Electric Flight Potential and Limitations

Size: px
Start display at page:

Download "Electric Flight Potential and Limitations"

Transcription

1 Electric Flight Potential and Limitations Energy Efficient Aircraft Configurations, Technologies and Concepts of Operation, Sao José dos Campos, November 2013 Dr. Martin Hepperle DLR Institute of Aerodynamics and Flow Technology Braunschweig, Germany

2 History and Predictions Air Traffic Source: Airbus Global Market Forecast Page 2

3 History and Predictions Oil Production? Page 3

4 Electric Propulsion of Aircraft? Motivation: Air traffic is growing. Availability of fossil fuels is be limited. Electric propulsion systems offer high efficiency. Electric propulsion systems can be zero-emission in situ. Specifics of air transport: Aircraft are already quite efficient (3-4 Liters/PAX/100km). Aircraft usually operate on long distances ( km). Mass is much more important than in ground transportation. Safety standards are very high. Page 4

5 Performance of Aircraft The classical polar apporximation yields a relation between drag and flight speed. Plotted here Two additional graphs are derived from this curve. These three graphs contain the main performance criteria. The minimum of each curve defines the tangent to the next curve. The minima are at different speeds. Page 5

6 Performance of Aircraft Point : Minimum of D/v maximum of v L/D or M L/D. Most cost efficient flight of jet aircraft. Maximum range of jet aircraft. Page 6

7 Performance of Aircraft Point : Minimum of D maximum of L/D Minimum energy consumption per distance. Maximum range of propeller aircraft. Maximum endurance of jet aircraft. Page 7

8 Performance of Aircraft Point : Minimum of D v Minimum of required power. Propulsion system of lowest weight. Maximum endurance of propeller aircraft. Page 8

9 Performance of Aircraft 3.0 Page 9

10 Performance of Aircraft Page 10

11 Performance of Aircraft Page 11

12 There is nothing new under the sun... One of the Pioneers of Electric Flight Fred Militky 1940 first trials, after 1945 chief engineer at Graupner hobby company. Motor glider MB-E1 (HB-3, b=12 m, m = 440 kg) 21. October 1973: worldwide first flight with electric motor, duration 9-14 Min, altitude 360 m, Pilot Heino Brditschka, performance not reached for 10 years, NiCd batteries by Varta, Motor by Bosch ( /min). Also built solar powered R/C model aircraft in Source: Internet Source: Internet Source: Brditschka Silentius Silentius Hi-Fly Hi-Fly MB-E1 MB-E1 Page 12

13 Conventional Propulsion Systems Energy storage: liquid fuel, alternative: Gas (e.g. H 2 ). Conversion to propulsive power: Turbofan, Turboshaft / piston engine and Propeller, RPM adaption as needed by a gearbox. Fuel is burnt, mass reduces with flight time. Page 13

14 Electric Propulsion There are many possibilities. Mainly two types of interest. Fuel cell systems complex and still expensive, usage of conventional energy storage systems (Kerosene, Methanol, H2), variable mass. Batteries simpler systems, constant mass, much recent development. also: hybrid systems Page 14

15 Total Efficiency The Chain from on-board Energy to Propulsion Page 15

16 Characteristics of Energy Storage Systems Specific Energy Content of the pure Energy Provider Page 16

17 Characteristics of Energy Storage Systems Not Fuel Mass but System Mass is important Kerosene, Methanol Tanks (often integral part of the structure), tubing, pumps. Hydrogen Gas: high pressure tanks (typical: bar), tubing,, Liquid: low pressure tanks (-250 C), insulation, tubing,. Option: structurally integrated tanks, e.g. metal-hydrides? Fuel Cell compressors, tubing, water,, Kerosene/Gas/Alcohol: reformer. Battery Casing, heating, ventilation, wiring, Page 17

18 Equivalent Energy Density of Propulsion Systems Page 18

19 What is available today? Mass specific Energy of Batteries Lithium-Polymer Technology E* = Wh / kg, V* = Wh / Liter Lithium Sulfur 800 Wh/kg chemical limit? Lithium-Air 2500 Wh/kg chemical limit? Page 19

20 What is available today? Mass specific Power of Electric Motors Electric motors achieve a similar level as piston engines. Today realistic: 2-3 kw / kg. Desired: lightweight motors with mass specific power 6 kw / kg. Page 20

21 What is available today? Comparison with Turboshaft Engines 2-4 kw / kg at cruise power 2-8 kw / kg at takeoff power Page 21

22 What is available today? Comparison with Turbofan Engines 2-4 kw / kg at cruise power Page 22

23 Range of Aircraft with Energy Storage in Batteries Battery Aircraft E* = Energy per mass [J/kg, Ws/kg] P = power [W] L/D = lift over drag t = time [s] v = flight speed [m/s] m = aircraft mass [kg] R = range [m] g = 9.81 [m/s 2 ] = total efficiency from battery (neglecting fuel reserves as well as takeoff and landing) Page 23

24 Range of Aircraft A) Energy from decomposing / burning fuel (hot or cold): Fuel consumption reduces mass during the flight time. classical range equation ( Breguet-equation ) applies. B) Energy drawn from batteries or solar energy: Mass stays constant. Page 24

25 Impact of variable Mass on Range Aircraft with a small mass fraction m fuel /m of energy storage experience a small effect. Short range aircraft lose about 5-10% in range. Long range aircraft lose about 20-25% of range. This effect must be compensated by additional energy or efficiency. fuel fuel mass mass fraction fraction Page 25

26 Range of Aircraft with Energy Storage in Batteries Range with payload How large is the maximum range with a given technology? payload zero Battery Systems Aerodynamics Structures This limit cannot be exceeded. Limit case, allows for a rapid assessment of weird concepts, realistic ranges are always lower! Page 26

27 Sizing Equation Determine required Aircraft Mass for Range rearranging the range equation yields the aircraft mass for a given range only a small number of parameters needed: number of passengers PAX and mass per PAX m pax, empty mass fraction m empty /m, desired range R, specific energy E* of the battery system, total efficiency of the system from battery to thrust, lift over drag ratio L/D. no direct influence of cruise altitude! for R=0 we obtain the absolute minimum mass of the aircraft. Page 27

