diego Klabjan Department of Industrial Engineering and Management Sciences Northwestern University

More information

DS504/CS586: Big Data Analytics --Presentation Example

DS504/CS586: Big Data Analytics --Presentation Example Welcome to DS504/CS586: Big Data Analytics --Presentation Example Prof. Yanhua Li Time: 6:00pm 8:50pm R. Location: AK233 Spring 2018 Project1 Timeline and Evaluation Start: Week 2, 1/18 R Proposal: Week

More information

Driver fatigue leading Bus safety issue 6 Florida Agencies used in Study Questionnaire Survey Results

Driver fatigue leading Bus safety issue 6 Florida Agencies used in Study Questionnaire Survey Results Driver fatigue leading Bus safety issue 6 Florida Agencies used in Study Questionnaire Survey Results Straight shift mean elapsed work time = 10.33 hr Split-shift mean elapsed work time = 13.77 hr Drivers

More information

An improved algorithm for PMU assisted islanding in smart grid

An improved algorithm for PMU assisted islanding in smart grid International Journal of Smart Grid and Clean Energy An improved algorithm for PMU assisted islanding in smart grid Mohd Rihan, Mukhtar Ahmad, Mohammad Anas Anees* Aligarh Muslim University, Aligarh 202002,

More information

Requirements document for a parking garage control system

Requirements document for a parking garage control system Requirements document for a parking garage control system August 5, 1996 Contents 1 Introduction 2 1.1 Purpose : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 1.2 Scope

More information

Locomotive Driver Desk. Manual

Locomotive Driver Desk. Manual Locomotive Driver Desk Manual Authors: Dr.-Ing. T. Vaupel, D. Richter, M. Berger Translated by Wolfram Steinke Copyright Uhlenbrock Elektronik GmbH, Bottrop 3rd Edition March 2004 All Rights Reserved Duplication

More information

Written Exam Public Transport + Answers

Written Exam Public Transport + Answers Faculty of Engineering Technology Written Exam Public Transport + Written Exam Public Transport (195421200-1A) Teacher van Zuilekom Course code 195421200 Date and time 7-11-2011, 8:45-12:15 Location OH116

More information

Online Appendix for Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion

Online Appendix for Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion Online Appendix for Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion ByMICHAELL.ANDERSON AI. Mathematical Appendix Distance to nearest bus line: Suppose that bus lines

More information

A CASE STUDY IN SCHOOL TRANSPORTATION LOGISTICS

A CASE STUDY IN SCHOOL TRANSPORTATION LOGISTICS A CASE STUDY IN SCHOOL TRANSPORTATION LOGISTICS Kazimierz Worwa* * Faculty of Cybernetics, Military Technical University, Warsaw, Poland, E-mail: kworwa@wat.edu.pl Abstract In the paper, a school bus routing

More information

Towards smarter public transport

Towards smarter public transport Towards smarter public transport Sensing, Modeling and Visualizing Urban Mobility and Copresence Networks Vassilis Kostakos 16 September 2010, Bogota, Colombia Motivation People increasingly carry mobile

More information

WORKING TIMETABLE OF PASSENGER TRAIN SERVICES

WORKING TIMETABLE OF PASSENGER TRAIN SERVICES Spa Valley Railway 2017 SECTION WE A DESTINATION AT EVERY STATION! WORKING TIMETABLE OF PASSENGER TRAIN SERVICES SOUTHERN REGION (CENTRAL DIVISION) SPA VALLEY LINE Thursday 3 rd, Friday 4 th, Saturday

More information

Item No. 10 Town of Atherton

Item No. 10 Town of Atherton Item No. 10 Town of Atherton CITY COUNCIL STAFF REPORT REGULAR AGENDA TO: FROM: HONORABLE MAYOR AND CITY COUNCIL GEORGE RODERICKS, CITY MANAGER MICHAEL KASHIWAGI COMMUNITY SERVICES DIRECTOR DATE: DECEMBER

More information

Passenger Train Brake Inspection and Safety Rules: Guidelines for British Columbia s Heritage Railways

Passenger Train Brake Inspection and Safety Rules: Guidelines for British Columbia s Heritage Railways Passenger Train Brake Inspection and Safety Rules: Guidelines for British Columbia s Heritage Railways Part I: General 1. SHORT TITLE 1.1 For ease of reference, these rules may be referred to as the "Train

More information

Optimization of Electric Car Sharing Stations: Profit Maximization with Partial Demand Satisfaction

Optimization of Electric Car Sharing Stations: Profit Maximization with Partial Demand Satisfaction Optimization of Electric Car Sharing Stations: Profit Maximization with Partial Demand Satisfaction Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftsingenieur

More information

GTA A.M. PEAK MODEL. Documentation & Users' Guide. Version 4.0. Prepared by. Peter Dalton

