Ultracapacitor Technology: Present and Future Performance and Applications

Size: px
Start display at page:

Download "Ultracapacitor Technology: Present and Future Performance and Applications"

Transcription

1 Ultracapacitor Technology: Present and Future Performance and Applications Andrew Burke Marshall Miller Nathan Parker Paper presented at the Advanced Capacitor World Summit 2004 Washington, D.C., July 14-16, 2004

2 Outline of the Presentation Present status of ultracapacitor technology Carbon/carbon Psuedo-capacitive/hybrid Recent test data V modules Small single cells Prospects for future developments Vehicle and stationary applications With fuel cells In mild hybrids

3 Carbon/carbon Ultracapacitors Device V rated C (F) R (mohm) RC (sec) Wh/kg W/kg (95%) (2) W/kg Match. Imped. (1) Maxwell** Ness Ness (3) Ness Ness Ness Asahi Glass (propylene carbonate) Panasonic (propylene carbonate) Wgt. (kg) (estimated) Panasonic Panasonic EPCOS EPCOS Montena Montena Okamura Power Sys ESMA (1) Energy density at 400 W/kg constant power, Vrated - 1/2 Vrated (2) Power based on P=9/16*(1-EF)*V2/R, EF=efficiency of discharge ** Except where noted, all the devices use acetonitrile as the electrolyte (3) Psuedo-caps from Ness using carbon/metal oxide electrodes Vol. lit..151

4 Characteristics of psuedo-capacitor technologies Device Ness Pseudocap Okamura Ashasi Glass Electrode Materials Electrolyte Voltage Wh/kg/ Wh/L (W/kg) 90% Status Carbon/ metal oxide Organic / Commercial Intercalation into graphite Intercalation into a mix of activated carbon and graphite Organic / Organic / Telcordia LiTi/carbon Organic / Atlantic Carbon/ Aqueous, University, NiOOH KOH 15/ Russians UC Davis, Russians Carbon/PbO2 Aqueous, Sulfuric Acid Lab proto-types Lab proto-types Lab proto- Types Commercial and small lab devices 15/ Small lab cells

5 45 V Ness ultracapacitor module

6 Constant power test data for the Ness 45V module Power Power density (W/kg)* Energy Energy density kw Cycle Wh (Wh/kg)* *energy and power density based on weight of the cells in the module (weight of the cells is 12.1 kg)

7 PSFUDS Power Vs Time Maximum power step W/kg =500 based on weight of cells alone Time (sec) Roundtrip Efficiencies for the Ness 45V Module on the PSFUDS cycle Cycle* Energy in Wh Energy out Wh Efficiency % *PSFUDS power profile based on maximum power of 500 W/kg and the weight of the cells alone

8 Characteristics of various ultracapacitor modules Module Weight (kg) Volume (liters) Voltage Wh Power(kW) (90% effic.) Weight packaging Factor Volume packaging factor Ness (1) (194 F) (with cooling) Maxwell (2) (135 F) (with cooling) Asahi Glass (3) (80 F) Not avail..50 (without cooling) (1) tested at UC Davis (Reference 9) (2) tested at the Idaho National Engineering Laboratory (3) specifications from References (7)

9 Tests of small ultracap cells from Ness

10 Constant current test data Ness 10F carbon/carbon Ness 120F Psuedo-cap Current (A) Capacitance (F) Current (A) Capacitance (F) V 0 = 2.7 V 0 =2.3 Resistance = 25 mohm Resistance=21 mohm (from pulse tests)

11 Constant power test data 10 F 120 F Power (W) W/kg Wh/kg Power (W) W/kg Wh/kg Voltage: Voltage: Weight =2.5 grams Weight = 17 grams Volume = 1.5 cm 3 Volume = 10 cm 3

12 Pulsed charging and discharging of ultracaps Conventional thought is that the charge/discharge time should be large compared to the RC time constant of the device Testing has shown that this is not the case based on charging/discharging with pulses that are short compared to RC Capacitance is the same for pulse charging/discharging as for operation at the average current Tests used pulses 5X average current and 1/30 RC Test data on the following slides This finding greatly increases potential applications of ultracapacitors in electronic circuits for consumers