28 Empty Mass Fraction of Aircraft Current Technology Page 28

29 Sizing Limits Aircraft mass for given range Constraints for solution (m > 0) Range = 500 km, E* = 180 Wh/kg, = 70% PAX=1 PAX=2 PAX=4 PAX=10 PAX= m [kg] L/D Page 29

30 Sizing Limits Aircraft mass for given range Constraints for solution (m > 0) Range = 500 km, LD = 30, = 70% PAX=1 PAX=2 PAX=4 PAX=10 PAX= m [kg] E* [Wh/kg] Page 30

31 Sizing Limits Aircraft mass for given range Constraints for solution (m > 0) Range = 500 km, E* = 180 Wh/kg, = 70%, L/D = 30 PAX=1 PAX=2 PAX=4 PAX=10 PAX= m [kg] m e /m Page 31

32 Trading Aerodynamics and Structures Page 32

33 Trading Aerodynamics and Structures Page 33

34 Mass Growth with Design Range E* = 200 Wh/kg Do 328 TP R = 1200 km Page 34

35 Mass Growth with Design Range E* = 200 Wh/kg 400 Wh/kg Do 328 TP R = 1200 km Page 35

36 Practical Range Limit Derivative of mass with respect to range yields the mass growth per increase of range [kg/km] Solving for the range produces the maximum range R max which is limited by the acceptable mass growth. The value for the acceptable mass growth depends on aircraft size. Page 36

37 Refined Model Aircraft geometry and structures wing span, wing area, empty mass fraction. Aerodynamics square polar, zero lift drag, k-factor. System Battery: E*, U(t); Motor: P(U), efficiencies. Propeller diameter, speed, number efficiency = f(t, v, H). Energy optimized mission climb with optimum speed (incl. propeller), cruise with optimum speed (incl. propeller), descent with max. L/D (only secondary energy consumption), no reserves! Page 37

38 Refined Model Propeller Model The propeller efficiency drops with reduced flight speed. Large propellers are less critical w.r.t motor-propeller matching Page 38

39 Refined Model Energy in Climb Without a proper efficiency chain model one obtains academic optima. Page 39

40 Results Page 40

41 Page 41

42 Page 42

43 Example: Regional Aircraft The range of the aircraft with 32 passengers is about 1200 km. With full tanks and 28 passengers it grows to 2200 km. The lift over drag ratio is about 16. Modification: Replacing fuel system and engines by an electric system of identical mass. With current technology the aircraft would reach a range of 202 km, however without any reserves (with reserves: R=50 km). Page 43

44 Page 44

45 Page 45

46 Page 46

47 Page 47

48 Page 48

49 Big Steps in Technology Development are Required. Energy optimized flight: The cruise speed drops due to higher wing span below 300 km/h (The turboprop aircraft flies at 480 km/h.) L/D = The high aspect ratio requires high lift coefficients (climb: 0.9, cruise: 1.2). Consumption with a turboprop would be about 1.5 Liter/PAX/100km Page 49

50 Note on Range Flexibility Trading fuel / batteries for range is more useful for (lightweight) kerosene than for (heavy) batteries. Page 50

51 Battery Powered Aircraft? Conclusions: Electric propulsion systems with batteries are possible for small aircraft, The range is strongly limited, but useable for General Aviation and UAVs, For larger aircraft the battery technology must be drastically improved to at least 1000 Wh/kg (factor 5, better 10), This seems to be unlikely within the next 10 years, but may be within years. Costs are less relevant as they will shrink due to automotive and consumer industry. Still many open questions: What is the total balance including production and recycling? Are the raw materials for automotive and aviation available in the long term? Page 51

52 Solar Powered Aircraft? Power delivered by solar cells depends on wing area and solar irradiation. Power required by the aircraft depends on wing area, mass and flight speed. Page 52

53 Sizing of Solar Powered Aircraft Power delivered by solar cells Power required by the aircraft P solar = P cruise can solve e.g. for wing span b or for mass m Page 53

54 Size of Solar Powered Aircraft Selected requirement: aircraft shall fly for 24 hours. We have to use the time average of the solar irradiation E*. Energy has to be stored for night time usage. Page 54

55 Solar Powered Aircraft? What is possible today? m = 1.6 t, S = 210 m 2, L/D = 35, v = 50 km/h, P = 20 kw R = unlimited, payload: one person (the pilot) Efficiency of solar cells is about 20% ( in the future maybe 40%) Design for minimum power consumption leads to low flight speeds Page 55

56 Solar Powered Aircraft? Aircraft of Airbus A320 size m = 75 t, S = 120 m 2, L/D = 20, v = 750 km/h, R = 4000 km t = 5.3 h, P = 7.66 MW, E = 1.47E5 MJ Kerosene, H = 42.8 MJ/kg, η = 30% m = 9 t, V = 12 m³ Hydrogen, H = MJ/kg, η = 30% m = 3 t, V = 44 m³ Li-Po batteries, H = 0.8 MJ/kg, η = 60% m = 190 t, V = 77 m³ Solar cells, E* = 650 W/m², η = 40% m = 10 t, S = m² 12:00 noon optimistic Page 56

57 Solar Powered Aircraft? Conclusions: Solar-Electric propulsion systems are possible for very special low power aircraft, Available power is very much limited by efficiency of solar cells. If efficiency can be doubled size will be halved. Promising developments in the laboratory, but not yet available for a reasonable price. Are an alternative for low power applications in the hobby and long endurance UAV field. Not suitable for heavy and fast aircraft with high power demands, even if solar cells of 100% efficiency would be available. Page 57

58 There is nothing new under the sun... One of the Pioneers of Electric Flight Fred Militky 1940 first trials, after 1945 chief engineer at Graupner. Motor glider MB-E1 (HB-3, b=12 m, m = 440 kg) 21. October 1973: worldwide first flight with electric motor, duration 9-14 Min, altitude 360 m, Pilot Heino Brditschka, performance not reached for 10 years, NiCd batteries by Varta, Motor by Bosch ( /min). Source: Internet Source: Internet Today, 40 years later, using commercially available battery systems, the flight time could be extended to 2.5 hours. Source: Brditschka Silentius Silentius Hi-Fly Hi-Fly MB-E1 MB-E1 Page 58

59 Return to the Future with Whole Milk? Thank You for Listening! Page 59 CAE-

System Level Applications and Requirements

System Level Applications and Requirements Europe-Japan Symposium Electrical Technologies for the Aviation of the Future Tokyo, Japan 26 th and 27 th of March 2015 System Level Applications and Requirements Setting the Scene Johannes Stuhlberger

More information

Aeronautical Engineering Design II Sizing Matrix and Carpet Plots. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Spring 2014

Aeronautical Engineering Design II Sizing Matrix and Carpet Plots. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Spring 2014 Aeronautical Engineering Design II Sizing Matrix and Carpet Plots Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Spring 2014 Empty weight estimation and refined sizing Empty weight of the airplane

More information

Approche novatrice pour la conception et l exploitation d avions écologiques, sous incertitudes.

