Exploring the Energy Grid Grades 6-8. Name:

Size: px
Start display at page:

Download "Exploring the Energy Grid Grades 6-8. Name:"

Transcription

1 Exploring the Energy Grid Grades 6-8 Name: Exploration 1 Rapidly turn the handles clockwise on all three generators at the end of the table, watching the System Voltage panel: 1. Draw the needle when the light is in the GREEN range: 2. Write the number when the light is in the GREEN range: 1

2 Discussion 1 In 1831 Michael Faraday discovered one of the fundamental principles of electromagnetism. It is called Faraday s Law. His law explains how electricity and magnetism interact, and forms the basis for modern electric motors and generators. Electric generators convert kinetic (motion) energy into electrical energy. 1. Explain how the generator is producing electricity. (Use the generator to determine its working parts and read the diagram on the side of the grid table.) 2. If you connected a generator to the pedals of a bicycle, do you think you could power your house? Why or why not? 3. Use the diagram on the side of the table to help you draw a line to connect the parts of a generator to i s name: Hand crank Drive belt Stator Rotor Commutator Brushes Output terminals 2

3 Exploration 2 Make sure the Smart Grid Enable Switch is off and use the Smart Grid Table Wiring Directions located on the table to connect the power companies to the customers. 1. After you wire the table, describe what happens to the buildings and System Voltage when you turn the three hand crank generators: 2. In the real world, the voltage on the electric grid must be maintained within a very narrow range. In this model electric grid, the voltage must be maintained at approximately Volts in order to keep the customers lights on. What happens when you use only one generator? 3. Flip the bypass switch on the back of the SmartGrid switch so you don t have to use the generators to power the houses. Disconnect any one wire. Describe which wire you disconnected and how it affected the buildings: 4. Leave the wire disconnected and turn ON the Smart Grid Switch. Describe what happens to the Smart Grid panel and the buildings: 5. Can you wire the grid so that ONLY: House #1, Farm, and Apartment #1 are lit? Describe what the Smart Grid panel looks like in relation to the buildings when you do this: 3

4 Discussion 2 1. What do the green lights on the Smart Grid Control Panel indicate? 2. What do the red lights on the Smart Grid Control Panel indicate? 3. How do you think utility companies with standard meters (no Smart Grid) find out if a wire is broken or disconnected? 4. How do utility companies with Smart meters (with Smart Grid) find out if a wire is broken or disconnected? Reconnect all the buildings to the grid after you finish answering the discussion questions. Apply It! Sometimes electricity goes off because of storm damage to transmission lines. 1. Has the electricity ever gone off at your home? 2. How long was it off? Turn the Smart Grid Switch OFF A storm hit your area causing the power to go out in your neighborhood. Ask your teacher (or someone else) to cause a problem in your grid. 3. Keeping the SmartGrid off, describe how you found and fixed the problems: Turn Smart Grid Switch ON Another storm hit your neighborhood. Ask your teacher (or someone else) to cause problem in your grid. 4. With the SmartGrid on, describe how you found and fixed the problems: 5. How do you think the Smart Grid help utility companies? 6. How do you think the Smart Grid help customers? 4

5 Expanding Although in this table-top simulation the voltage remains low and fairly constant over the entire grid, in real electric grids that is not the case. Photo credit: Angelsharum, Wikimedia Commons, CC BY-SA 3.0 Electrical power coming out of a real generator is at a fairly low voltage. Low voltage is not very efficient for transmission over large distances, so the voltage has to be stepped up. When it gets to your city, it has to be stepped down because very high voltage would be too dangerous for household use. Besides describing generators, Faraday s Law can be used to describe transformers. A transformer is used to change voltage in an electrical system. It has two coils of wire that are wrapped around a core, which is typically iron. When electricity flows in one coil, it induces electricity to flow in the other. The side that has more turns (loops) of wire has the higher voltage. In this way, voltage can be stepped up for long-distance transmission, and stepped down for distribution in neighborhoods. Primary coil (or primary winding ) This is the side where the electricity goes in Secondary coil (or secondary winding ) This is the output 5

6 1. Why must the voltage of the electricity coming out of the power plant be stepped up? 2. In a step up transformer, which side has more wire, the primary coil or the secondary coil? 3. In a step down transformer, which side has more wire, the primary coil or the secondary coil? 4. If the output of a step up transformer has double the input voltage, how would you expect the lengths of wire in the primary and secondary coils to compare? Label the following diagram: 6

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0.

