A Novel Technique for Energy & Cost Effective Drives for AC & DC Motors

Size: px
Start display at page:

Download "A Novel Technique for Energy & Cost Effective Drives for AC & DC Motors"

Transcription

1 International Journal of Electrical Engineering. ISSN Volume 3, Number 3 (2010), pp International Research Publication House A Novel Technique for Energy & Cost Effective Drives for AC & DC Motors M. Ravindran 1 and V. Kirubakaran 2 1 Research Scholar, 2 Assistant Professor 1,2 Rural Energy Centre, Gandhigram Rural Institute Gandhigram, Tamilnadu, India ravinec99@gmail.com Abstract This paper presents a new approach to reduce the losses of A.C & D.C motor by using the modified system. Energy Conservation is the starting point of an Energy Management plan to reduce the overall cost of production and operation. Normally AC and DC motor consumes large amount of electrical power. Energy conservation in AC motors can be achieved by using voltage control with respect to load current. In the conventional Star-delta starter the motor is switched over to delta mode after fixed starting time delay, the applied voltage remains same independent of the load conditions. Thus even during light load conditions the motor continues to draw the same magnetizing current thereby reducing the power factor and hence the overall efficiency of the motor reduces, this can be avoided by using a modified star-delta starter. If full voltage (rated voltage) is applied at no load condition, then the power consumption for the DC and AC motors will be increased. In this paper we are sensing the load current and changing the star or delta mode of connection at the input of the motor, so that the efficiency and the power factor can be improved. The calculated values are compared with the measurement, in order to evaluate a validity of the proposed method. Introduction An electric motor is usually switched on to the supply through a starter. If it is directly switched on, it draws starting current equal to 5 to 8 times of full load current and develop starting torque only 1 to 1.5 times of full load torque[1]. This amount of starting current is objectionable because it affects the system voltage momentarily. The starting torque developed may not be starting current and to improve the starting torque, we are going for starters.

2 242 M. Ravindran and V. Kirubakaran A number of starters are available for different electric motors. For three-phase induction motors, Star-delta starter can be used. To improve the starting torque, power factor, to reduce the copper loss, core loss and hence to improve the efficiency, we are adding an external circuit with the existing automatic star-delta starter. This modified automatic star-delta starter is used for variable load three phase induction motor. By use of this starter the efficiency of the AC motor can be improved, when load increases above 50 % of full load current, the motor will run at delta connection and if it s less than 50 % of full load current, it will run at star mode, so that efficiency and power factor can be improved. If low voltage(reduced voltage) is applied to the armature winding of DC motor, then power consumption will be very low and hence overall efficiency of motor is increased[8]. These are applicable to industries where variable load conditions exist. Existing System Starters for 3-phase squirrel-cage Induction motors often use star-to-delta converters. The stator coils of the motor are connected in star configuration at the time of power on and switched to delta configuration when the motor reaches 3/4 th of its full speed, after the stator coils have developed sufficient back electromagnetic force. Losses in Induction Motors Losses in motor are divided into a number of different components. These are friction losses, windage losses, copper and iron losses. The major losses are the iron and copper losses. Worthwhile power savings are only achievable, where the iron losses is in appreciable portion of the total power consumed by the motor and where the amount of the iron loss is significant to the motor rating. Iron Losses Iron Loss (%) Motor Size (kw) Figure 1- Iron losses vs motor size Need for Starters The need for starting devices for motor will become apparent by considering the case of a usual 10 HP, 230 volts motor, which may have a stator resistance about 0.25 ohm. At the moment of starting the motor, the stator is stationary, so no back emf is

3 A Novel Technique for Energy & Cost Effective Drives 243 there. If the motor is connected directly across a 230 V power source, the only factor which limits the current drawn from the supply is the stator circuit resistance, which is very low and the current drawn will be very large (230/0.25 or 920 A) while the rated current may be only about 30 to 40 A. It will damage the brushes, winding of the motor and blow out the main fuses. Such a large current is not desirable. To guard against that excessive starting current, a resistance may be inserted in series with the motor stator during the starting period, which may gradually be cut-out as the back emf develops. Almost all heavy induction motors make use of star-delta motor starters to reduce the starting current. In simple words, starting current I = (V-E)/Z where V is the applied voltage, E is the back emf and Z is the impedence of the rotor. Since back emf E is directly proportional to the speed of rotation of rotor, initially when the motor starts from rest, this back emf is zero. Thus if full voltage is applied to the motor winding, a very large initial current may be set up in the winding resulting in large copper loss. To prevent this, various kinds of starters are used. The conditions depend on the position of the tapping on the transformer winding, i.e. on the secondary voltage. Usually three or more tappings are provided so that there is a choice of starting conditions such as 40, 60 or 75% of line voltage[2]. The starting torques on these different tappings can be estimated as they are proportional to the square of the voltage. On the 60% tapping the torque will be approximately the same as with stardelta starting, and on the 40 and 75% tapping it will be proportionately lower and higher respectively. Star-Delta Starter At start, the line voltage is applied to one end of each of the three windings, with the other ends bridged together, effectively connecting the windings in star configuration. Under this connection, the voltage across the windings is 1 3 of line-to-line supply voltage and so the current flowing through each winding is also reduced by this factor. Compared to delta connection, the resultant current flowing from the supply, as also the torque, is reduced by a factor of 1/3 is star configuration. Modified System During the light loading conditions the external circuit added will make the starconnection at the input of the induction motor and during heavily loaded conditions,[3] the external circuit added will make the delta connection at the input of the three phase induction motor and hence the overall efficiency and the power factor will be improved. Advantages of reduced voltage to motor under low loading Under reduced voltage conditions the magnetizing current and hence the overall current drawn by the motor is less. This not only reduces the copper loss and core loss, but also improves the power factor and the overall efficiency. It can only be improved when it is dropped considerably below the maximum efficiency of the motor as shown in the figure[6].