Approche novatrice pour la conception et l exploitation d avions écologiques, sous incertitudes. Sylvain Prigent Approche novatrice pour la conception et l exploitation d avions écologiques, sous incertitudes. Challenges Air traffic will double in the next 20 years! *Revenue passenger kilometers (number

More information

Hybrid Electric Propulsion

Hybrid Electric Propulsion Europe-Japan Symposium Electrical Technologies for the Aviation of the Future Tokyo, Japan 26 th and 27 th of March 2015 Presented by JL Delhaye Prepared in collaboration with Peter ROSTEK Hybrid Electric

More information

A SOLAR POWERED UAV. 1 Introduction. 2 Requirements specification

A SOLAR POWERED UAV. 1 Introduction. 2 Requirements specification A SOLAR POWERED UAV Students: R. al Amrani, R.T.J.P.A. Cloosen, R.A.J.M. van den Eijnde, D. Jong, A.W.S. Kaas, B.T.A. Klaver, M. Klein Heerenbrink, L. van Midden, P.P. Vet, C.J. Voesenek Project tutor:

More information

SOFC Development for Aircraft Application

SOFC Development for Aircraft Application SOFC Development for Aircraft Application G. Schiller German Aerospace Center (DLR) Institute of Technical Thermodynamics Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany 1 st International Workshop on

More information

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018 Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft Wayne Johnson From VTOL to evtol Workshop May 24, 2018 1 Conceptual Design of evtol Aircraft Conceptual design Define aircraft

More information

Electric Flight Potential and Limitations

Electric Flight Potential and Limitations Martin Hepperle German Aerospace Center Institute of Aerodynamics and Flow Technology Lilienthalplatz 7, D-38108 Braunschweig, Germany Martin.Hepperle@dlr.de ABSTRACT During the last years, the development

More information

Flying Low and Slow. (and the Tools for its Calculation) Dieter Scholz. Hamburg University of Applied Sciences

Flying Low and Slow. (and the Tools for its Calculation) Dieter Scholz. Hamburg University of Applied Sciences AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO) (and the Tools for its Calculation) Hamburg University of Applied Sciences 12th European Workshop on Aircraft Design Education (EWADE) 2015 (and the Tools for its

More information

Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go?

Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go? Performance Concepts Speaker: Randall L. Brookhiser Performance means how fast will it go? How fast will it climb? How quickly it will take-off and land? How far it will go? Let s start with the phase

More information

Environmentally Focused Aircraft: Regional Aircraft Study

Environmentally Focused Aircraft: Regional Aircraft Study Environmentally Focused Aircraft: Regional Aircraft Study Sid Banerjee Advanced Design Product Development Engineering, Aerospace Bombardier International Workshop on Aviation and Climate Change May 18-20,

More information

FULL-ELECTRIC, HYBRID AND TURBO-ELECTRIC TECHNOLOGIES FOR FUTURE AIRCRAFT PROPULSION SYSTEMS

FULL-ELECTRIC, HYBRID AND TURBO-ELECTRIC TECHNOLOGIES FOR FUTURE AIRCRAFT PROPULSION SYSTEMS Journal of KONES Powertrain and Transport, Vol. 23, No. 4 2016 FULL-ELECTRIC, HYBRID AND TURBO-ELECTRIC TECHNOLOGIES FOR FUTURE AIRCRAFT PROPULSION SYSTEMS Borys Łukasik, Witold Wiśniowski Institute of

More information

DESIGN, APPLICATIONS AND COMMERCIALIZATION OF FUEL CELL POWERED AIRCRAFT

DESIGN, APPLICATIONS AND COMMERCIALIZATION OF FUEL CELL POWERED AIRCRAFT National Hydrogen Association Conference Sacramento 2008 DSIGN, APPLICATIONS AND COMMRCIALIZATION OF FUL CLL POWRD AIRCRAFT Thomas H. Bradley PhD Candidate, George Woodruff School of Mechanical ngineering

More information

EDMATECH Trends in UAV Propulsion

EDMATECH Trends in UAV Propulsion 1 Trends in UAV Propulsion Liban Emanuel 2 Trends in UAV Propulsion 3 UAV Propulsion Requirements Reliability High power to weight ratio High efficiency in the flight envelope Low emission of IR,Radar

More information

blended wing body aircraft for the

blended wing body aircraft for the Feasibility study of a nuclear powered blended wing body aircraft for the Cruiser/Feeder eede concept cept G. La Rocca - TU Delft 11 th European Workshop on M. Li - TU Delft Aircraft Design Education Linköping,

More information

Hybrid VTOL: Increased Energy Density for Increased Payload and Endurance

Hybrid VTOL: Increased Energy Density for Increased Payload and Endurance Hybrid VTOL: Increased Energy Density for Increased Payload and Endurance Top Flight Airborg 10K H8 with Micro Hybrid Generator Engine Dr. Paul DeBitetto, VP/Software Engineering, paul.debitetto@topflighttech.com,

More information

Welcome to Aerospace Engineering

Welcome to Aerospace Engineering Welcome to Aerospace Engineering DESIGN-CENTERED INTRODUCTION TO AEROSPACE ENGINEERING Notes 5 Topics 1. Course Organization 2. Today's Dreams in Various Speed Ranges 3. Designing a Flight Vehicle: Route

More information

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density.