GTA A.M. PEAK MODEL. Documentation & Users' Guide. Version 4.0. Prepared by. Peter Dalton GTA A.M. PEAK MODEL Version 4.0 Documentation & Users' Guide Prepared by Peter Dalton August 19, 2003 Contents 1.0 Introduction... 1 1.1 Summary Description... 2 Figure 1 - Flow Diagram... 2 Table 1 -

More information

Growing Charging Station Networks with Trajectory Data Analytics

Growing Charging Station Networks with Trajectory Data Analytics Growing Charging Station Networks with Trajectory Data Analytics Yanhua Li 1, Jun Luo 2, Chi-Yin Chow 3, Kam-Lam Chan 3, Ye Ding 4, and Fan Zhang 2 1WPI, CAS 2, CityU 3, HKUST 4 Contact: yli15@wpi.edu

More information

Festival Nacional de Robótica - Portuguese Robotics Open. Rules for Autonomous Driving. Sociedade Portuguesa de Robótica

Festival Nacional de Robótica - Portuguese Robotics Open. Rules for Autonomous Driving. Sociedade Portuguesa de Robótica Festival Nacional de Robótica - Portuguese Robotics Open Rules for Autonomous Driving Sociedade Portuguesa de Robótica 2017 Contents 1 Introduction 1 2 Rules for Robot 2 2.1 Dimensions....................................

More information

Innovative Power Supply System for Regenerative Trains

Innovative Power Supply System for Regenerative Trains Innovative Power Supply System for Regenerative Trains Takafumi KOSEKI 1, Yuruki OKADA 2, Yuzuru YONEHATA 3, SatoruSONE 4 12 The University of Tokyo, Japan 3 Mitsubishi Electric Corp., Japan 4 Kogakuin

More information

Travel Time Savings Memorandum

Travel Time Savings Memorandum 04-05-2018 TABLE OF CONTENTS 1 Background 3 Methodology 3 Inputs and Calculation 3 Assumptions 4 Light Rail Transit (LRT) Travel Times 5 Auto Travel Times 5 Bus Travel Times 6 Findings 7 Generalized Cost

More information

Simulating the Proposed Munich Maglev System on the Transrapid Test Facility in Emsland

Simulating the Proposed Munich Maglev System on the Transrapid Test Facility in Emsland Simulating the Proposed Munich Maglev System on the Transrapid Test Facility in Emsland (*) Dr. Hans-Peter Friedrich, (**) Karl-Heinz Schulz DB Magnetbahn GmbH, Arnulfstraße 27, 80335 München, Germany

More information

Vehicle Types and Weight Bands: Proposals for Consultation

Vehicle Types and Weight Bands: Proposals for Consultation Road User Charges Bill 2010: Regulations Vehicle Types and Weight Bands: Proposals for Consultation Purpose of this document 1. This document outlines a proposed approach to definition of vehicle types

More information

Frequently Asked. Question. Accessory Questions. Repair & Medallion Services Middle East, Africa, Turkey & India

Frequently Asked. Question. Accessory Questions. Repair & Medallion Services Middle East, Africa, Turkey & India Frequently Asked s Repair & Medallion Services Middle East, Africa, Turkey & India Accessory s What is an Accessory? My Accessory is dead on arrival (DOA) My accessory is broken and my unit is still under

More information

PSERC Webinar - September 27,

PSERC Webinar - September 27, PSERC Webinar - September 27, 2011 1 [1]. S. Meliopoulos, J. Meisel and T. Overbye, Power System Level Impacts of Plug-In Hybrid Vehicles (Final Project Report), PSERC Document 09-12, Oct. 2009. PSERC

More information

OPF for an HVDC feeder solution for railway power supply systems

OPF for an HVDC feeder solution for railway power supply systems Computers in Railways XIV 803 OPF for an HVDC feeder solution for railway power supply systems J. Laury, L. Abrahamsson & S. Östlund KTH, Royal Institute of Technology, Stockholm, Sweden Abstract With

More information

Rescue operations on dedicated high speed railway lines

Rescue operations on dedicated high speed railway lines Computers in Railways XII 141 Rescue operations on dedicated high speed railway lines R. Takagi Kogakuin University, Japan Abstract When disruptions of service take place on dedicated high speed railway

More information

ANNEXES. to the. Proposal for a Regulation of the European Parliament and of the Council

ANNEXES. to the. Proposal for a Regulation of the European Parliament and of the Council EUROPEAN COMMISSION Brussels, 17.5.2018 COM(2018) 296 final ANNEXES 1 to 8 ANNEXES to the Proposal for a Regulation of the European Parliament and of the Council on the labelling of tyres with respect

More information

OPF for an HVDC Feeder Solution for Railway Power Supply Systems

OPF for an HVDC Feeder Solution for Railway Power Supply Systems OPF for an HVDC Feeder Solution for Railway Power Supply Systems J. Laury, L. Abrahamsson, S. Östlund KTH, Royal Institute of Technology, Stockholm, Sweden Abstract With increasing railway traffic, the

More information

Diesel Locomotive Train Driver Performance Checklist

Diesel Locomotive Train Driver Performance Checklist Diesel Locomotive Train Driver Performance Checklist (Generic Version) Version 1 June, 2011 IMPORTANT NOTICE This booklet is one of a series of generic training and assessment templates developed by the