13

14 Voltage vs. time trace for pulse charge/discharge of the Ness 10 F carbon/carbon device Current Voltage Test_Time 0

15 Voltage vs. time trace for pulse charging/discharging of the 120F Ness psuedo-cap device

16 Pulse charging/discharging results for the short duration pulses Device Pulse duration RC/pulse Capacitance Resistance 10 F.01 sec mohm 120 F.05 sec mohm

17 Future developments in ultracapacitor cells and modules Year Cell Wh/kg Cell Wh/liter Cell Power density W/kg (90%) Weight packing factor (without fan) Volume packing factor (without fan) Present Carbon/carbon Mixed carbons Carbon/ Metal oxide hybrid capac Carbon/PbO Balancing circuits that do not effect self-discharge

18 Vehicle and stationary applications With fuel cells

19 Comparison of the Model with the Data

20 Vehicle applications Engine starting with lead-acid batteries Mild hybrid vehicles 42 V systems with lead-acid batteries 150 V systems capacitors alone

21 Mild hybrid-electric vehicles (42V systems) 5-8kW less than 50Wh useable energy Lead-acid batteries with ultracapacitors Battery: 12V, 300 Wh, 10 kg, 5 liters Capacitors: 45V, 40 Wh, 12 kw, 10 kg, 10.5 liter Ultracap modules close to those presently available Interface electronics to match 12V to 45V

22 Mild hybrid-electric vehicles (150V systems) Vehicle class Test Weight kg Engine kw Motor kw Wh Bat/Cap Battery Kg * Capacitor Kg ** Liters Liters Compact car / Mid-size car / Full-size car / All vehicles have CVT transmissions and port fuel-injected gasoline engines *Nickel metal hydride batteries 45Wh/kg 79 Wh/liter ** Advanced ultracapacitors 9 Wh/kg 11 Wh/liter

23 Fuel economy simulation (Advisor) results using batteries and ultracapacitors in Mild (150V) hybrid passenger cars Compact Car Driving cycle Small cap (94Wh) Fuel economy mpg Large cap (180 Wh) Ni mt.hydride battery FUDS Fed. HW US EC-EUDC Mid-size Car Fuel economy mpg Driving cycle Small cap (150 Wh) Large cap (293 Wh) Ni mt.hydride battery FUDS Fed. HW US EC-EUDC Full-size Car Fuel economy mpg Driving cycle Small cap (210 Wh) Large cap (405 Wh) Ni mt.hydride battery FUDS Fed. HW US EC-EUDC

24 Economic and cycle life considerations Present costs are 2-3 cents per Farad for 2.7V devices Target cost is 1 cent per Farad Corresponds to $15/Wh and $50/kW for 2.7V, 5 Wh/kg, and 1500 W/kg devices Target cost for auto applications is $20/kW Corresponds to.4 cents per Farad and $6/Wh Carbon costs of $10-$20/kg needed for low cost ultracaps Cycle life of at least 500 K for carbon/carbon devices Cycle life of at least 100 K for psuedo/hybrid devices

25 Summary and conclusions Performance of carbon/carbon ultracapacitors continues to improve- presently Wh/kg useable energy R&D progressing on psuedo/hybrid devices with reasonable prospects for Wh/kg and W/kg power at high (90%) efficiency Renewed interest in ultracaps for vehicle applications Products of ultracaps with lead-acid batteries for engine starting are near to market Ultracaps in mild hybrid-electric vehicles look promising Ultracaps function very well in fuel cell systems

26 Summary and conclusions (cont.) Present prices are 2-3 cents per Farad for large, 2.7 V devices Prices are decreasing and are expected to continue to decrease Prices need to decrease to about.25 cents per Farad to be competitive with Ni metal hydride batteries in hybrids Cost of carbon is a key issue. Carbon costs of $10-$20/kg seem to be required for low cost ultracaps Meeting cycle life targets of at least 500K is critical for hybrid vehicle applications

Performance of Advanced Ultracapacitors and Prospects for Higher Energy Density

Performance of Advanced Ultracapacitors and Prospects for Higher Energy Density Performance of Advanced Ultracapacitors and Prospects for Higher Energy Density Andrew Burke Marshall Miller University of California-Davis Institute of Transportation Studies 45 th Power Sources Conference

More information

Ultracapacitors in Hybrid Vehicle Applications: Testing of New High Power Devices and Prospects for Increased Energy Density