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0. SPH3U1 Lesson 10 Magnetism GALVAOMETERS If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0. otice how the current runs in the opposite directions on opposite

More information

3 Electricity from Magnetism

3 Electricity from Magnetism CHAPTER 2 3 Electricity from Magnetism SECTION Electromagnetism BEFORE YOU READ After you read this section, you should be able to answer these questions: How can a magnetic field make an electric current?

More information

Period 16 Activity Sheet: Motors and Generators

Period 16 Activity Sheet: Motors and Generators Name Section Period 16 Activity Sheet: Motors and Generators Activity 16.1: How Are Electric Motors and Generators Related? a) Generators. 1) Attach a hand-cranked generator to a small motor and turn the

More information

Construction Set: Smart Grid System

Construction Set: Smart Grid System Construction Set: Smart Grid System Curriculum for Grades 3-5 Student Edition Center for Mathematics, Science, and Technology Illinois State University 2017 www.smartgridforschools.org Look around your

More information

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy.

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy. Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy. Generating Electric Current How is voltage induced in a conductor? According

More information

ALTERNATING CURRENT - PART 1

ALTERNATING CURRENT - PART 1 Reading 9 Ron Bertrand VK2DQ http://www.radioelectronicschool.com ALTERNATING CURRENT - PART 1 This is a very important topic. You may be thinking that when I speak of alternating current (AC), I am talking

More information

Magnets and magnetism

Magnets and magnetism Chapter 2 Electromagnetism Section 1 Magnets and magnetism Vocabulary: magnet magnetic pole magnetic force Properties of Magnets Magnetic Poles on a magnet, the magnetic poles are the locations where the

More information

Energy Conversions Questions CfE

Energy Conversions Questions CfE Energy Conversions Questions CfE 1) A 0.02kg mass is held at a height of 0.8m above the ground. a) Calculate the gravitational potential energy stored in the mass before it is dropped. b) i) State the

More information

Electromagnets & Induction Vocabulary

Electromagnets & Induction Vocabulary Electromagnets & Induction Vocabulary Term Definition Coil Solenoid Electric Motor Parts of an electric motor: Rotor commutator armature brushes Electromagnetic Induction Faraday s Law of Induction Generator

More information

1. Which device creates a current based on the principle of electromagnetic induction?

1. Which device creates a current based on the principle of electromagnetic induction? Assignment 2 Electromagnetism Name: 1. Which device creates a current based on the principle of electromagnetic induction? A) galvanometer B) generator C) motor D) solenoid 2. The bar magnet below enters

More information

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic Assignment 1 Magnetism and Electromagnetism Name: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Show appropriate workings. 1. What type of

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

GraspIT AQA GCSE Magnetism and Electromagnetism - Questions

GraspIT AQA GCSE Magnetism and Electromagnetism - Questions A. Permanent and Induced Magnetism, Magnetic Forces and Fields 1. The following question is about magnets. a. Iron is a magnetic material. Name two other magnetic elements. (2) b. Describe the effect a

More information

Chapter 8 Magnetism and Its Uses. Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current

Chapter 8 Magnetism and Its Uses. Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current Chapter 8 Magnetism and Its Uses Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current Section 1: Magnetism Standard 6: Demonstrate an understanding of the nature,