4 244 M. Ravindran and V. Kirubakaran Efficiency at various loads Efficiency(%) Load(watts) Fig 2-Efficiency at various loads As the maximum energy that can be saved is the portion of the iron loss, best saving are going to be in motors with high iron losses. Therefore the maximum energy savings can be made below 50% load in small motors of less than 10kw rating. Experimental Setup and Procedure The Star Delta Starter can only be used with a motor which is rated for connection in delta each of the three windings available individually. At start, the line voltage is applied to one end of each of the three windings, with the other end bridged together, effectively connecting the windings is 1/(1/732) of line voltage and so the current flowing in each winding is also reduced by this amount[5]. The resultant current flowing from the supply is reduced by a factor of 1/3 as is the torque. A low voltage is applied to the motor in the initial stage for fixed duration of time. During this interval, the motor gains appreciable speed, thereafter, full voltage is applied. Since line-to-line voltages in Delta mode is times in Star mode, the motor is started with star connections, which ultimately change over to Delta mode after a fixed interval of time. The motor remains in Delta mode till next start up. Both ends of each phase of the motor starter windings must be brought out and connected to starter. In the start position the windings are connected in star; in the running position they are reconnected in delta. The voltage across each phase winding in the start position is 58% of line voltage, with consequent reduction of starting current. The starting torque is also reduced to one-third of that which would obtain with D.O.L. starting. With a single-cage or double-cage rotor of average performance, this represent about 80% of full-load torque, assuming normal line voltage, but if there is appreciable line drop the torque will be proportionately lower. These factors must be taken into account when deciding whether star-delta starting is acceptable for the driven machine. It will be acceptable for centrifugal fans and pumps if, in the later case, the friction at starting is not excessive. When the operating handle is placed in the start position the motor stator windings are connected in star across the supply. As the motor approaches normal

5 A Novel Technique for Energy & Cost Effective Drives 245 running speed the operator must quickly change the handle to run position which changes the motor connection from star to delta. If the operator does not move the handle quickly from start to run the motor may be disconnected from the supply long enough for the motor speed to fall considerably. When the handle is eventually put into the run position the motor will take a large current may be large current and accelerate up to speed again[7]. This surge current may be large enough to cause appreciable voltage dip. To prevent this, a mechanical interlock is fitted to the operating handle. The handle must be moved quickly from start to run otherwise the interlock jams the handle in the start position. Figure 3- Modified Automatic 3-phase induction Motor Starter Three single-phase transformers are used to step-down the 3-phase supply separately. Phases R, Y and B are stepped down by transformers X1, X2 and X3 to deliver the secondary output of 12V at 300mA. The transformer output is rectified by a full-wave rectifier and filtered by a capacitor. The three 12V DC supplies drive relays RL1, RL2 and RL3, respectively. When all the three phases are present, the 12V DC supply derived from the R phase is fed to the coil of relay RL3 and the timer circuit through the contacts of relays RL1 and RL2. As a result, relay RL3 energises. Simultaneously, timer NE555 (IC1), which is configured as a monostable multivibrator, is also triggered. Its time period is determined by capacitor C4, resistor R1 and preset VR1. Preset VR1 is used to set the time period required to reach 3/4 th of the full speed of the motor. The negative triggering pulse for IC1 is provided by the combination of resistor VR1, R1 and capacitor C4. The timer output at pin 3 is connected to the base of transistor T2 via resistor R2. As a result, transistor T2 is driven to saturation and relay RL4 energises (indicated by glowing of LED2). Thus at

6 246 M. Ravindran and V. Kirubakaran power-on, relay RL3, as also R4, energises (if all three phases are present) to connect the stator windings in star configuration. On tracing the connections you will observe that R phase is connected to R1 end of R windings, Y phase is connected to Y1 end of Y windings and B phase is connected to B1 terminal of B stator windings. The other ends of all the stator windings (i.e., R2, Y2, and B2) gets bridged together to form star connection. After the specified delay, which is provided for the speed of the motor to 3/4 th of its full speed value, the monostable output goes low to cut off transistor T2 and deenergise relay RL4. The motor stator coils now switch to delta configuration. Now you will observe that R phase gets connected to the junction of R1 and B2 terminals, Y phase is connected to Y1 and R2 terminals and B phase is connected to B1 and Y2 terminals of the stator windowing. This connection conforms to delta configuration. Since the output of IC1 is low in this state, pnp transistor T1 is forward biased to light up LED1 and indicate delta configuration[9]. Figure 4: Comparator Figure 5: Over all Block Diagram Energy savings in three phase induction motor by using modified automatic star -Delta starter

7 A Novel Technique for Energy & Cost Effective Drives 247 Table.1: Result for modified star delta starter. Sl. No. Existing System at no load Modified System at no load Voltage(V) Current(A) Power(W) Voltage(V) Current(A) Power(W) Energy Savings in DC motor by using PIC Controller The DC motor is a self regulating machine because the development of back emf makes the DC motor to draw as much armature current which is just sufficient to develop the required load torque[4]. Armature current Ia = V - Eb Ra Existing System No Load Conditions When the DC motor is operating on no load condition, small torque is required to overcome the friction and windage losses. Therefore back emf is nearly equal to input voltage and armature current is small i.e., Ia is very low. Eb = V During the light load conditions at the rated voltage the magnetizing current drawn by the DC motor is high. Where the Core losses and Copper losses of a DC motor are not reduced and hence the over all efficiency of the DC motor is reduced. Load Conditions When the DC motor is operating on loaded condition, driving torque of the DC motor is not sufficient to counter the increased retarding torque due to load. Hence, armature slows down (motor speed decreases) and motor back emf Eb also decreases. Corresponding armature current Ia increases. The increase torque, the motor continues to slow down till the driving torque matches the load torque and then steady state conditions are reached. When the load on DC motor is decreased, the driving torque developed is momentarily in excess of the load requirement so that, motor armature is accelerated (motor speed increases). As the motor speed increases, the back emf Eb also increases causing armature current to decrease. The decrease in armature current causes decrease in driving torque and steady state conditions are reached, when the driving torque is equal to the load torque. Under rated Voltage at Load Conditions the magnetizing current drawn by the DC motor is less. Under full load condition efficiency of the DC motor is high. The maximum efficiency of the DC motor is as shown in the following figure