Ultracapacitors in Hybrid Vehicle Applications: Testing of New High Power Devices and Prospects for Increased Energy Density Research Report UCD-ITS-RR-12-06 Ultracapacitors in Hybrid Vehicle Applications: Testing of New High Power Devices and Prospects for Increased Energy Density May 2012 Andrew Burke Marshall Miller Hengbing

More information

UC Davis Recent Work. Title. Permalink. Author. Publication Date. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

UC Davis Recent Work. Title. Permalink. Author. Publication Date. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles UC Davis Recent Work Title Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles Permalink https://escholarship.org/uc/item/9p18x8s8 Author Burke, Andy Publication Date 2009-08-01

More information

Lithium batteries and ultracapacitors alone and in combination in hybrid vehicles: Fuel economy and battery stress reduction advantages

Lithium batteries and ultracapacitors alone and in combination in hybrid vehicles: Fuel economy and battery stress reduction advantages Lithium batteries and ultracapacitors alone and in combination in hybrid vehicles: Fuel economy and battery stress reduction advantages Andrew Burke, Marshall Miller, and Hengbing Zhao Institute of Transportation

More information

Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles

Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles Andrew Burke, Zhengmao Liu, Hengbing Zhao Institute of Transportation Studies University of California Davis Davis, CA,

More information

Sustainable Personal Electric Transportation: EVs, PHEVs, and FCVs Andrew Burke Institute of Transportation Studies University of California-Davis

Sustainable Personal Electric Transportation: EVs, PHEVs, and FCVs Andrew Burke Institute of Transportation Studies University of California-Davis Sustainable Personal Electric Transportation: EVs, PHEVs, and FCVs Andrew Burke Institute of Transportation Studies University of California-Davis Renewable Energy Workshop UC Santa Cruz August 1-2, 2011

More information

Review of Ultracapacitor Technologies for Vehicle Applications

Review of Ultracapacitor Technologies for Vehicle Applications 1 Review of Ultracapacitor Technologies for Vehicle Applications Andrew Burke Institute of Transportation Studies University of California, Davis Davis, California 95616 Abstract Ultracapacitor technologies

More information

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems Overview By Robert Atlas, Aqua EWP,LLC. September 2007 Aqua EWP. has for the last 10 years

More information

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes Overview Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes By Robert Atlas, Aqua EWP,LLC. September 2006 Aqua EWP. has for the last 10 years

More information

Fast Charging Tests (up to 6C) of Lithium Titanate Cells and Modules: Electrical and Thermal Response

Fast Charging Tests (up to 6C) of Lithium Titanate Cells and Modules: Electrical and Thermal Response Research Report UCD-ITS-RR-12-7 Fast Charging Tests (up to 6C) of Lithium Titanate Cells and Modules: Electrical and Thermal Response May 12 Andrew Burke Marshall Miller Hengbing Zhao Institute of Transportation

More information

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader Energy Storage for Transport Three projects Safe, High-Performance Lithium-Metal Batteries Supercapacitors Ultrabattery 10

More information

Energy Storage (Battery) Systems

Energy Storage (Battery) Systems Energy Storage (Battery) Systems Overview of performance metrics Introduction to Li Ion battery cell technology Electrochemistry Fabrication Battery cell electrical circuit model Battery systems: construction

More information

Supercaps Fields of Application and Limits

Supercaps Fields of Application and Limits Supercaps Fields of Application and Limits Dietmar Rahner TU Dresden Institut für Physikalische Chemie und Elektrochemie D-01062 Dresden Steffen Rahner Battery-Lab Rahner GmbH Dresden D-01217 Dresden www.battery-lab.de

More information

PERFORMANCE ANALYSIS OF VARIOUS ULTRACAPACITOR AND ITS HYBRID WITH BATTERIES

PERFORMANCE ANALYSIS OF VARIOUS ULTRACAPACITOR AND ITS HYBRID WITH BATTERIES PERFORMANCE ANALYSIS OF VARIOUS ULTRACAPACITOR AND ITS HYBRID WITH BATTERIES Ksh Priyalakshmi Devi 1, Priyanka Kamdar 2, Akarsh Mittal 3, Amit K. Rohit 4, S. Rangnekar 5 1 JRF, Energy Centre, MANIT Bhopal

More information

DOE OVT Energy Storage R&D Overview

DOE OVT Energy Storage R&D Overview DOE OVT Energy Storage R&D Overview David Howell Hybrid and electric vehicles, energy storage technologies and control systems National and international R&D-projects, research institutions and funding