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density. ET3034TUx - 7.5.1 - Batteries 1 - Introduction Welcome back. In this block I shall discuss a vital component of not only PV systems but also renewable energy systems in general. As we discussed in the

More information

Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion

Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion Technical Challenges and Barriers Affecting Turbo-electric and Hybrid Electric Aircraft Propulsion Dr. Ajay Misra Deputy Director, Research and Engineering NASA Glenn Research Center Keynote presentation

More information

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the

More information

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols Contents Preface Acknowledgments List of Tables Nomenclature: organizations Nomenclature: acronyms Nomenclature: main symbols Nomenclature: Greek symbols Nomenclature: subscripts/superscripts Supplements

More information

Appenidix E: Freewing MAE UAV analysis

Appenidix E: Freewing MAE UAV analysis Appenidix E: Freewing MAE UAV analysis The vehicle summary is presented in the form of plots and descriptive text. Two alternative mission altitudes were analyzed and both meet the desired mission duration.

More information

AIRCRAFT DESIGN SUBSONIC JET TRANSPORT

AIRCRAFT DESIGN SUBSONIC JET TRANSPORT AIRCRAFT DESIGN SUBSONIC JET TRANSPORT Analyzed by: Jin Mok Professor: Dr. R.H. Liebeck Date: June 6, 2014 1 Abstract The purpose of this report is to design the results of a given specification and to

More information

AE 451 Aeronautical Engineering Design Final Examination. Instructor: Prof. Dr. Serkan ÖZGEN Date:

AE 451 Aeronautical Engineering Design Final Examination. Instructor: Prof. Dr. Serkan ÖZGEN Date: Instructor: Prof. Dr. Serkan ÖZGEN Date: 11.01.2012 1. a) (8 pts) In what aspects an instantaneous turn performance is different from sustained turn? b) (8 pts) A low wing loading will always increase

More information

E-Aircraft System Programme

E-Aircraft System Programme E-Aircraft System Programme LuFo-V2 TELOS Peter ROSTEK 21 March 2018 E-Aircraft Systems Programme Integrated Project Electric Aircraft Systems Peter ROSTEK E-Aircraft Systems Programme Head of New Technologies

More information

Powertrain Design for Hand- Launchable Long Endurance Unmanned Aerial Vehicles

Powertrain Design for Hand- Launchable Long Endurance Unmanned Aerial Vehicles Powertrain Design for Hand- Launchable Long Endurance Unmanned Aerial Vehicles Stuart Boland Derek Keen 1 Justin Nelson Brian Taylor Nick Wagner Dr. Thomas Bradley 47 th AIAA/ASME/SAE/ASEE JPC Outline

More information

Solar Based Propulsion System UAV Conceptual Design ( * )

Solar Based Propulsion System UAV Conceptual Design ( * ) Solar Based Propulsion System UAV Conceptual Design ( * ) Avi Ayele*, Ohad Gur, and Aviv Rosen* *Technion Israel Institute of Technology IAI Israel Aerospace Industries (*) Ayele A., Gur O., Rosen A.,

More information

Aviation and Oil Depletion. Energy Institute 7 November 2006

Aviation and Oil Depletion. Energy Institute 7 November 2006 Aviation and Oil Depletion Energy Institute 7 November 2006 By Christopher Smith Captain, BA Connect The Aviation Industry Aviation is one of the fastest growing industry sectors in the world Aviation

More information

Antares DLR-H2 - Flying Test Bed for Development of Aircraft Fuel Cell Systems

Antares DLR-H2 - Flying Test Bed for Development of Aircraft Fuel Cell Systems Antares DLR-H2 - Flying Test Bed for Development of Aircraft Fuel Cell Systems Fuel Cell Seminar 2013 24.10.2013 Dr. J. Kallo, P. Rathke, S. Flade, T. Stephan, Dr. J. Schirmer Short Presentation DLR DLR

More information

Turbo-Rocket. A brand new class of hybrid rocket. Rene Nardi and Eduardo Mautone

Turbo-Rocket. A brand new class of hybrid rocket. Rene Nardi and Eduardo Mautone Turbo-Rocket R A brand new class of hybrid rocket Rene Nardi and Eduardo Mautone 53 rd AIAA/SAE/ASEE Joint Propulsion Conference July 10 12, 2017 - Atlanta, Georgia Rumo ao Espaço R - UFC Team 2 Background

More information

Electric VTOL Aircraft

Electric VTOL Aircraft Electric VTOL Aircraft Subscale Prototyping Overview Francesco Giannini fgiannini@aurora.aero 1 08 June 8 th, 2017 Contents Intro to Aurora Motivation & approach for the full-scale vehicle Technical challenges

More information

VoltAir All-electric Transport Concept Platform

VoltAir All-electric Transport Concept Platform VoltAir All-electric Transport Concept Platform VoltAir All-electric propulsion system concepts for future air vehicle applications are being developed by EADS INNOVATION WORKS, the corporate research

More information

Flugzeugentwurf / Aircraft Design SS Part 35 points, 70 minutes, closed books. Prof. Dr.-Ing. Dieter Scholz, MSME. Date:

Flugzeugentwurf / Aircraft Design SS Part 35 points, 70 minutes, closed books. Prof. Dr.-Ing. Dieter Scholz, MSME. Date: DEPARTMENT FAHRZEUGTECHNIK UND FLUGZEUGBAU Flugzeugentwurf / Aircraft Design SS 2015 Duration of examination: 180 minutes Last Name: Matrikelnummer: First Name: Prof. Dr.-Ing. Dieter Scholz, MSME Date:

More information

Propeller blade shapes

Propeller blade shapes 31 1 Propeller blade shapes and Propeller Tutorials 2 Typical Propeller Blade Shape 3 M Flight M. No. Transonic Propeller Airfoil 4 Modern 8-bladed propeller with transonic airfoils near the tip and swept

More information

OPTIMAL MISSION ANALYSIS ACCOUNTING FOR ENGINE AGING AND EMISSIONS

OPTIMAL MISSION ANALYSIS ACCOUNTING FOR ENGINE AGING AND EMISSIONS OPTIMAL MISSION ANALYSIS ACCOUNTING FOR ENGINE AGING AND EMISSIONS M. Kelaidis, N. Aretakis, A. Tsalavoutas, K. Mathioudakis Laboratory of Thermal Turbomachines National Technical University of Athens

More information

Rotary Wing Micro Air Vehicle Endurance

Rotary Wing Micro Air Vehicle Endurance Rotary Wing Micro Air Vehicle Endurance Klaus-Peter Neitzke University of Applied Science Nordhausen, Nordhausen, Germany neitzke@fh-nordhausen.de Abstract One of the first questions to pilots of rotor

More information

ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells (ENFICA-FC).

ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells (ENFICA-FC). INFORMATION ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells (ENFICA-FC). The ENFICA-FC project led by Politecnico di Torino and comprising 11 partners has been selected for co-funding

More information

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle 2012 IEEE International Electric Vehicle Conference (IEVC) Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle Wilmar Martinez, Member National University Bogota, Colombia whmartinezm@unal.edu.co

More information

UAV Fuel Cell Module. Fly. Longer. Fly. Further. Achieve More

UAV Fuel Cell Module. Fly. Longer. Fly. Further. Achieve More UAV Fuel Cell Module Fly Longer Fly Further Achieve More The use of professional Unmanned Aerial Vehicles (UAVs) has grown significantly in recent years. Owing to the constraints of traditional battery

More information

1 b. Definition and Discussion of the Intrinsic Efficiency of Winglets. Dieter Scholz. Hamburg University of Applied Sciences

1 b. Definition and Discussion of the Intrinsic Efficiency of Winglets. Dieter Scholz. Hamburg University of Applied Sciences AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO) Definition and Discussion of the Dieter Scholz, Conference k e, WL 2 h 1 kwl b 2 Palace of the Parliament, Bucharest, 16-20 October 2017 Abstract Three simple equations

More information

Key Drivers for evtol Design Christopher Silva From VTOL to evtol Workshop May 24, 2018

Key Drivers for evtol Design Christopher Silva From VTOL to evtol Workshop May 24, 2018 Key Drivers for evtol Design Christopher Silva From VTOL to evtol Workshop May 24, 2018 Can we use what we already know? Techniques and processes Aircraft / System design theory: Design Thinking, MDAO,

More information

In this lecture... Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

In this lecture... Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay 1 In this lecture... Intakes for powerplant Transport aircraft Military aircraft 2 Intakes Air intakes form the first component of all air breathing propulsion systems. The word Intake is normally used

More information

UNIFIED LECTURE #2: THE BREGUET RANGE EQUATION

UNIFIED LECTURE #2: THE BREGUET RANGE EQUATION UNIFIED ENGINEERING Fall 2003 Lecture Outlines Ian A. Waitz UNIFIED LECTURE #2: THE BREGUET RANGE EQUATION I. Learning Goals At the end of this lecture you will: A. Be able to answer the question How far

More information

AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP Weight Management

AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP Weight Management Weight Management Florentina Viscotchi Section Chief C Series Aircraft Configuration To reduce fuel consumption, Mass Properties Discipline can help on two parameters. Weight Reduce aircraft weight Center

More information

This fuel can be mixed with gasoline or burned by itself. At the present time this fuel is not

This fuel can be mixed with gasoline or burned by itself. At the present time this fuel is not This fuel can be mixed with gasoline or burned by itself. At the present time this fuel is not widely available. 2 3.0 ENGINE OPERATION The operation of UAV engines essentially lies in the classification

More information

The Sonic Cruiser A Concept Analysis

The Sonic Cruiser A Concept Analysis International Symposium "Aviation Technologies of the XXI Century: New Aircraft Concepts and Flight Simulation", 7-8 May 2002 Aviation Salon ILA-2002, Berlin The Sonic Cruiser A Concept Analysis Dr. Martin

More information

SPORT AVIATION OF THE FUTURE. POSSIBLE CONCEPTS FOR FUTURE SPORT AIRCRFT USING DIFFERENT ENVIRONMENTAL FRIENDLY PROPULSION CONCEPTS

SPORT AVIATION OF THE FUTURE. POSSIBLE CONCEPTS FOR FUTURE SPORT AIRCRFT USING DIFFERENT ENVIRONMENTAL FRIENDLY PROPULSION CONCEPTS 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES SPORT AVIATION OF THE FUTURE. POSSIBLE CONCEPTS FOR FUTURE SPORT AIRCRFT USING DIFFERENT ENVIRONMENTAL FRIENDLY PROPULSION CONCEPTS P. Berry*,

More information

Research Report ZETJET-Aircraft Engines

Research Report ZETJET-Aircraft Engines Research Report ZETJET-Aircraft Engines aviation can reduce cost of transport by up to 70% UAV 1 click picture for video test rig click picture for video UAV 2- click picture for video ZETJET AG Bahnhofplatz

More information

Vehicle Performance. Pierre Duysinx. Research Center in Sustainable Automotive Technologies of University of Liege Academic Year

Vehicle Performance. Pierre Duysinx. Research Center in Sustainable Automotive Technologies of University of Liege Academic Year Vehicle Performance Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2015-2016 1 Lesson 4: Fuel consumption and emissions 2 Outline FUEL CONSUMPTION

More information

LIQUID HYDROGEN AS AVIATION FUEL AND ITS RELATIVE PERFORMANCE WITH COMMERCIAL AIRCRAFTS FUEL

LIQUID HYDROGEN AS AVIATION FUEL AND ITS RELATIVE PERFORMANCE WITH COMMERCIAL AIRCRAFTS FUEL Int. J. Mech. Eng. & Rob. Res. 2014 Shreyas Harsha, 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Special Issue, Vol. 1, No. 1, January 2014 National Conference on Recent Advances in Mechanical Engineering

More information

Development of an Unmanned Aircraft Mounted Software Defined Ground Penetrating Radar

Development of an Unmanned Aircraft Mounted Software Defined Ground Penetrating Radar Development of an Unmanned Aircraft Mounted Software Defined Ground Penetrating Radar J. F. Fitter, A. B. McCallum & J. P. Leon University of the Sunshine Coast, Sippy Downs, Australia 8-Sep-16 1 Project