More information

Unit 2: Electricity and Energy Resources

Unit 2: Electricity and Energy Resources 8 8 Table of Contents Unit 2: Electricity and Energy Resources Chapter 8: Magnetism and Its Uses 8.1: Magnetism 8.2: Electricity and Magnetism 8.3: Producing Electric Current 8.1 Magnets More than 2,000

More information

3/31/2016. Unit 2: Electricity and Energy Resources. Magnets. Magnets. Magnetic Force. Magnetic Field. Chapter 8: Magnetism and Its Uses

3/31/2016. Unit 2: Electricity and Energy Resources. Magnets. Magnets. Magnetic Force. Magnetic Field. Chapter 8: Magnetism and Its Uses 8 8 Table of Contents Unit 2: Electricity and Energy Resources Chapter 8: and Its Uses : : Electricity and : Magnets More than 2,000 years ago Greeks discovered deposits of a mineral that was a natural

More information

Essential Question: How can currents and magnets exert forces on each other?

Essential Question: How can currents and magnets exert forces on each other? Essential Question: How can currents and magnets exert forces on each other? Standard: S8P5c. Investigate and explain that electric currents and magnets can exert force on each other. Concepts for Review

More information

ELECTRICITY: INDUCTORS QUESTIONS

ELECTRICITY: INDUCTORS QUESTIONS ELECTRICITY: INDUCTORS QUESTIONS No Brain Too Small PHYSICS QUESTION TWO (2017;2) In a car engine, an induction coil is used to produce a very high voltage spark. An induction coil acts in a similar way

More information

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): DC motor theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Section 1: Magnets and Magnetic Fields Section 2: Magnetism from Electric Currents Section 3: Electric Currents from Magnetism

Section 1: Magnets and Magnetic Fields Section 2: Magnetism from Electric Currents Section 3: Electric Currents from Magnetism Section 1: Magnets and Magnetic Fields Section 2: Magnetism from Electric Currents Section 3: Electric Currents from Magnetism Key Terms Magnetic Poles Magnetic Fields Magnets The name magnet comes from

More information

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 It is the mark of an educated mind to be able to entertain a thought without accepting it. DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 1. Explain the Basic concepts of rotating machine. 2. With help

More information

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3 MSRAJA ELGADFY/ELECTROMAGENETIC PAPER3 1- In Fig 91, A and B are two conductors on insulating stands Both A and B were initially uncharged X Y A B Fig 91 (a) Conductor A is given the positive charge shown

More information

Ch. 3 Magnetism and Electromagnetism

Ch. 3 Magnetism and Electromagnetism Ch. 3 Magnetism and Electromagnetism Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Magnetic field lines around a bar magnet a. are only perpendicular

More information

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones ELECTROMAGNETIC INDUCTION Faraday s Law Lenz s Law Generators Transformers Cell Phones Recall Oersted's principle: when a current passes through a straight conductor there will be a circular magnetic field

More information

reflect energy: the ability to do work

reflect energy: the ability to do work reflect Have you ever thought about how much we depend on electricity? Electricity is a form of energy that runs computers, appliances, and radios. Electricity lights our homes, schools, and office buildings.

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS ELECTRICITY & MAGNETISM L (P.599-604) The large-scale production of electrical energy that we have today is possible because of electromagnetic induction. The electric generator,

More information

Chapter 17 Notes. Magnetism is created by moving charges.

Chapter 17 Notes. Magnetism is created by moving charges. Chapter 17 Notes Section 17.1 Electric Current and Magnetism Hans Christian Øersted (1819), a Danish physicist and chemist - compass needle near a wire circuit and with current flowing through the wire,

More information

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Motional emf. as long as the velocity, field, and length are mutually perpendicular. Motional emf Motional emf is the voltage induced across a conductor moving through a magnetic field. If a metal rod of length L moves at velocity v through a magnetic field B, the motional emf is: ε =