More information

Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles

Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles INVITED PAPER Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles Simulations indicate that fuel-efficient hybrid-electric vehicles can be designed using either batteries or ultracapacitors

More information

Comparing the powertrain energy and power densities of electric and gasoline vehicles

Comparing the powertrain energy and power densities of electric and gasoline vehicles Comparing the powertrain energy and power densities of electric and gasoline vehicles RAM VIJAYAGOPAL Argonne National Laboratory 20 July 2016 Ann Arbor, MI Overview Introduction Comparing energy density

More information

Argonne Mobility Research Impending Electrification. Don Hillebrand Argonne National Laboratory

Argonne Mobility Research Impending Electrification. Don Hillebrand Argonne National Laboratory Argonne Mobility Research Impending Electrification Don Hillebrand Argonne National Laboratory 2018 Argonne: DOE s Largest Transportation Research Program Located 25 miles from the Chicago Loop, Argonne

More information

Maxwell s Highest Power and Energy Cell

Maxwell s Highest Power and Energy Cell DATASHEET 3.0V 3400F ULTRACAPACITOR CELL BCAP3400 P300 K04/05 Maxwell s Highest Power and Energy Cell Maxwell Technologies 3V 3400F ultracapacitor cell is designed to support the latest trends in renewable

More information

Effects of Battery Voltage on Performance and Economics of the Hyperdrive Powertrain

Effects of Battery Voltage on Performance and Economics of the Hyperdrive Powertrain Effects of Battery Voltage on Performance and Economics of the Hyperdrive Powertrain Dr. Alex Severinsky Theodore Louckes Robert Templin David Polletta Fred Frederiksen Corp. Page 1 Three principles for

More information

Energy Saving and Cost Projections for Advanced Hybrid, Battery Electric, and Fuel Cell Vehicles in

Energy Saving and Cost Projections for Advanced Hybrid, Battery Electric, and Fuel Cell Vehicles in Research Report UCD-ITS-RR-12-05 Energy Saving and Cost Projections for Advanced Hybrid, Battery Electric, and Fuel Cell Vehicles in 2015-2030 May 2012 Andrew Burke Hengbing Zhao Institute of Transportation

More information

Lithium-Ion Battery Simulation for Greener Ford Vehicles

Lithium-Ion Battery Simulation for Greener Ford Vehicles Lithium-Ion Battery Simulation for Greener Ford Vehicles October 13, 2011 COMSOL Conference 2011 Boston, MA Dawn Bernardi, Ph.D., Outline Vehicle Electrification at Ford from Nickel/Metal-Hydride to Lithium-Ion

More information

The xev Industry Insider Report

The xev Industry Insider Report The xev Industry Insider Report November 2017 REPORT OUTLINE I. xev Market Trends 1. Overview Market Drivers Recent EV-Market Boosters Until Tesla, most automakers had introduced subcompact and city EVs

More information

Ultracapacitor/Battery Hybrid Designs: Where Are We? + Carey O Donnell Mesa Technical Associates, Inc.

Ultracapacitor/Battery Hybrid Designs: Where Are We? + Carey O Donnell Mesa Technical Associates, Inc. Ultracapacitor/Battery Hybrid Designs: Where Are We? + Carey O Donnell Mesa Technical Associates, Inc. Objectives Better understand ultracapacitors: what they are, how they work, and recent advances in

More information

LOW CARBON FOOTPRINT HYBRID BATTERY CHARGER PROJECT PROPOSAL

LOW CARBON FOOTPRINT HYBRID BATTERY CHARGER PROJECT PROPOSAL LOW CARBON FOOTPRINT HYBRID BATTERY CHARGER PROJECT PROPOSAL Students: Blake Kennedy, Phil Thomas Advisors: Dr. Huggins, Mr. Gutschlag, Dr. Irwin Date: December 11, 2007 PRESENTATION OUTLINE Project Summary

More information

Optimal Control Strategy Design for Extending. Electric Vehicles (PHEVs)

Optimal Control Strategy Design for Extending. Electric Vehicles (PHEVs) Optimal Control Strategy Design for Extending All-Electric Driving Capability of Plug-In Hybrid Electric Vehicles (PHEVs) Sheldon S. Williamson P. D. Ziogas Power Electronics Laboratory Department of Electrical