More information

Development of an Extended Range, Large Caliber, Modular Payload Projectile

Development of an Extended Range, Large Caliber, Modular Payload Projectile 1 Development of an Extended Range, Large Caliber, Modular Payload Projectile April 12th, 2011 Miami, Florida, USA 46 th Annual Gun & Missile Systems Conference & Exhibition Speaker: Pierre-Antoine Rainville

More information

ADVENT. Aim : To Develop advanced numerical tools and apply them to optimisation problems in engineering. L. F. Gonzalez. University of Sydney

ADVENT. Aim : To Develop advanced numerical tools and apply them to optimisation problems in engineering. L. F. Gonzalez. University of Sydney ADVENT ADVanced EvolutioN Team University of Sydney L. F. Gonzalez E. J. Whitney K. Srinivas Aim : To Develop advanced numerical tools and apply them to optimisation problems in engineering. 1 2 Outline

More information

Weight Effects Part 1

Weight Effects Part 1 Weight Effects Part 1 David F. Rogers Copyright c 1997-1999 David F. Rogers. All rights reserved. Most of us normally operate our aircraft at less than gross weight, yet weight significantly affects the

More information

31 st National Conference on FMFP, December 16-18, 2004, Jadavpur University, Kolkata

31 st National Conference on FMFP, December 16-18, 2004, Jadavpur University, Kolkata 31 st National Conference on FMFP, December 16-18, 24, Jadavpur University, Kolkata Experimental Characterization of Propulsion System for Mini Aerial Vehicle Kailash Kotwani *, S.K. Sane, Hemendra Arya,

More information

CONCEPTUAL STUDY OF AN INNOVATIVE HIGH ALTITUDE SOLAR POWERED FLIGHT VEHICLE

CONCEPTUAL STUDY OF AN INNOVATIVE HIGH ALTITUDE SOLAR POWERED FLIGHT VEHICLE CONCEPTUAL STUDY OF AN INNOVATIVE HIGH ALTITUDE SOLAR POWERED FLIGHT VEHICLE Jiang Hanjie, Duan Zhuoyi, Pu Hongbin, Shang Liying The First Aircraft Institute, Aviation Industry Corporation of China Xi

More information

Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV

Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV Chapter 4 Lecture 16 Engine characteristics 4 Topics 4.3.3 Characteristics of a typical turboprop engine 4.3.4 Characteristics of a typical turbofan engine 4.3.5 Characteristics of a typical turbojet engines

More information

Lunette: A Global Network of Small Lunar Landers

Lunette: A Global Network of Small Lunar Landers Lunette: A Global Network of Small Lunar Landers Leon Alkalai and John O. Elliott Jet Propulsion Laboratory California Institute of Technology LEAG/ILEWG 2008 October 30, 2008 Baseline Mission Initial

More information

Team 2. AAE451 System Requirements Review. Chad Carmack Aaron Martin Ryan Mayer Jake Schaefer Abhi Murty Shane Mooney

Team 2. AAE451 System Requirements Review. Chad Carmack Aaron Martin Ryan Mayer Jake Schaefer Abhi Murty Shane Mooney Team 2 AAE451 System Requirements Review Chad Carmack Aaron Martin Ryan Mayer Jake Schaefer Abhi Murty Shane Mooney Ben Goldman Russell Hammer Donnie Goepper Phil Mazurek John Tegah Chris Simpson Outline

More information

Economic Impact of Derated Climb on Large Commercial Engines

Economic Impact of Derated Climb on Large Commercial Engines Economic Impact of Derated Climb on Large Commercial Engines Article 8 Rick Donaldson, Dan Fischer, John Gough, Mike Rysz GE This article is presented as part of the 2007 Boeing Performance and Flight

More information

Pulau Pinang, Malaysia Aircraft Design Group, School of Engineering, Cranfield University, MK43 0AL Cranfield, England

Pulau Pinang, Malaysia Aircraft Design Group, School of Engineering, Cranfield University, MK43 0AL Cranfield, England Single Cell Li-Ion Polymer Battery Charge and Discharge Characterizations for Application on Solar-Powered Unmanned Aerial Vehicle Parvathy Rajendran 1,2,a*, Nurul Musfirah Mazlan 1,b* and Howard Smith

More information

UAV Fuel Cell Module. Fly. Longer. Fly. Further. Achieve More

UAV Fuel Cell Module. Fly. Longer. Fly. Further. Achieve More UAV Fuel Cell Module Fly Longer Fly Further Achieve More The use of professional Unmanned Aerial Vehicles (UAVs) has grown significantly in recent years. Owing to the constraints of traditional battery

More information

Suitability of reusability for a Lunar re-supply system

Suitability of reusability for a Lunar re-supply system www.dlr.de Chart 1 Suitability of reusability for a Lunar re-supply system Etienne Dumont Space Launcher Systems Analysis (SART) Institut of Space Systems, Bremen, Germany Etienne.dumont@dlr.de IAC 2016

More information

Classical Aircraft Sizing I

Classical Aircraft Sizing I Classical Aircraft Sizing I W. H. Mason from Sandusky, Northrop slide 1 Which is 1 st? You need to have a concept in mind to start The concept will be reflected in the sizing by the choice of a few key

More information

Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics

Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics 4.15.3 Characteristics of a typical turboprop engine 4.15.4 Characteristics of a typical turbofan engine 4.15.5 Characteristics

More information

1.1 REMOTELY PILOTED AIRCRAFTS

1.1 REMOTELY PILOTED AIRCRAFTS CHAPTER 1 1.1 REMOTELY PILOTED AIRCRAFTS Remotely Piloted aircrafts or RC Aircrafts are small model radiocontrolled airplanes that fly using electric motor, gas powered IC engines or small model jet engines.