8 248 M. Ravindran and V. Kirubakaran Modified System No Load Conditions During the light load conditions the PIC controller will reduce the input armature voltage of the DC motor at no load current and hence overall efficiency of the DC motor will be increased. Load Conditions During heavily loaded conditions the PIC controller circuit added will increase the armature voltage of the DC motor at load current and hence overall efficiency of the DC motor will be increased. Figure 7: Modified system using PIC controller on D.C motor Table.2: Result for modified D.C motor converter(armature 190V) Sl. No. Armature Current Torque in N.m Input Power Output Power Efficiency Voltage Table.3: for modified D.C motor converter(armature 170V) Sl. No Armature Voltage Current Torque in N.m Input Power Output Power Efficiency

9 A Novel Technique for Energy & Cost Effective Drives 249 Under the above conditions the magnetizing current and the overall current drawn by the motor is constant. The total power consumed by the motor is very low.this not only reduces the copper loss, but also improves the overall efficiency of the DC motor. Conclusion We can observe that in AC motors the automatic star delta starter circuit presented here offers two main advantages. First one is single phase prevention and next is automatic start Delta conversion. The load sensing circuit is added to this starter. It improves the efficiency of the AC motor because in no load conditions the motor runs in star mode and in loaded condition the AC motor runs in delta mode. So the efficiency is increased. In DC motor the external electronics circuit is very useful to change the voltage with respect to load current for better Energy conservation. Further advantages of these methods are of Less expensive Easy maintenance Noiseless Compact References [1] Wei-Jen Lee; Kenarangui, R.;Energy management for motors, systems, and electrical equipment Industry Applications, IEEE Transactions Volume 38, Issue 2, March-April 2002 Page(s): [2] Bonnett, A.H.; An update on AC induction motor efficiency Industry Applications, IEEE Transactions Volume 30, Issue 5, Sept.-Oct Page(s): [3] Sundareswaran, K.; Jos, B.M.; Development and analysis of novel softstarter/energy-saver topology for delta-connected induction motors Electric Power Applications, IEE Proceedings [4] Zabardast, A.; Mokhtari, H.; Effect of high-efficient electric motors on efficiency improvement and electric energy saving. [5] Hsu, J.S.; Kueck, J.D.; Olszewski, M.; Casada, D.A.; Otaduy, P.J.; Tolbert, L.M.; Comparison of induction motor field efficiency evaluation methods Industry Applications, IEEE Transactions [6] Schachter, N.; Ruesch, U.;Synchronous and slip-ring induction motors drive cement mills Industry Applications Magazine, IEEE [7] Sundareswaran, K.; An improved energy-saving scheme for capacitor-run induction motor Industrial Electronics, IEEE Transactions [8] Bhansali, V.K.; Energy conservation in India - challenges and achievements, Industrial Automation and Control, 1995 (I A & C'95), IEEE/IAS International Conference on (Cat. No.95TH8005)

10 250 M. Ravindran and V. Kirubakaran [9] Lu Guangqiang; Luo Guangfu; Yu Hongxiang; Ji Yanchao;Energy conservation of a novel soft starter controlled by IGBT for induction motors with minimum current Industrial Electronics, 2004 IEEE International Symposium

Starting of Induction Motors

Starting of Induction Motors 1- Star Delta Starter The method achieved low starting current by first connecting the stator winding in star configuration, and then after the motor reaches a certain speed, throw switch changes the winding

More information

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION 1. What is meant by drive and electric drive? Machines employed for motion control are called drives and may employ any one of the prime movers for

More information

Question Number: 1. (a)

Question Number: 1. (a) Session: Summer 2008 Page: 1of 8 Question Number: 1 (a) A single winding machine cannot generate starting torque. During starting the switch connects the starting winding via the capacitor. The capacitor

More information

Full Voltage Starting (Number of Starts):

Full Voltage Starting (Number of Starts): Starting Method Full Voltage Starting (Number of Starts): Squirrel cage induction motors are designed to accelerate a NEMA inertia along a NEMA load curve with rated voltage applied to the motor terminals.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 MECHANICAL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A40203 Class : II B. Tech I Semester Branch :

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ME 6351 ELECTRICAL DRIVES AND CONTROL UNIVERSITY QUESTIONS AND ANSWERS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ME 6351 ELECTRICAL DRIVES AND CONTROL UNIVERSITY QUESTIONS AND ANSWERS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ME 6351 ELECTRICAL DRIVES AND CONTROL UNIVERSITY QUESTIONS AND ANSWERS 1) What is the Necessity of starter? UNIT 3 Two Marks Both

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lectures-37 Polyphase (3-phase) Induction Motor 2 Determination of Induction Machine Parameters Three tests are needed to determine the parameters in an induction

More information

(d) None of the above.