More information

Maxwell Technologies Overview Corporate & Product

Maxwell Technologies Overview Corporate & Product Maxwell Technologies Overview Corporate & Product The Maxwell Name The company was founded by Alan Kolb and 2 partners: Bruce Hayworth and Terrence C. Gooding, who all came from General Dynamics. (1965)

More information

IPRO Spring 2003 Hybrid Electric Vehicles: Simulation, Design, and Implementation

IPRO Spring 2003 Hybrid Electric Vehicles: Simulation, Design, and Implementation IPRO 326 - Spring 2003 Hybrid Electric Vehicles: Simulation, Design, and Implementation Team Goals Understand the benefits and pitfalls of hybridizing Gasoline and Diesel parallel hybrid SUVs Conduct an

More information

2011 Advanced Energy Conference -Buffalo, NY

2011 Advanced Energy Conference -Buffalo, NY 2011 Advanced Energy Conference -Buffalo, NY Electrification Technology and the Future of the Automobile Mark Mathias Electrochemical Energy Research Lab General Motors R&D Oct. 13, 2011 Transitioning

More information

Leading Solution LS Mtron, LS Cable, LS Industrial System, LS-Nikko Copper, Gaon Cable, E1 and Yesco

Leading Solution LS Mtron, LS Cable, LS Industrial System, LS-Nikko Copper, Gaon Cable, E1 and Yesco Leading Solution LS Mtron, LS Cable, LS Industrial System, LS-Nikko Copper, Gaon Cable, E1 and Yesco New Dream, New Start To become a leader in the competitive global market, LG has been divided into three

More information

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density.

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density. ET3034TUx - 7.5.1 - Batteries 1 - Introduction Welcome back. In this block I shall discuss a vital component of not only PV systems but also renewable energy systems in general. As we discussed in the

More information

Supercapacitors For Load-Levelling In Hybrid Vehicles

Supercapacitors For Load-Levelling In Hybrid Vehicles Supercapacitors For Load-Levelling In Hybrid Vehicles G.L. Paul cap-xx Pty. Ltd., Villawood NSW, 2163 Australia A.M. Vassallo CSIRO Division of Coal & Energy Technology, North Ryde NSW, 2113 Australia

More information

Lithium battery knowledge

Lithium battery knowledge Seminar on Safe Transport of Lithium Battery by Air Lithium battery knowledge 12 December 2008 At Cathay City s s Auditorium Battery Association of Japan(BAJ) 1 Seminar on Safe Transport of Lithium Battery

More information

What is an Ultracapacitor? APEC Special Presentation Ultracapacitors March Tecate Group. Powerburst Presentation APEC 2011

What is an Ultracapacitor? APEC Special Presentation Ultracapacitors March Tecate Group. Powerburst Presentation APEC 2011 Tecate Group Powerburst Presentation APEC 2011 HEADQUARTERS FACILITIES LOCATION: SAN DIEGO, CA USA INVENTORY SALES & MARKETING ENGINEERING QUALITY MANAGEMENT What is an Ultracapacitor? An ultracapacitor,

More information

Printed Energy Storage

Printed Energy Storage Printed Energy Storage Prof. James W. Evans 1,Jay Keist 1, Christine Ho 1, Ba Quan 1 & Prof. Paul K. Wright 2 1 Material Science and Engineering, University of California Berkeley, Berkeley, CA 2 Mechanical

More information

UC Davis Recent Work. Title. Permalink. Authors. Publication Date. The UC Davis Emerging Lithium Battery Test Project

UC Davis Recent Work. Title. Permalink. Authors. Publication Date. The UC Davis Emerging Lithium Battery Test Project UC Davis Recent Work Title The UC Davis Emerging Lithium Battery Test Project Permalink https://escholarship.org/uc/item/4xn6n3xf Authors Burke, Andy Miller, Marshall Publication Date 2009-07-01 Peer reviewed

More information

NESSCAP ULTRACAPACITOR TECHNICAL GUIDE. NESSCAP Co., Ltd.

NESSCAP ULTRACAPACITOR TECHNICAL GUIDE. NESSCAP Co., Ltd. NESSCAP ULTRACAPACITOR TECHNICAL GUIDE 2008 NESSCAP Co., Ltd. 1 About Ultracapacitors? Enter the ultracapacitor, also known as a supercapacitor, Electric Double Layer Capacitor (EDLC), or pseudocapacitor.