More information

Magnetism from Electricity

Magnetism from Electricity 2 What You Will Learn Identify the relationship between an electric current and a magnetic field. Compare solenoids and electromagnets. Describe how electromagnetism is involved in the operation of doorbells,

More information

Activity 5: Electromagnets and Buzzers

Activity 5: Electromagnets and Buzzers RECORD SHEET Activity 5: Electromagnets and Buzzers Name Date Class Key Question Explore Your Ideas Explore the Electromagnet Experiment 1: Under what circumstances will a coil of wire interact with a

More information

HL: Mutual Induction. Mutual / Self-Induction Learning Outcomes. Mutual / Self-Induction Learning Outcomes

HL: Mutual Induction. Mutual / Self-Induction Learning Outcomes. Mutual / Self-Induction Learning Outcomes 1 Mutual / Self-Induction Learning Outcomes HL: Define and discuss mutual induction for two adjacent coils. HL: Demonstrate mutual induction. HL: Define and describe self-induction. HL: Demonstrate self-induction.

More information

Imagine not being able to use anything that plugs into an electrical socket.

Imagine not being able to use anything that plugs into an electrical socket. Physics 1003 Electromagnetism (Read objectives on screen.) (boy thinking on screen) Imagine your everyday life without talking on the telephone or watching TV. or listening to a radio or playing a CD.

More information

Physics12 Unit 8/9 Electromagnetism

Physics12 Unit 8/9 Electromagnetism Name: Physics12 Unit 8/9 Electromagnetism 1. An electron, travelling with a constant velocity, enters a region of uniform magnetic field. Which of the following is not a possible pathway? 2. A bar magnet

More information

Ordinary Level Physics ANSWERS : ELECTROMAGNETIC INDUCTION. Solutions

Ordinary Level Physics ANSWERS : ELECTROMAGNETIC INDUCTION. Solutions Ordinary Level Physics ANSWERS : ELECTROMAGNETIC INDUCTION Solutions 2015 Question 12 (d) [Ordinary Level] A solenoid (long coil of wire) is connected to a battery as shown. (i) Copy the diagram into your

More information

Instructor Guide. 215: Elevator: Mechanical Drive Systems Module 3: Gearless Drive Systems

Instructor Guide. 215: Elevator: Mechanical Drive Systems Module 3: Gearless Drive Systems PR EV IE W O N LY Instructor Guide 215: Elevator: Mechanical Drive Systems Module 3: Gearless Drive Systems Table of Contents Overview.......4 Gearless Drive Operation...8 Geared Vs. Gearless. 22 Summary..29

More information

Faraday s Electromagnetic Lab

Faraday s Electromagnetic Lab Name Section Date CONCEPTUAL PHYSICS Electromagnetic Induction: Generators and Alternating Current Tech Lab Electromagnetism Sim Faraday s Electromagnetic Lab Purpose To manipulate simulated magnets, compasses,

More information

Lesson Plan: Electricity and Magnetism (~100 minutes)

Lesson Plan: Electricity and Magnetism (~100 minutes) Lesson Plan: Electricity and Magnetism (~100 minutes) Concepts 1. Electricity and magnetism are fundamentally related. 2. Just as electric charge produced an electric field, electric current produces a

More information

The Starter motor. Student booklet

The Starter motor. Student booklet The Starter motor Student booklet The Starter motor - INDEX - 2006-04-07-13:20 The Starter motor The starter motor is an electrical motor and the electric motor is all about magnets and magnetism: A motor

More information

Experiment 6: Induction

Experiment 6: Induction Experiment 6: Induction Part 1. Faraday s Law. You will send a current which changes at a known rate through a solenoid. From this and the solenoid s dimensions you can determine the rate the flux through

More information

Understanding Electricity and Electrical Safety Teacher s Guide

Understanding Electricity and Electrical Safety Teacher s Guide Understanding Electricity and Electrical Safety Teacher s Guide Note to Instructor: The activities and experiments in this booklet build on each other to develop a student s understanding of electricity