More information

BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING. EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 ASSIGNMENT GUIDELINES

BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING. EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 ASSIGNMENT GUIDELINES BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 Design Project I Dr Van Treuren 100 points ASSIGNMENT GUIDELINES For this assignment, you may work

More information

DESIGN AND DEVELOPMENT OF A MICRO AIR VEHICLE (µav) CONCEPT: PROJECT BIDULE

DESIGN AND DEVELOPMENT OF A MICRO AIR VEHICLE (µav) CONCEPT: PROJECT BIDULE DESIGN AND DEVELOPMENT OF A MICRO AIR VEHIE (µav) CONCEPT: PROJECT BIDULE Mr T. Spoerry, Dr K.C. Wong School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney NSW 6 Abstract This

More information

7. PRELIMINARY DESIGN OF A SINGLE AISLE MEDIUM RANGE AIRCRAFT

7. PRELIMINARY DESIGN OF A SINGLE AISLE MEDIUM RANGE AIRCRAFT 7. PRELIMINARY DESIGN OF A SINGLE AISLE MEDIUM RANGE AIRCRAFT Students: R.M. Bosma, T. Desmet, I.D. Dountchev, S. Halim, M. Janssen, A.G. Nammensma, M.F.A.L.M. Rommens, P.J.W. Saat, G. van der Wolf Project

More information

3 rd EASN Association International Workshop on AeroStructures

3 rd EASN Association International Workshop on AeroStructures 3 rd EASN Association International Workshop on AeroStructures ESTOLAS PROJECT Analysis of the design features and flying -technical characteristics of the ESTOLAS hybrid aircraft prototype Speaker Vladimir

More information

Electrification of Vehicles in the Transportation Class

Electrification of Vehicles in the Transportation Class Electrification of Vehicles in the Transportation Class 1 Amy Jankovsky Co-Contributors: Dr. Cheryl Bowman, Ralph Jansen, Dr. Rodger Dyson NASA Glenn Research Center AIAA Aviation 2017, June 5-9, 2017

More information

THE AIRBUS / ENGINE & NACELLE MANUFACTURERS RELATIONSHIP : TOWARDS A MORE INTEGRATED, ENVIRONMENTALLY FRIENDLY ENGINEERING DESIGN

THE AIRBUS / ENGINE & NACELLE MANUFACTURERS RELATIONSHIP : TOWARDS A MORE INTEGRATED, ENVIRONMENTALLY FRIENDLY ENGINEERING DESIGN 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES THE AIRBUS / ENGINE & NACELLE MANUFACTURERS RELATIONSHIP : TOWARDS A MORE INTEGRATED, ENVIRONMENTALLY FRIENDLY ENGINEERING DESIGN Sébastien Remy

More information

A student used the apparatus drawn below to investigate the heating effect of an electric heater.

A student used the apparatus drawn below to investigate the heating effect of an electric heater. Q1.(a) A student used the apparatus drawn below to investigate the heating effect of an electric heater. (i) Before starting the experiment, the student drew Graph A. Graph A shows how the student expected

More information

Part II. HISTORICAL AND ENGINEERING ANALYSIS OF AIRSHIP PLAN-AND- DESIGN AND SERVICE DECISIONS

Part II. HISTORICAL AND ENGINEERING ANALYSIS OF AIRSHIP PLAN-AND- DESIGN AND SERVICE DECISIONS CONTENTS MONOGRAPHER S FOREWORD DEFENITIONS, SYMBOLS, ABBREVIATIONS, AND INDICES Part I. LAWS AND RULES OF AEROSTATIC FLIGHT PRINCIPLE Chapter 1. AIRCRAFT FLIGHT PRINCIPLE 1.1 Flight Principle Classification

More information

UAV Fuel Cell Power Module. Fly. Longer. Fly. Further. Achieve More

UAV Fuel Cell Power Module. Fly. Longer. Fly. Further. Achieve More UAV Fuel Cell Power Module Fly Longer Fly Further Achieve More The use of professional Unmanned Aerial Vehicles (UAVs) has grown significantly in recent years. Owing to the constraints of traditional battery

More information

Seoul, Korea. 6 June 2018

Seoul, Korea. 6 June 2018 Seoul, Korea 6 June 2018 Innovation roadmap in clean mobility materials SPEAKER Denis Goffaux Chief Technology Officer Executive Vice-President Energy & Surface Technologies 2 Agenda Well to wheel efficiency

More information

Fuel Cell Systems For Aeronautic Applications A Clean Way from Kerosene to Energy

Fuel Cell Systems For Aeronautic Applications A Clean Way from Kerosene to Energy DGLR / VDI / RAeS Vortragsreihe an der HAW / Berliner Tor Presented by O 2 + - H 2 Hans-Jürgen Heinrich Manager Engineering H 2 O Fuel Cell Systems For Aeronautic Applications A Clean Way from Kerosene

More information

FUEL CONSUMPTION DUE TO SHAFT POWER OFF-TAKES FROM THE ENGINE

FUEL CONSUMPTION DUE TO SHAFT POWER OFF-TAKES FROM THE ENGINE FUEL CONSUMPTION DUE TO SHAFT POWER OFF-TAKES FROM THE ENGINE Dieter Scholz, Ravinkha Sereshine, Ingo Staack, Craig Lawson FluMeS Fluid and Mechatronic Systems Table of Contents Research Question Secondary

More information

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI Andreev G.T., Bogatyrev V.V. Central AeroHydrodynamic Institute (TsAGI) Abstract Investigation of icing effects on aerodynamic

More information

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics Part B Acoustic Emissions 4 Airplane Noise Sources The primary source of noise from an airplane is its propulsion system.

More information

EWADE th European Workshop on Aircraft Design Education - Naples 2011

EWADE th European Workshop on Aircraft Design Education - Naples 2011 EWADE 2011 10th European Workshop on Aircraft Design Education - Naples 2011 Regional turboprop conversion for purposes supposing auxiliary engine installation. Technical and economical analysis Prof.