More information

Course of development of the lithium-ion battery (LIB), and recent technological trends

Course of development of the lithium-ion battery (LIB), and recent technological trends Session 2A : Business Case Course of development of the lithium-ion (LIB), and recent technological trends Dr. Akira Yoshino Yoshino Laboratory Asahi Kasei Corp. E-mail: yoshino.ab@om.asahi-kasei.co.jp

More information

Energy Storage. Electrochemical Cells & Batteries

Energy Storage. Electrochemical Cells & Batteries Energy Storage These notes cover the different methods that can be employed to store energy in various forms. These notes cover the storage of Electrical Energy, Kinetic Energy, and Pneumatic Energy. There

More information

PROGRESS OF BATTERY SYSTEMS AT GENERAL MOTORS. Manfred Herrmann Roland Matthé. World Mobility Summit Munich October 2016

PROGRESS OF BATTERY SYSTEMS AT GENERAL MOTORS. Manfred Herrmann Roland Matthé. World Mobility Summit Munich October 2016 PROGRESS OF BATTERY SYSTEMS AT GENERAL MOTORS Manfred Herrmann Roland Matthé World Mobility Summit Munich October 2016 AGENDA DEVELOPMENT OF ELECTRIFICATION ELECTRIFICATION BATTERY SYSTEMS PROGRESS OF

More information

Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis

Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis Netra Pd. Gyawali*, Nava Raj Karki, Dipesh Shrestha,

More information

Supercapacitor for Hybrid Energy Storage in a Rural Microgrid

Supercapacitor for Hybrid Energy Storage in a Rural Microgrid American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-380, ISSN (CD-ROM): 2328-3629

More information

Comparative Performance Investigation of Battery and Ultracapacitor for Electric Vehicle Applications

Comparative Performance Investigation of Battery and Ultracapacitor for Electric Vehicle Applications Comparative Performance Investigation of Battery and Ultracapacitor for Electric Vehicle Applications Thoudam Paraskumar Singh 1 and Sudhir Y Kumar 2 1,2 Department of Electrical Engineering, College of

More information

Material Science and Engineering, University of California Berkeley, Berkeley, CA

Material Science and Engineering, University of California Berkeley, Berkeley, CA Printed Energy Storage Devices Christine C. Ho 1, Prof. James W. Evans 1 and Prof. Paul K. Wright 2 1 Material Science and Engineering, University of California Berkeley, Berkeley, CA 2 Mechanical Engineering,

More information

Energy Storage Requirements & Challenges For Ground Vehicles

Energy Storage Requirements & Challenges For Ground Vehicles Energy Storage Requirements & Challenges For Ground Vehicles Boyd Dial & Ted Olszanski March 18 19, 2010 : Distribution A. Approved for Public Release 1 Report Documentation Page Form Approved OMB No.

More information

Nickel Zinc Battery Evaluation at Crane

Nickel Zinc Battery Evaluation at Crane Nickel Zinc Battery Evaluation at Crane Presented By: Alex Potter and Scott Lichte 5/3/17 CAPT JT Elder, USN Commanding Officer NSWC Crane Dr. Brett Seidle, SES Technical Director NSWC Crane Distribution

More information

Current Trends In Ultra Capacitor/Battery Based Smart Transportation System

Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Current Trends In Ultra Capacitor/Battery Based Smart Transportation System Geetha Reddy Evuri, G. Srinivasa Rao, T. Rama Subba

More information

A STUDY ON A SUPPLY-DEMAND SIMULATION MODEL FOR THE STAND-ALONE HYBRID POWER SUPPLY CONSISTING OF FUEL CELL AND ENERGY CAPACITOR SYSTEMS

A STUDY ON A SUPPLY-DEMAND SIMULATION MODEL FOR THE STAND-ALONE HYBRID POWER SUPPLY CONSISTING OF FUEL CELL AND ENERGY CAPACITOR SYSTEMS 01-088 A STUDY ON A SUPPLY-DEMAND SIMULATION MODEL FOR THE STAND-ALONE HYBRID POWER SUPPLY CONSISTING OF FUEL CELL AND ENERGY CAPACITOR SYSTEMS Katsuji Mitsui 1 Masahiko Shimizu1 Kazuaki Bogaki Dr.2 1

More information

Development of Emergency Train Travel Function Provided by Stationary Energy Storage System