More information

Physical Science Lecture Notes Chapter 13

Physical Science Lecture Notes Chapter 13 Physical Science Lecture Notes Chapter 13 I. Section 13-1 Electricity, Magnetism & Motion A. Electrical & mechanical energy 1. Magnetic forces repel when alike and attract when opposite 2. Electric current

More information

1. This question is about electrical energy and associated phenomena.

1. This question is about electrical energy and associated phenomena. 1. This question is about electrical energy and associated phenomena. Electromagnetism The current in the circuit is switched on. electromagnet State Faraday s law of electromagnetic induction and use

More information

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS TO CANDIDATES Kenya Certificate of Secondary Education NAME:.... SCHOOL: DATE:... ELECTROMAGNETISM 1 INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1 1. Fran has a balancing game.

More information

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Electromagnetic Induction (approx. 1.5 h) (11/9/15) (approx. 1.5 h) (11/9/15) Introduction In 1819, during a lecture demonstration, the Danish scientist Hans Christian Oersted noticed that the needle of a compass was deflected when placed near a current-carrying

More information

PHY 152 (ELECTRICITY AND MAGNETISM)

PHY 152 (ELECTRICITY AND MAGNETISM) PHY 152 (ELECTRICITY AND MAGNETISM) ELECTRIC MOTORS (AC & DC) ELECTRIC GENERATORS (AC & DC) AIMS Students should be able to Describe the principle of magnetic induction as it applies to DC and AC generators.

More information

Chapter 18 Magnetism Student Notes

Chapter 18 Magnetism Student Notes Chapter 18 Magnetism Student Notes Section 18.1 Magnets and Magnet Fields Magnets More than discovered deposits of a that was a. The mineral is now called. These magnets were used by the ancient peoples

More information

Magnetism Ch Magnetism is a force that acts at a distance

Magnetism Ch Magnetism is a force that acts at a distance Magnetism Ch 21 22.1 Magnetism is a force that acts at a distance 1 Magnets attract & repel other magnets. The attraction between the north pole of a magnet and the south pole of another magnet is based

More information

Electrical Machines and Energy Systems: Overview SYED A RIZVI

Electrical Machines and Energy Systems: Overview SYED A RIZVI Electrical Machines and Energy Systems: Overview SYED A RIZVI Electrical Machines and Energy Systems Deal with the generation, transmission & distribution, and utilization of electric power. This course

More information

Science 30 Unit C Electromagnetic Energy

Science 30 Unit C Electromagnetic Energy Science 30 Unit C Electromagnetic Energy Outcome 1: Students will explain field theory and analyze its applications in technologies used to produce, transmit and transform electrical energy. Specific Outcome

More information

Introduction: Electromagnetism:

Introduction: Electromagnetism: This model of both an AC and DC electric motor is easy to assemble and disassemble. The model can also be used to demonstrate both permanent and electromagnetic motors. Everything comes packed in its own

More information

CHAPTER 8: ELECTROMAGNETISM

CHAPTER 8: ELECTROMAGNETISM CHAPTER 8: ELECTROMAGNETISM 8.1 Effect of a Magnet on a Current-carrying Conductor 8.1.1 Straight Wire Magnetic fields are circular Field is strongest close to the wire Increasing the current increases

More information

Question 2: Around the bar magnet draw its magnetic fields. Answer:

Question 2: Around the bar magnet draw its magnetic fields. Answer: Chapter 13: Magnetic Effects of Electric Current Question 1: What is the reason behind the compass needle is deflected when it is brought close to the bar magnet? Compass needles work as a small bar magnet;

More information

10.0 Alternator Test

10.0 Alternator Test 10.0 Alternator Test An alternator is the device used to produce the electricity the car needs to run and to keep the battery charged. The alternator uses the principle of electromagnetic induction to