(d) None of the above. Dr. Mahalingam College of Engineering and Technology, Pollachi-3 (An Autonomous Institution affiliated to Anna niversity) CCET II (2016 Regulation) Name of Programme: B.E. (EEE) Course Code & Course Title:

More information

ELECTRICAL MAINTENANCE

ELECTRICAL MAINTENANCE ELECTRICAL MAINTENANCE II PRACTICAL JOURNAL DATA 1 EXPERIMENT NO. 1 AIM: TO FIND VOLTAGE RATIO OF A GIVEN TRANSFORMER. CIRCUIT DIAGRAM: OBSERVATION TABLE: Sr.No. 1 2 3 4 Primary Voltage (V 1 ) Secondary

More information

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines Department of Electrical Engineering Lecture Introduction to Electrical Machines 1 In this Lecture Induction motors and synchronous machines are introduced Production of rotating magnetic field Three-phase

More information

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM Ms. Dipali A. Umak 1, Ms. Trupti S. Thakare 2, Prof. R. K. Kirpane 3 1 Student (BE), Dept. of EE, DES s COET, Maharashtra,

More information

Soft Start for 3-Phase-Induction Motor

Soft Start for 3-Phase-Induction Motor Soft Start for 3-Phase-Induction Motor Prof. Vinit V Patel 1, Saurabh S. Kulkarni 2, Rahul V. Shirsath 3, Kiran S. Patil 4 1 Assistant Professor, Department of Electrical Engineering, R.C.Patel Institute

More information

Chapter 8. Understanding the rules detailed in the National Electrical Code is critical to the proper installation of motor control circuits.

Chapter 8. Understanding the rules detailed in the National Electrical Code is critical to the proper installation of motor control circuits. Chapter 8 Understanding the rules detailed in the National Electrical Code is critical to the proper installation of motor control circuits. Article 430 of the NEC covers application and installation of

More information

2. Draw the speed-torque characteristics of dc shunt motor and series motor. (May2013) (May 2014)

2. Draw the speed-torque characteristics of dc shunt motor and series motor. (May2013) (May 2014) UNIT 2 - DRIVE MOTOR CHARACTERISTICS PART A 1. What is meant by mechanical characteristics? A curve is drawn between speed-torque. This characteristic is called mechanical characteristics. 2. Draw the

More information

EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR

EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR Velimir Nedic Thomas A. Lipo Wisconsin Power Electronic Research Center University of Wisconsin Madison

More information

EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1

EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1 University f Jordan School of Engineering Department of Mechatronics Engineering Electrical Machines Lab Eng. Osama Fuad Eng. Nazmi Ashour EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1 OBJECTIVES To

More information

Reduction of Harmonic Distortion and Power Factor Improvement of BLDC Motor using Boost Converter

Reduction of Harmonic Distortion and Power Factor Improvement of BLDC Motor using Boost Converter May 215, Volume 2, sue 5 Reduction of Harmonic Distortion and Power Factor Improvement of BLDC Motor using Boost Converter 1 Parmar Dipakkumar L., 2 Kishan J. Bhayani, 3 Firdaus F. Belim 1 PG Student,

More information

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES UNIT OBJECTIVES 3/21/2012

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES UNIT OBJECTIVES 3/21/2012 SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive

More information

A Comparative Performance Analysis DCR and DAR Squirrel Cage 3-Phase Induction Motor

A Comparative Performance Analysis DCR and DAR Squirrel Cage 3-Phase Induction Motor A Comparative Performance Analysis DCR and DAR Squirrel Cage 3-Phase Induction Motor 1 Ashish Choubey, 2 Rupali Athanere 1 Assistant Professor, 2 M.E. Student (HVPS Engg) 1,2 Deptt of Electrical Engineering

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

PHY 152 (ELECTRICITY AND MAGNETISM)

PHY 152 (ELECTRICITY AND MAGNETISM) PHY 152 (ELECTRICITY AND MAGNETISM) ELECTRIC MOTORS (AC & DC) ELECTRIC GENERATORS (AC & DC) AIMS Students should be able to Describe the principle of magnetic induction as it applies to DC and AC generators.

More information

Regulation: R16 Course & Branch: B.Tech EEE

Regulation: R16 Course & Branch: B.Tech EEE SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (Descriptive) Subject with Code : Electrical Machines-II (16EE215) Regulation: R16 Course & Branch: B.Tech

More information

Performance of DC Motor Supplied From Single Phase AC-DC Rectifier

Performance of DC Motor Supplied From Single Phase AC-DC Rectifier Performance of DC Motor Supplied From Single Phase AC-DC Rectifier Dr Othman A. Alnatheer Energy Research Institute-ENRI King Abdulaziz City for Science and Technology- KACST P O Box 6086, Riyadh 11442,

More information

Chapter 5: DC Motors. 9/18/2003 Electromechanical Dynamics 1

Chapter 5: DC Motors. 9/18/2003 Electromechanical Dynamics 1 Chapter 5: DC Motors 9/18/2003 Electromechanical Dynamics 1 Reversing the Rotation Direction The direction of rotation can be reversed by reversing the current flow in either the armature connection the

More information

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION International Journal of Latest Research in Science and Technology Volume 3, Issue 1: Page No.68-74,January-February 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 POWER QUALITY IMPROVEMENT

More information

Induction Generator: Excitation & Voltage Regulation

Induction Generator: Excitation & Voltage Regulation Induction Generator: Excitation & Voltage Regulation A.C. Joshi 1, Dr. M.S. Chavan 2 Lecturer, Department of Electrical Engg, ADCET, Ashta 1 Professor, Department of Electronics Engg, KIT, Kolhapur 2 Abstract:

More information

694 Electric Machines

694 Electric Machines 694 Electric Machines 9.1 A 4-pole wound-rotor induction motor is used as a frequency changer. The stator is connected to a 50 Hz, 3-phase supply. The load is connected to the rotor slip rings. What are

More information

Development and Analysis of Bidirectional Converter for Electric Vehicle Application

Development and Analysis of Bidirectional Converter for Electric Vehicle Application Development and Analysis of Bidirectional Converter for Electric Vehicle Application N.Vadivel, A.Manikandan, G.Premkumar ME (Power Electronics and Drives) Department of Electrical and Electronics Engineering

More information

APGENCO/APTRANSCO Assistant Engineer Electrical Previous Question Papers Q.1 The two windings of a transformer is conductively linked. inductively linked. not linked at all. electrically linked. Q.2 A