Development of Emergency Train Travel Function Provided by Stationary Energy Storage System 150 Hitachi Review Vol. 66 (2017), No. 2 Featured Articles III Development of Emergency Train Travel Function Provided by Stationary Energy System Yasunori Kume Hironori Kawatsu Takahiro Shimizu OVERVIEW:

More information

SUPERCAPACITOR PERFORMANCE CHARACTERIZATION FOR RENEWABLES APPLICATIONS SCOTT HARPOOL DR. ANNETTE VON JOUANNE DR. ALEX YOKOCHI

SUPERCAPACITOR PERFORMANCE CHARACTERIZATION FOR RENEWABLES APPLICATIONS SCOTT HARPOOL DR. ANNETTE VON JOUANNE DR. ALEX YOKOCHI SUPERCAPACITOR PERFORMANCE CHARACTERIZATION FOR RENEWABLES APPLICATIONS SCOTT HARPOOL DR. ANNETTE VON JOUANNE DR. ALEX YOKOCHI WHAT IS A SUPERCAPACITOR? Energy storage technology Electrodes immersed in

More information

Research Title DYNAMIC MODELING OF A WIND-DIESEL-HYDROGEN HYBRID POWER SYSTEM

Research Title DYNAMIC MODELING OF A WIND-DIESEL-HYDROGEN HYBRID POWER SYSTEM Research Title DYNAMIC MODELING OF A WIND-DIESEL-HYDROGEN HYBRID POWER SYSTEM Presenter: Md. Maruf-ul-Karim Supervisor: Dr. Tariq Iqbal Faculty of Engineering and Applied Science Memorial University of

More information

Course Syllabus and Information

Course Syllabus and Information Energy Storage Systems for Electric-based Transportations Course Syllabus and Information College of Engineering Department of Electrical and Computer Engineering Course No. ECE-5995 Selected topics Winter

More information

AARHUS UNIVERSITET FLOW BATTERIER PÅ VEJ IND I KOMMERCIEL DANSK SERIEPRODUKTION

AARHUS UNIVERSITET FLOW BATTERIER PÅ VEJ IND I KOMMERCIEL DANSK SERIEPRODUKTION FLOW BATTERIER PÅ VEJ IND I KOMMERCIEL DANSK SERIEPRODUKTION Background Associate Professor Department of Engineering -Research in batteries and solar energy conversion Co-founder of VisBlue commercialisation

More information

LS Mtron Ultracapacitor Stand: 2015

LS Mtron Ultracapacitor Stand: 2015 LS Mtron Ultracapacitor Stand: 2015 Meckenloher Str. 11 D-91126 Rednitzhembach Tel.: +49 9122 97 96 0 Fax: +49 9122 97 96 50 info@alfatec.de www.alfatec.de New-generation Energy Storage Devices with Low

More information

Energy Storage Systems and Power System Stability

Energy Storage Systems and Power System Stability INNOVATIVE EUROPEAN STUDIES on RENEWABLE ENERGY SYSTEMS Energy Storage Systems and Power System Stability Dr. Necmi ALTIN Outline Impacts of The Renewable Energy Penetration Energy Storage Technologies

More information

Brief Assessment of progress in EV Battery Technology since the BTAP June 2000 Report

Brief Assessment of progress in EV Battery Technology since the BTAP June 2000 Report Brief Assessment of progress in EV Battery Technology since the BTAP June 2000 Report Dr. Menahem Anderman President Advanced Automotive Batteries This report is a brief evaluation of changes in EV battery

More information

EENERGY EFFICIENCY. German-Japanese Energy Symposium Lithium-Ion-Technology in mobile und stationary applications. February 10 th, 2011

EENERGY EFFICIENCY. German-Japanese Energy Symposium Lithium-Ion-Technology in mobile und stationary applications. February 10 th, 2011 German-Japanese Energy Symposium 2011 Lithium-Ion-Technology in mobile und stationary applications EENERGY EFFICIENCY CO EENERGY EFFICIENCY CLIMATE PROTECTION2 February 10 th, 2011 Carsten Kolligs Evonik

More information

Modelling and Analysis of Plug-in Series-Parallel Hybrid Medium-Duty Vehicles

Modelling and Analysis of Plug-in Series-Parallel Hybrid Medium-Duty Vehicles Research Report UCD-ITS-RR-15-19 Modelling and Analysis of Plug-in Series-Parallel Hybrid Medium-Duty Vehicles December 2015 Hengbing Zhao Andrew Burke Institute of Transportation Studies University of