More information

4) With an induced current, thumb points force/velocity and palm points current

4) With an induced current, thumb points force/velocity and palm points current Matt Katz Chapter 22 Review Right Hand Rules 1 st Right Hand Rule - use for wires 1) point thumb in direction of current (I) 2) B is where your fingers point 2 nd Right Hand Rule - use for solenoids or

More information

Motors. Book pg Syllabus /09/2016. The Butterfly Effect. cgrahamphysics.com 2015

Motors. Book pg Syllabus /09/2016. The Butterfly Effect. cgrahamphysics.com 2015 Motors Book pg 187 189 Syllabus 6.11 6.14 05/09/2016 The Butterfly Effect The Motor effect where? What device does not use a motor? Aim Know the link between movement, magnetism and current Know how electric

More information

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49 Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49 The coil with the switch is connected to a battery. (Primary coil) When current goes through a coil, it produces

More information

S cience 10-E lectr icity & Magnetism Activity 9 Activities 4D&E T he Magnetic F ield Ar ound a Current Carrying Wir e and a Coil

S cience 10-E lectr icity & Magnetism Activity 9 Activities 4D&E T he Magnetic F ield Ar ound a Current Carrying Wir e and a Coil S cience 10E lectr icity & Magnetism Activity 9 Activities 4D&E T he Magnetic F ield Ar ound a Carrying Wir e and a Coil Name Due Date Show Me Hand In Purpose: To determine the direction of the magnetic

More information

The Fleming s Left Hand Rule shows what happens when electrons in a current enter a magnetic field.

The Fleming s Left Hand Rule shows what happens when electrons in a current enter a magnetic field. M4: Electrical Actuators M4.1 Fleming s Left Hand Rule The Fleming s Left Hand Rule shows what happens when electrons in a current enter a magnetic field. According to this rule if the index finger is

More information

ANSWER KEY. Using Electricity and Magnetism. Chapter Project Worksheet 1

ANSWER KEY. Using Electricity and Magnetism. Chapter Project Worksheet 1 Using Electricity and Magnetism Using Electricity and Magnetism Chapter Project Worksheet 1 1 6. Students data will vary greatly depending on the appliances and devices they examine as well as on the size

More information

LETTER TO PARENTS SCIENCE NEWS. Dear Parents,

LETTER TO PARENTS SCIENCE NEWS. Dear Parents, LETTER TO PARENTS Cut here and paste onto school letterhead before making copies. Dear Parents, SCIENCE NEWS Our class is beginning a new science unit using the FOSS Magnetism and Electricity Module. We

More information

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 23 Physics, 4 th Edition James S. Walker Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction

More information

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: Chapter 21 Electromagnetic Induction and Faraday s Law Chapter 21 Induced EMF Faraday s Law of Induction; Lenz s Law EMF Induced in a Moving Conductor Changing Magnetic Flux Produces an E Field Inductance

More information

Magnetism and Electricity ASSIGNMENT EDULABZ. the mere presence of magnet, is called...

Magnetism and Electricity ASSIGNMENT EDULABZ. the mere presence of magnet, is called... Magnetism and Electricity ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below. List : magnetic field, magnetic keepers, electric bell, stop, magnetic induction,

More information

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered ENERGY USE AND DELIVERY LESSON PLAN 3.3 Electromagnets This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven

More information

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge Electricity Parts of an atom Protons (P + ) Have a positive electric charge Electrons (e - ) Have a negative electric charge Neutrons Are neutral Have no charge Electric Charge In most atoms, the charges

More information

Powering the device simply requires a lateral motion that allows the magnet to slide freely and frequently.

Powering the device simply requires a lateral motion that allows the magnet to slide freely and frequently. Power generation is the most important function when it comes to electronics. However today we live in a world where people desire a more portable and convenient way to power up their electronic devices.