More information

Principles of iers (intelligent

Principles of iers (intelligent Principles of iers (intelligent Energy Recovery System) Chapter 4 Table of Contents............... 4 1 Principles of the iers....................................... 4 2 Enabling Intelligent Energy Recovery

More information

Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes

Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes Ramesh Daravath, Lakshmaiah Katha, Ch. Manoj Kumar, AVS Aditya ABSTRACT: Induction machines are the most

More information

Abstract- A system designed for use as an integrated starter- alternator unit in an automobile is presented in this paper. The

Abstract- A system designed for use as an integrated starter- alternator unit in an automobile is presented in this paper. The An Integrated Starter-Alternator System Using Induction Machine Winding Reconfiguration G. D. Martin, R. D. Moutoux, M. Myat, R. Tan, G. Sanders, F. Barnes University of Colorado at Boulder, Department

More information

10. Starting Method for Induction Motors

10. Starting Method for Induction Motors 10. Starting Method for Induction Motors A 3-phase induction motor is theoretically self starting. The stator of an induction motor consists of 3-phase windings, which when connected to a 3-phase supply

More information

Just what is an alternator?

Just what is an alternator? Just what is an alternator? An alternator is the device used to produce the electricity the car needs to run and to keep the battery charged. The battery is the heart of your electrical system. But you

More information

DC CIRCUITS ELECTROMAGNETISM

DC CIRCUITS ELECTROMAGNETISM DC CIRCUITS 1. State and Explain Ohm s Law. Write in brief about the limitations of Ohm s Law. 2. State and explain Kirchhoff s laws. 3. Write in brief about disadvantages of series circuit and advantages

More information

SPEED CONTROL OF THREE PHASE INDUCTION MACHINE USING MATLAB Maheshwari Prasad 1, Himmat singh 2, Hariom Sharma 3 1

SPEED CONTROL OF THREE PHASE INDUCTION MACHINE USING MATLAB Maheshwari Prasad 1, Himmat singh 2, Hariom Sharma 3 1 SPEED CONTROL OF THREE PHASE INDUCTION MACHINE USING MATLAB Maheshwari Prasad 1, Himmat singh 2, Hariom Sharma 3 1 Phd Scholar, Mahatma Gandhi Chitrakot University, Gwalior (M.P) 2,3 MITS, Gwalior, (M.P)

More information

Handout Activity: HA773

Handout Activity: HA773 Charging system HA773-2 Handout Activity: HA773 Charging system The charging system allows for a means to recharge the battery and allow for electrical usage of components in the vehicle. The charging

More information

R07 SET - 1

R07 SET - 1 R07 SET - 1 II B. Tech II Semester Supplementary Examinations April/May 2013 ELECTRICAL MACHINES - II (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions All

More information

A matrix converter based drive for BLDC motor Radhika R, Prince Jose

A matrix converter based drive for BLDC motor Radhika R, Prince Jose A matrix converter based drive for BLDC motor Radhika R, Prince Jose Abstract This paper presents a matrix converter based drive for BLDC motor. Matrix converter is a popular direct conversion method.

More information

PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER

PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER K.Kalpanadevi 1, Mrs.S.Sivaranjani 2, 1 M.E. Power Systems Engineering, V.S.B.Engineering College, Karur, Tamilnadu,

More information

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR 100 CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR 6.1 INTRODUCTION Conventional energy resources are not sufficient to meet the increasing electrical power demand. The usages of

More information

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 It is the mark of an educated mind to be able to entertain a thought without accepting it. DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 1. Explain the Basic concepts of rotating machine. 2. With help

More information

VALLIAMMAI ENGINEERING COLLEGE MECHANICAL ENGINEERING ANNA UNIVERSITY CHENNAI II YEAR MECH / III SEMESTER EE6351 - ELECTRICAL DRIVES AND CONTROL (REGULATION 2013) UNIT I INTRODUCTION PART-A (2 MARKS) 1.

More information

ROTATING MAGNETIC FIELD

ROTATING MAGNETIC FIELD Chapter 5 ROTATING MAGNETIC FIELD 1 A rotating magnetic field is the key to the operation of AC motors. The magnetic field of the stator is made to rotate electrically around and around in a circle. Stator

More information

Direct On Line (DOL) Motor Starter. Direct Online Motor Starter

Direct On Line (DOL) Motor Starter. Direct Online Motor Starter Direct On Line (DOL) Motor Starter Direct Online Motor Starter Different starting methods are employed for starting induction motors because Induction Motor draws more starting current during starting.

More information

ECE1750, Spring Motor Drives and Other

ECE1750, Spring Motor Drives and Other ECE1750, Spring 2018 Motor Drives and Other Applications 1 Three-Phase Induction Motors Reliable Rugged Long lived Low maintenance Efficient (Source: EPRI Adjustable Speed Drives Application Guide) The

More information

Electrical Drives I. Week 11: Three phase Induction Motor Starting

Electrical Drives I. Week 11: Three phase Induction Motor Starting Electrical Drives I Week 11: Three phase Induction otor Starting Starting Problem Definition: ' I r Rs Vs 2 R ' r S 2 Xeq At S=0 and S=1, thus the current can be determined as: ' I r st Vs 2 ' Rs Rr Xeq

More information

Analysis of Energy Saving Methods in different Motors for Consumer Applications

Analysis of Energy Saving Methods in different Motors for Consumer Applications Indian Journal of Science and Technology, Vol 8(S8), 97 305, April 015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 DOI: 10.17485/ijst/015/v8iS8/61919 Analysis of Energy Saving Methods in different

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK 16EET41 SYNCHRONOUS AND INDUCTION MACHINES UNIT I SYNCHRONOUS GENERATOR 1. Why the stator core is laminated? 2. Define voltage regulation

More information

Electrical Machines-I (EE-241) For S.E (EE)