More information

AE 451 Aeronautical Engineering Design I Estimation of Critical Performance Parameters. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Fall 2015

AE 451 Aeronautical Engineering Design I Estimation of Critical Performance Parameters. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Fall 2015 AE 451 Aeronautical Engineering Design I Estimation of Critical Performance Parameters Prof. Dr. Serkan Özgen Dept. Aerospace Engineering Fall 2015 Airfoil selection The airfoil effects the cruise speed,

More information

Multidisciplinary Design Optimization of a Truss-Braced Wing Aircraft with Tip-Mounted Engines

Multidisciplinary Design Optimization of a Truss-Braced Wing Aircraft with Tip-Mounted Engines Multidisciplinary Design Optimization of a Truss-Braced Wing Aircraft with Tip-Mounted Engines NASA Design MAD Center Advisory Board Meeting, November 14, 1997 Students: J.M. Grasmeyer, A. Naghshineh-Pour,

More information

Electric Penguin s philosophy:

Electric Penguin s philosophy: UNMANNED PLATFORMS AND SUBSYSTEMS Datasheet v 1.1 Penguin BE Electric Unmanned Platform Up to 110 minutes of endurance 2 with 2.8 kg payload 23 liters of payload volume Quick replaceable battery cartridge

More information

A Primer: Aircraft Emissions & Environmental Impact

A Primer: Aircraft Emissions & Environmental Impact A Primer: Aircraft Emissions & Environmental Impact Alan Epstein Vice President Technology & Environment Aviation and the Environment Washington, DC, March 2008 Impact of Aviation on The Environment ~40,000

More information

Lip wing Lift at zero speed

Lip wing Lift at zero speed Lip wing Lift at zero speed Dusan Stan, July 2014 http://hypertriangle.com/lipwing.php dusan.stan@hypertriangle.com HyperTriangle 2014 Lip_wing_Lift_at_zero_speed_R2.doc Page 1 of 7 1. Introduction There

More information

Trevor Howard Commercial Director Triskel Marine Ltd

Trevor Howard Commercial Director Triskel Marine Ltd Trevor Howard Commercial Director Triskel Marine Ltd Triskel Marine Started 2003 Offices in Kent and Cornwall 21 st Century Bespoke R&D Facility in Hayle Data management, monitoring and analysis Marine

More information

ALTERNATIVE ENERGIES AND IMPACT ON STATION OF THE FUTURE. Edouard BOURDIN

ALTERNATIVE ENERGIES AND IMPACT ON STATION OF THE FUTURE. Edouard BOURDIN ALTERNATIVE ENERGIES AND IMPACT ON STATION OF THE FUTURE Edouard BOURDIN TRANSPORT TRANSPORT OTHER SECTORS OTHER SECTORS TRANSPORT REPRESENTS MORE THAN 50% OF OVERALL OIL DEMAND Total hypothesis Reference

More information

EPIC Workshop 2017 SES Perspective on Electric Propulsion

EPIC Workshop 2017 SES Perspective on Electric Propulsion EPIC Workshop 2017 SES Perspective on Electric Propulsion PRESENTED BY Eric Kruch PRESENTED ON 24 October 2017 SES Proprietary SES Perspective on Electric Propulsion Agenda 1 Electric propulsion at SES

More information

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers Lance Bays Lockheed Martin - C-130 Flight Sciences Telephone: (770) 494-8341 E-Mail: lance.bays@lmco.com Introduction Flight

More information

Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics

Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics 10.3 Presentation of results 10.3.1 Presentation of results of a student project 10.3.2 A typical brochure 10.3 Presentation of results At the end

More information

1 CEAS 2015 Paper number: 44

1 CEAS 2015 Paper number: 44 CLEAN SKY TECHNOLOGY EVALUATOR AIR TRANSPORT SYSTEM ASSESSMENTS Alf Junior German Aerospace Centre, DLR Institute for air transport and airport research Linder Höhe, 51147, Cologne, Germany Alf.junior@dlr.de

More information

HTS Machines for Applications in All-Electric Aircraft

HTS Machines for Applications in All-Electric Aircraft University Research Engineering Technology Institute on Aeropropulsion & Power Technology Power Engineering Society General Meeting 2007 HTS Machines for Applications in All-Electric Aircraft Philippe

More information

ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA)

ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA) ELECTRIC POWER TRAINS THE KEY ENABLER FOR CONTRA ROTATING PROPELLERS IN GENERAL AVIATION (& VICE VERSA) ATI D3 EVENT 8 TH MAY 2018 THE EMERGENCE OF ELECTRIFICATION IN AEROSPACE NICK SILLS, CONTRA ELECTRIC

More information

External Aerodynamics: Lift of airship created only by buoyancy which doesn t need lift generating surface like an airfoil or a wing

External Aerodynamics: Lift of airship created only by buoyancy which doesn t need lift generating surface like an airfoil or a wing 5.1 AERODYNAMICS: The HAA aerodynamic regime could broadly be categorized into External and Internal Aerodynamics. The External Aerodynamics deals with the Shape of airship and the internal aerodynamics

More information

SCIENTIFIC UNDERSTANDING IN 2003 vs. 1999

SCIENTIFIC UNDERSTANDING IN 2003 vs. 1999 SCIENTIFIC UNDERSTANDING IN 2003 vs. 1999 Green bars are updated values, with arrows updated uncertainty. 2003 Waitz 32 RADIATIVE IMBALANCE AT TROPOSPHERE DUE TO AIRCRAFT (IPCC Special Report on Aviation,

More information

Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. FCH Aircraft

Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. FCH Aircraft Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities FCH Aircraft Brussels, Fall 2017 This compilation of application-specific information forms part of the study

More information

Introduction and a Brief History of Electric Aircraft 1

Introduction and a Brief History of Electric Aircraft 1 contents Preface xi CHAPTER 1 Introduction and a Brief History of Electric Aircraft 1 1.1 Background 1 1.2 Electrification Trend 2 1.3 Early Electric Flights 3 1.4 The Solar Years 4 1.5 All-Electric and

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110. Aircraft and Automotive Systems

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110. Aircraft and Automotive Systems s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110 Aircraft and Automotive Systems Time allowed: TWO hours Answer TWO questions from THREE in Section A and TWO questions

More information

Innovation in aviation: hybrid electric propulsion systems. Dr. Balázs, Gergely György: Head of department, eaircraft Hungary, Siemens Zrt.

Innovation in aviation: hybrid electric propulsion systems. Dr. Balázs, Gergely György: Head of department, eaircraft Hungary, Siemens Zrt. Innovation in aviation: hybrid electric propulsion systems Dr. Balázs, Gergely György: Head of department, eaircraft Hungary, Siemens Zrt. https://www.youtube.com/watch?v=4m9pznk3fuq Page 2 Trends in Transport

More information