More information

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS Objective Describe the necessary conditions for motor and generator operation. Calculate the force on a conductor carrying current in the presence of the

More information

I.E.S. Cristo Del Socorro de Luanco. Magnetism

I.E.S. Cristo Del Socorro de Luanco. Magnetism Magnetism Magnetism is a force of attraction or repulsion that acts at a distance. It is due to a magnetic field, which is caused by moving electrically charged particles or is inherent in magnetic objects

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

A Practical Exercise Name: Section:

A Practical Exercise Name: Section: Introduction to s Updated 7 AUG 06 A Practical Exercise Name: Section: I. Purpose.. Introduce the Hampden DC machine. Introduce the Hampden laboratory bench electrical power supplies 3. Introduce basic

More information

ANSWERS AND MARK SCHEMES

ANSWERS AND MARK SCHEMES QUESTIONSHEET 1 One mark for each of: when the pressure switch (A) is pushed, a current flows the electromagnet (B) is activated/switched on the armature (C) is attracted to the electromagnet the clapper

More information

Faraday s Law of Induction III

Faraday s Law of Induction III Faraday s Law of Induction III Physics 2415 Lecture 21 Michael Fowler, UVa Today s Topics More on Faraday s Law of Induction Generators Back emf and Counter Torque Transformers General form of Faraday

More information

Activity 3 Solutions: Electricity

Activity 3 Solutions: Electricity Activity 3 Solutions: Electricity 3.1 Electric Charge, Voltage and Energy 1) Electric charge Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what happens

More information

Magnetism - General Properties

Magnetism - General Properties Magnetism - General Properties A magnet, when suspended from a string, will align itself along the north - south direction. Two like poles of a magnet will repel each other, while opposite poles will attract.

More information

ELECTRICITY: ELECTROMAGNETISM QUESTIONS

ELECTRICITY: ELECTROMAGNETISM QUESTIONS ELECTRICITY: ELECTROMAGNETISM QUESTIONS The flying fox (2017;3) Sam has a flying fox (zip line) that he wants to use in the dark. Sam connects a 12.0 V battery to a spotlight, using two 1.60-metre-long

More information

Comprehensive Technical Training

Comprehensive Technical Training Comprehensive Technical Training For Sugar Mills Staff on Operation & Maintenance of Baggase Based HP Cogeneration System Schedule: 10 th July to 13 th July, 2017 A.C. GENERATOR Topics Covered. Introduction.

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

HSC Physics. Module 9.3. Motors and. Generators

HSC Physics. Module 9.3. Motors and. Generators HSC Physics Module 9.3 Motors and Generators 9.3 Motors and Generators (30 indicative hours) Contextual Outline Electricity is a convenient and flexible form of energy. It can be generated and distributed

More information

Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor.

Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor. EXERCISE 10 (A) Question 1: Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor. Solution 1: Experiment: In Fig, AB is a wire lying in the north- south

More information

Eddy Currents and Magnetic Damping *

Eddy Currents and Magnetic Damping * OpenStax-CNX module: m42404 1 Eddy Currents and Magnetic Damping * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain the magnitude

More information

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? Electromagnetic Induction Chapter Questions 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? 2. The discovery of electric currents generating an magnetic field led physicists to look

More information

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER Mr. Hussam Samir EXAMINATION QUESTIONS (5) 1. A wire perpendicular to the page carries an electric current in a direction

More information

Experiment 3. The Direct Current Motor Part II OBJECTIVE. To locate the neutral brush position. To learn the basic motor wiring connections.

Experiment 3. The Direct Current Motor Part II OBJECTIVE. To locate the neutral brush position. To learn the basic motor wiring connections. Experiment 3 The Direct Current Motor Part II OBJECTIVE To locate the neutral brush position. To learn the basic motor wiring connections. To observe the operating characteristics of series and shunt connected

More information

Page 1 of 19. Website: Mobile:

Page 1 of 19. Website:     Mobile: Question 1: Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact with

More information

Intext Exercise 1 Question 1: Why does a compass needle get deflected when brought near a bar magnet?