Electrical Machines-I (EE-241) For S.E (EE) PRACTICAL WORK BOOK For Academic Session 2013 Electrical Machines-I (EE-241) For S.E (EE) Name: Roll Number: Class: Batch: Department : Semester/Term: NED University of Engineer ing & Technology Electrical

More information

PAC TRAINING PUMP MOTORS

PAC TRAINING PUMP MOTORS PAC TRAINING PUMP MOTORS 1 Basics Magnet supported from above N S N S Since unlike poles repel each other, the magnet will rotate Stationary Magnet 2 Basics N S Stationary Magnet 3 Basics N N S S Stationary

More information

QUESTION BANK SPECIAL ELECTRICAL MACHINES

QUESTION BANK SPECIAL ELECTRICAL MACHINES SEVENTH SEMESTER EEE QUESTION BANK SPECIAL ELECTRICAL MACHINES TWO MARK QUESTIONS 1. What is a synchronous reluctance 2. What are the types of rotor in synchronous reluctance 3. Mention some applications

More information

G Prasad 1, Venkateswara Reddy M 2, Dr. P V N Prasad 3, Dr. G Tulasi Ram Das 4

G Prasad 1, Venkateswara Reddy M 2, Dr. P V N Prasad 3, Dr. G Tulasi Ram Das 4 Speed control of Brushless DC motor with DSP controller using Matlab G Prasad 1, Venkateswara Reddy M 2, Dr. P V N Prasad 3, Dr. G Tulasi Ram Das 4 1 Department of Electrical and Electronics Engineering,

More information

Induction Motor Control

Induction Motor Control Induction Motor Control A much misunderstood yet vitally important facet of electrical engineering. The Induction Motor A very major consumer of electrical energy in industry today. The major source of

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: STATIC DRIVES Class : EEE III TUTORIAL QUESTION BANK Group I QUESTION BANK ON SHORT ANSWER QUESTION UNIT-I 1 What is meant by electrical

More information

GENERATION, CONVERSION, OR DISTRIBUTION OF ELECTRIC POWER

GENERATION, CONVERSION, OR DISTRIBUTION OF ELECTRIC POWER XXXX H02 GENERATION, CONVERSION, OR DISTRIBUTION OF ELECTRIC POWER XXXX CONTROL OR REGULATION OF ELECTRIC MOTORS, GENERATORS, OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE

More information

APPLICATION OF VARIABLE FREQUENCY TRANSFORMER (VFT) FOR INTEGRATION OF WIND ENERGY SYSTEM

APPLICATION OF VARIABLE FREQUENCY TRANSFORMER (VFT) FOR INTEGRATION OF WIND ENERGY SYSTEM APPLICATION OF VARIABLE FREQUENCY TRANSFORMER (VFT) FOR INTEGRATION OF WIND ENERGY SYSTEM A THESIS Submitted in partial fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY

More information

Performance Analysis of Medium Voltage Induction Motor Using Stator Current Profile

Performance Analysis of Medium Voltage Induction Motor Using Stator Current Profile Performance Analysis of Medium Voltage Induction Motor Using Stator Current Profile W.Rajan Babu 1, Dr.C.S.Ravichandran 2, V.Matheswaran 3 Assistant Professor, Department of EEE, Sri Eshwar College of

More information

Modeling and Simulation of Firing Circuit using Cosine Control System

Modeling and Simulation of Firing Circuit using Cosine Control System e t International Journal on Emerging Technologies 7(1): 96-100(2016) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Modeling and Simulation of Firing Circuit using Cosine Control System Abhimanyu

More information

Jogging and Plugging of AC and DC Motors. Prepared by Engr. John Paul Timola, LPT

Jogging and Plugging of AC and DC Motors. Prepared by Engr. John Paul Timola, LPT Jogging and Plugging of AC and DC Motors Prepared by Engr. John Paul Timola, LPT Jogging sometimes called inching momentary operation of a motor for the purpose of accomplishing small movements of the

More information

IMPACT OF SKIN EFFECT FOR THE DESIGN OF A SQUIRREL CAGE INDUCTION MOTOR ON ITS STARTING PERFORMANCES

IMPACT OF SKIN EFFECT FOR THE DESIGN OF A SQUIRREL CAGE INDUCTION MOTOR ON ITS STARTING PERFORMANCES IMPACT OF SKIN EFFECT FOR THE DESIGN OF A SQUIRREL CAGE INDUCTION MOTOR ON ITS STARTING PERFORMANCES Md. Shamimul Haque Choudhury* 1,2, Muhammad Athar Uddin 1,2, Md. Nazmul Hasan 1,2, M. Shafiul Alam 1,2

More information

Application Note CTAN #127

Application Note CTAN #127 Application Note CTAN #127 Guidelines and Considerations for Common Bus Connection of AC Drives An important advantage of AC drives with a fixed DC is the ability to connect the es together so that energy

More information

Fully Regenerative braking and Improved Acceleration for Electrical Vehicles

Fully Regenerative braking and Improved Acceleration for Electrical Vehicles Fully Regenerative braking and Improved Acceleration for Electrical Vehicles Wim J.C. Melis, Owais Chishty School of Engineering, University of Greenwich United Kingdom Abstract Generally, car brake systems

More information

SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI

SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI 621 105 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE1205 - ELECTRICAL

More information

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque. Various types of AC motors are used for specific applications. By matching the type of motor to the appropriate application, increased equipment performance can be obtained. EO 1.5 EO 1.6 EO 1.7 EO 1.8

More information

Conference on, Article number 64020

Conference on, Article number 64020 NAOSITE: Nagasaki University's Ac Title Author(s) Citation Performance of segment type switche oriented Kaneki, Osamu; Higuchi, Tsuyoshi; Y Electrical Machines and Systems (IC Conference on, Article number