More information

BUS HIRE, DRIVER HIRE OR BUS AND DRIVER HIRE DETAILS OF HIRER

BUS HIRE, DRIVER HIRE OR BUS AND DRIVER HIRE DETAILS OF HIRER BUS HIRE, DRIVER HIRE OR BUS AND DRIVER HIRE Randwick Waverly Community Transport (RWCTG) assists transport disadvantaged individuals, families and community groups with economical travel in the South

More information

Implementation of a 3 Bin System Charles Sullivan & Nicki Ledger

Implementation of a 3 Bin System Charles Sullivan & Nicki Ledger Implementation of a 3 Bin System Charles Sullivan & Nicki Ledger Acknowledgement Funding provided through Better Bins and Community and Industry Engagement Programs Existing Two Bin System Currently operating

More information

Risk Management of Rail Vehicle Axle Bearings

Risk Management of Rail Vehicle Axle Bearings Railway Group Standard Risk Management of Rail Vehicle Axle Bearings Synopsis This Railway Group Standard mandates that there shall be riskbased processes to minimise and detect failures of rail vehicle

More information

COMPUTER CONTROL OF AN ACCUMULATOR BASED FLUID POWER SYSTEM: LEARNING HYDRAULIC SYSTEMS

COMPUTER CONTROL OF AN ACCUMULATOR BASED FLUID POWER SYSTEM: LEARNING HYDRAULIC SYSTEMS The 2 nd International Workshop Ostrava - Malenovice, 5.-7. September 21 COMUTER CONTROL OF AN ACCUMULATOR BASED FLUID OWER SYSTEM: LEARNING HYDRAULIC SYSTEMS Dr. W. OST Eindhoven University of Technology

More information

Wellington Transport Strategy Model. TN19.1 Time Period Factors Report Final

Wellington Transport Strategy Model. TN19.1 Time Period Factors Report Final Wellington Transport Strategy Model TN19.1 Time Period Factors Report Final Wellington Transport Strategy Model Time Period Factors Report Final July 2003 prepared for Greater Wellington The Regional Council

More information

Changing your vehicle

Changing your vehicle Information Guide G6 This Information Guide deals with the regulations and procedures involved in changing the vehicle associated with an SPSV licence. Changes of vehicle are permitted, provided the replacement

More information

JCHPS Special Issue 1: February Page 275

JCHPS Special Issue 1: February Page 275 Journal of Chemical and Pharmaceutical Sciences ISS: 0974-2115 Computation of Short Run Marginal Cost in Open Access Transmission System PL. Somasundaram, V. Jayakumar Department of EEE, M. Kumarasamy

More information

4 COSTS AND OPERATIONS

4 COSTS AND OPERATIONS 4 COSTS AND OPERATIONS 4.1 INTRODUCTION This chapter summarizes the estimated capital and operations and maintenance (O&M) costs for the Modal and High-Speed Train (HST) Alternatives evaluated in this

More information

Chapter 4. Design and Analysis of Feeder-Line Bus. October 2016

Chapter 4. Design and Analysis of Feeder-Line Bus. October 2016 Chapter 4 Design and Analysis of Feeder-Line Bus October 2016 This chapter should be cited as ERIA (2016), Design and Analysis of Feeder-Line Bus, in Kutani, I. and Y. Sado (eds.), Addressing Energy Efficiency

More information

Frequently Asked. Question. Accessory Questions. Medallion Services

Frequently Asked. Question. Accessory Questions. Medallion Services Frequently Asked s Medallion Services Accessory s What is an Accessory? My Accessory is dead on arrival (DOA) My accessory is broken and my unit is still under warranty. I have a valid Medallion contract

More information

B, C) 13, 2016 IMPORTANT UPDATE DATE TOPIC

B, C) 13, 2016 IMPORTANT UPDATE DATE TOPIC Safety Recalls G0P, G0R, H0A (Interim G1P, G1R, H1A) Remedy Notice Multiple Models and Model Years Takata Front Passenger Airbag Inflator (Zones A, B, C) Frequently Asked Questions Published October 13,

More information

Pembina Emerson Border Crossing Interim Measures Microsimulation

Pembina Emerson Border Crossing Interim Measures Microsimulation Pembina Emerson Border Crossing Interim Measures Microsimulation Final Report December 2013 Prepared for: North Dakota Department of Transportation Prepared by: Advanced Traffic Analysis Center Upper Great

More information

Smart Operation for AC Distribution Infrastructure Involving Hybrid Renewable Energy Sources

Smart Operation for AC Distribution Infrastructure Involving Hybrid Renewable Energy Sources Milano (Italy) August 28 - September 2, 211 Smart Operation for AC Distribution Infrastructure Involving Hybrid Renewable Energy Sources Ahmed A Mohamed, Mohamed A Elshaer and Osama A Mohammed Energy Systems

More information