Intext Exercise 1 Question 1: Why does a compass needle get deflected when brought near a bar magnet? Intext Exercise 1 Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact

More information

Chapter 29 Electromagnetic Induction and Faraday s Law

Chapter 29 Electromagnetic Induction and Faraday s Law Chapter 29 Electromagnetic Induction and Faraday s Law 29.1 Induced EMF Units of Chapter 29 : 1-8 29.3 EMF Induced in a Moving Conductor: 9, 10 29.4 Electric Generators: 11 29.5 Counter EMF and Torque;

More information

Like poles repel, unlike poles attract can be made into a magnet

Like poles repel, unlike poles attract can be made into a magnet Topic 7 Magnetism and Electromagnetism 7.1 Magnets and Magnetic Fields A permanent magnet has its own magnetic field : region in which a magnetic force is felt Poles are the places where the magnetic force

More information

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque. Various types of AC motors are used for specific applications. By matching the type of motor to the appropriate application, increased equipment performance can be obtained. EO 1.5 EO 1.6 EO 1.7 EO 1.8

More information

Stay Safe Around Electricity Teacher s Guide

Stay Safe Around Electricity Teacher s Guide Stay Safe Around Electricity Teacher s Guide INTRODUCTION The Stay Safe Around Electricity activity booklet can be used as a follow-up to an electric utility presentation or as a stand-alone piece to teach

More information

Unit 2: Electricity and Energy Resources

Unit 2: Electricity and Energy Resources 8 Table of Contents Unit 2: Electricity and Energy Resources Chapter 8: Magnetism and Its Uses 8.1: Magnetism 8.2: Electricity and Magnetism 8.3: Producing Electric Current 8.1 Magnets Magnetism Magnetism:

More information

VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE

VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE Electromagnetism Observation sheet Name VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE http://studentorgs.vanderbilt.edu/vsvs Electromagnetism Spring 2016 (Adapted from Student Guide for Electric Snap Circuits

More information

Historical Development

Historical Development TOPIC 3 DC MACHINES DC Machines 2 Historical Development Direct current (DC) motor is one of the first machines devised to convert electrical power into mechanical power. Its origin can be traced to the

More information

Magnetic Effects of Electric Current

Magnetic Effects of Electric Current Magnetic Effects of Electric Current Question 1: Why does a compass needle get deflected when brought near a bar magnet? Answer: A compass needle is a small bar magnet. When it is brought near a bar magnet,

More information

EXPERIMENT 19. Starting and Synchronizing Synchronous Machines PURPOSE: BRIEFING: To discover the method of starting synchronous motors.

EXPERIMENT 19. Starting and Synchronizing Synchronous Machines PURPOSE: BRIEFING: To discover the method of starting synchronous motors. EXPERIMENT 19 Starting and Synchronizing Synchronous Machines PURPOSE: To discover the method of starting synchronous motors. BRIEFING: When three-phase is applied to the stator of a three-phase motor,

More information

Unit 32 Three-Phase Alternators

Unit 32 Three-Phase Alternators Unit 32 Three-Phase Alternators Objectives: Discuss the operation of a three-phase alternator. Explain the effect of rotation speed on frequency. Explain the effect of field excitation on output voltage.

More information

Given the following items: wire, light bulb, & battery, think about how you can light the bulb.

Given the following items: wire, light bulb, & battery, think about how you can light the bulb. Light the Bulb! What You'll Do: Given the following items: wire, light bulb, & battery, think about how you can light the bulb. >>>>>>>>>Draw all the possible combinations that you can make with the bulb,

More information

Electric Generators *

Electric Generators * OpenStax-CNX module: m55411 1 Electric Generators * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 Learning Objectives By the end of this

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 1 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Figure 4.1.1: Cartoon View of a DC motor

Figure 4.1.1: Cartoon View of a DC motor Problem 4.1 DC Motor MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Applied Electromagnetics Spring 2011 Problem Set 4: Forces and Magnetic Fields

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information