More information

VARIABLE FREQUENCY DRIVE AND ITS INDUSTRIAL APPLICATIONS

VARIABLE FREQUENCY DRIVE AND ITS INDUSTRIAL APPLICATIONS VARIABLE FREQUENCY DRIVE AND ITS INDUSTRIAL APPLICATIONS Ms. Mrunal Khadke 1 Mr. V. S. Kamble 2 1 Student, Department of Electrical Engineering, AISSMS-IOIT, Pune, Maharashtra, India 2 Assistant Professor,

More information

SENSORLESS CONTROL OF BLDC MOTOR USING BACKEMF BASED DETECTION METHOD

SENSORLESS CONTROL OF BLDC MOTOR USING BACKEMF BASED DETECTION METHOD SENSORLESS CONTROL OF BLDC MOTOR USING BACKEMF BASED DETECTION METHOD A.Bharathi sankar 1, Dr.R.Seyezhai 2 1 Research scholar, 2 Associate Professor, Department of Electrical & Electronics Engineering,

More information

R13 SET - 1. b) Describe different braking methods employed for electrical motors. [8M]

R13 SET - 1. b) Describe different braking methods employed for electrical motors. [8M] Code No:RT32026 R13 SET - 1 III B. Tech II Semester Regular Examinations, April - 2016 POWER SEMICONDUCTOR DRIVES (Electrical and Electronics Engineering) Time: 3 hours Maximum Marks: 70 Note: 1. Question

More information

A Comprehensive Study on Speed Control of DC Motor with Field and Armature Control R.Soundara Rajan Dy. General Manager, Bharat Dynamics Limited

A Comprehensive Study on Speed Control of DC Motor with Field and Armature Control R.Soundara Rajan Dy. General Manager, Bharat Dynamics Limited RESEARCH ARTICLE OPEN ACCESS A Comprehensive Study on Speed Control of DC Motor with Field and Armature Control R.Soundara Rajan Dy. General Manager, Bharat Dynamics Limited Abstract: The aim of this paper

More information

A CURRENT-SOURCE-INVERTER-FED INDUCTION MOTOR DRIVE SYSTEM WITH REDUCED LOSSES

A CURRENT-SOURCE-INVERTER-FED INDUCTION MOTOR DRIVE SYSTEM WITH REDUCED LOSSES A CURRENT-SOURCE-INVERTER-FED INDUCTION MOTOR DRIVE SYSTEM WITH REDUCED LOSSES ABSTRACT Avala Rohith Kumar Student(M.Tech), Electrical Dept, Gokul group of institutions, Visakhapatnam, India. This project

More information

Asynchronous slip-ring motor synchronized with permanent magnets

Asynchronous slip-ring motor synchronized with permanent magnets ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(1), pp. 199-206 (2017) DOI 10.1515/aee-2017-0015 Asynchronous slip-ring motor synchronized with permanent magnets TADEUSZ GLINKA, JAKUB BERNATT Institute of Electrical

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : ET(16EE212) Year & Sem: II-B.Tech & II-Sem UNIT I DC GENERATORS Course

More information

A Dual Stator Winding-Mixed Pole Brushless Synchronous Generator (Design, Performance Analysis & Modeling)

A Dual Stator Winding-Mixed Pole Brushless Synchronous Generator (Design, Performance Analysis & Modeling) A Dual Stator Winding-Mixed Pole Brushless Synchronous Generator (Design, Performance Analysis & Modeling) M EL_SHANAWANY, SMR TAHOUN& M EZZAT Department (Electrical Engineering Department) University

More information

Speed Control of D.C. MOTOR Using Chopper

Speed Control of D.C. MOTOR Using Chopper Speed Control of D.C. MOTOR Using Chopper 1 VARUN ROHIT VADAPALLI, 2 HEMANTH KUMAR KELLA, 3 T.RAVI SEKHAR, 4 Y.DAVID SAMSON, 5 N.AVINASH 1,2,3,4 UG Student, 5 Assistant Professor, Department of Electrical

More information

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 4 (Sep. - Oct. 2013), PP 25-32 SIMULINK Based Model for Determination of Different

More information

GROUP OF INSTITUTIONS :: PUTTUR UNIT I SINGLE PHASE TRANSFORMERS

GROUP OF INSTITUTIONS :: PUTTUR UNIT I SINGLE PHASE TRANSFORMERS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (Descriptive) Subject with Code : Electrical Machines-II (16EE215) Course & Branch: B.Tech EEE Regulation:

More information

Induction machine characteristics and operation. Induction Machines

Induction machine characteristics and operation. Induction Machines Induction Machines 1.1 Introduction: An essential feature of the operation of the synchronous machine is that the rotor runs at the same speed as the rotating magnetic field produced by the stator winding.

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2015 Special; 9(17): pages 311-316 Open Access Journal Performance

More information

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor 1 Chaudhari Krunal R, 2 Prof. Rajesh Prasad 1 PG Student, 2 Assistant Professor, Electrical Engineering

More information

Automatic Bidirectional Starter For Induction Motor

Automatic Bidirectional Starter For Induction Motor nternational Journal of Electrical Engineering. SSN 0974-2158 Volume 8, Number 2 (2015), pp. 103-113 nternational Research Publication House http://www.irphouse.com Automatic Bidirectional Starter For

More information

CHAPTER 3 EFFICIENCY IMPROVEMENT IN CAGE INDUCTION MOTORS BY USING DCR TECHNOLOGY

CHAPTER 3 EFFICIENCY IMPROVEMENT IN CAGE INDUCTION MOTORS BY USING DCR TECHNOLOGY 37 CHAPTER 3 EFFICIENCY IMPROVEMENT IN CAGE INDUCTION MOTORS BY USING DCR TECHNOLOGY 3.1 INTRODUCTION This chapter describes, a comparison of the performance characteristics of a 2.2 kw induction motor

More information

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX Single Phase Induction Motor Dr. Sanjay Jain Department Of EE/EX Application :- The single-phase induction machine is the most frequently used motor for refrigerators, washing machines, clocks, drills,

More information

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method Title Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method Author(s) Wang, Y; Chau, KT; Chan, CC; Jiang, JZ

More information

Key words: Consumption of Electrical Energy, Slip Ring Induction Motor, Mine Haulers, Rheostatic, Static Control.

Key words: Consumption of Electrical Energy, Slip Ring Induction Motor, Mine Haulers, Rheostatic, Static Control. Experimental Study on Energy Consumption of Wound Rotor Induction Motor in Mine Applications Ganapathi.D.Moger, Dr.Ch.S.N.Murthy, Dr.Udayakumar.R.Y Asst. professor. E&E Department, Dr.TTIT, KGF, Karnataka

More information

Comprehensive Technical Training

Comprehensive Technical Training Comprehensive Technical Training For Sugar Mills Staff on Operation & Maintenance of Baggase Based HP Cogeneration System Schedule: 10 th July to 13 th July, 2017 A.C. GENERATOR Topics Covered. Introduction.

More information

Advance Electronic Load Controller for Micro Hydro Power Plant

Advance Electronic Load Controller for Micro Hydro Power Plant Journal of Energy and Power Engineering 8 (2014) 1802-1810 D DAVID PUBLISHING Advance Electronic Load Controller for Micro Hydro Power Plant Dipesh Shrestha, Ankit Babu Rajbanshi, Kushal Shrestha and Indraman

More information

Types of Motor Starters There are several types of motor starters. However, the two most basic types of these electrical devices are:

Types of Motor Starters There are several types of motor starters. However, the two most basic types of these electrical devices are: Introduction Motor starters are one of the major inventions for motor control applications. As the name suggests, a starter is an electrical device which controls the electrical power for starting a motor.

More information

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit Electrical Machines II Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit Asynchronous (Induction) Motor: industrial construction Two types of induction

More information

Syllabus for the Trade of Electrician Duration : Six Month Second Semester Semester Code: ELE: SEM II

Syllabus for the Trade of Electrician Duration : Six Month Second Semester Semester Code: ELE: SEM II Syllabus for the Trade of Electrician Duration : Six Month Second Semester Semester Code: ELE: SEM II Week Trade practical No. 1-2 Different wave shapes of rectifiers and their values using C.R.O. Identification

More information

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES 1 SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL 28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com 2 CONTENT 1. : DC MACHINE,

More information

Contents. Review of Electric Circuitd. Preface ;

Contents. Review of Electric Circuitd. Preface ; Preface ; Chapter 1 Review of Electric Circuitd 1.1 Introduction, 1 1.2 Direct Circuit Current, 1 1.2.1 Voltage, 3 1.2.2 Power, 3 1.2.3 Ohm's Law, 5 1.2.4 KirchhofTs Laws, 5 1.2.4.1 Kirchhoff s Current

More information

FAULT ANALYSIS FOR VOLTAGE SOURCE INVERTER DRIVEN INDUCTION MOTOR DRIVE

FAULT ANALYSIS FOR VOLTAGE SOURCE INVERTER DRIVEN INDUCTION MOTOR DRIVE International Journal of Electrical Engineering & Technology (IJEET) Volume 8, Issue 1, January- February 2017, pp. 01 08, Article ID: IJEET_08_01_001 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=8&itype=1

More information

PERFORMANCE ANALYSIS OF BLDC MOTOR SPEED CONTROL USING PI CONTROLLER

PERFORMANCE ANALYSIS OF BLDC MOTOR SPEED CONTROL USING PI CONTROLLER PERFORMANCE ANALYSIS OF BLDC MOTOR SPEED CONTROL USING PI CONTROLLER Karishma P.Wankhede 1, K. Vadirajacharya 2 1 M.Tech.II Yr, 2 Associate Professor,Electrical Engineering Department Dr. BabasahebAmbedkar

More information

ENERGY CONSERVATION IN AUTOMATIC FLUID FLOW CONTROL USING VARIABLE FREQUENCY DRIVE

ENERGY CONSERVATION IN AUTOMATIC FLUID FLOW CONTROL USING VARIABLE FREQUENCY DRIVE ENERGY CONSERVATION IN AUTOMATIC FLUID FLOW CONTROL USING VARIABLE FREQUENCY DRIVE Mr. Pinkle J. Bhatt 1, Prof. Aditi R. Hajari 2 1 PG Student, Electrical Engineering Department, SCET, Surat,( India) 2

More information

Electrical Machines -II

Electrical Machines -II Objective Type Questions: 1. Basically induction machine was invented by (a) Thomas Alva Edison (b) Fleming (c) Nikola Tesla (d) Michel Faraday Electrical Machines -II 2. What will be the amplitude and

More information

IMPROVEMENT IN DOUBLY FED INDUCTON GENERATOR UNDER FAULT USING INDUCTOR

IMPROVEMENT IN DOUBLY FED INDUCTON GENERATOR UNDER FAULT USING INDUCTOR IMPROVEMENT IN DOUBLY FED INDUCTON GENERATOR UNDER FAULT USING INDUCTOR Uttam Kumar 1, Sandeep Kumar Pal 2, Harshit Kumar Yagyasaini 3, Bharat 4, Siddharth Jain 5 1, 2,3,4 Students, Electrical Engineering

More information

INTRODUCTION. I.1 - Historical review.

INTRODUCTION. I.1 - Historical review. INTRODUCTION. I.1 - Historical review. The history of electrical motors goes back as far as 1820, when Hans Christian Oersted discovered the magnetic effect of an electric current. One year later, Michael

More information

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS Objective Describe the necessary conditions for motor and generator operation. Calculate the force on a conductor carrying current in the presence of the

More information

Isolated Bidirectional DC DC Converter for SuperCapacitor Applications

Isolated Bidirectional DC DC Converter for SuperCapacitor Applications European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 11) Las Palmas de Gran Canaria

More information