More information

Seoul, Korea. 6 June 2018

Seoul, Korea. 6 June 2018 Seoul, Korea 6 June 2018 Innovation roadmap in clean mobility materials SPEAKER Denis Goffaux Chief Technology Officer Executive Vice-President Energy & Surface Technologies 2 Agenda Well to wheel efficiency

More information

Global Lead-Acid Battery Trends And Component Advances - Through The Lens Of A Component Supplier

Global Lead-Acid Battery Trends And Component Advances - Through The Lens Of A Component Supplier Global Lead-Acid Battery Trends And Component Advances - Through The Lens Of A Component Supplier Dr. Pete Smith May 3 rd, 2016 2016 Daramic, LLC. ALL RIGHTS RESERVED Energy Storage History Lead-acid battery

More information

U.S. Army s Ground Vehicle Programs & Goals

U.S. Army s Ground Vehicle Programs & Goals Panel VII: State & Federal Programs to Support the Battery Industry U.S. Army s Ground Vehicle Programs & Goals Sonya Zanardelli Energy Storage Team Leader, U.S. Army TARDEC, DOD Power Sources Member sonya.zanardelli@us.army.mil

More information

Advanced Battery for Electric Vehicles in CEGASA.

Advanced Battery for Electric Vehicles in CEGASA. Advanced Battery for Electric Vehicles in CEGASA. What is CEGASA CEGASA GROUP Main figures Sales 200,000,000 Euros Facilities 124,000 m2 Factories 4 Employees 1014 People CEGASA GROUP More than 75 years

More information

U.S. Army s Ground Vehicle Energy Storage R&D Programs & Goals

U.S. Army s Ground Vehicle Energy Storage R&D Programs & Goals U.S. Army s Ground Vehicle Energy Storage R&D Programs & Goals Sonya Zanardelli Energy Storage Team, US Army TARDEC sonya.zanardelli@us.army.mil 586-282-5503 November 17, 2010 Report Documentation Page

More information

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles J. Bauman, Student Member, IEEE, M. Kazerani, Senior Member, IEEE Department of Electrical and Computer Engineering, University

More information

Energy Storage. 9. Power Converter Demo. Assoc. prof. Hrvoje Pandžić. Vedran Bobanac, PhD

Energy Storage. 9. Power Converter Demo. Assoc. prof. Hrvoje Pandžić. Vedran Bobanac, PhD Energy Storage 9. Power Converter Demo Assoc. prof. Hrvoje Pandžić Vedran Bobanac, PhD Lecture Outline Rechargeable batteries basics Power converter for experimenting with rechargeable batteries Rechargeable

More information

Available online at ScienceDirect. Energy Procedia 68 (2015 ) Tinton Dwi Atmaja a, *, Amin a

Available online at   ScienceDirect. Energy Procedia 68 (2015 ) Tinton Dwi Atmaja a, *, Amin a Available online at www.sciencedirect.com ScienceDirect Energy Procedia 68 (2015 ) 429 437 2nd International Conference on Sustainable Energy Engineering and Application, ICSEEA 2014 Energy storage system

More information

3300mAh Zinc-Air Batteries for Portable Consumer Products

3300mAh Zinc-Air Batteries for Portable Consumer Products 3300mAh Zinc-Air Batteries for Portable Consumer Products Binyamin Koretz Dr. Neal Naimer Menachem Givon Electric Fuel Limited www.electric-fuel.com Background Electric Fuel Ltd. is the world leader in

More information

Modeling and Simulation of Hybrid Electric Vehicles

Modeling and Simulation of Hybrid Electric Vehicles Modeling and Simulation of Hybrid Electric Vehicles By Yuliang Leon Zhou B. Eng., University of Science & Tech. Beijing, 2005 A Thesis Submitted in Partial fulfillment of the Requirements for the Degree

More information

High Power Bipolar Nickel Metal Hydride Battery for Utility Applications

High Power Bipolar Nickel Metal Hydride Battery for Utility Applications High Power Bipolar Nickel Metal Hydride Battery for Utility Applications Michael Eskra, Robert Plivelich meskra@electroenergyinc.com, Rplivelich@electroenergyinc.com Electro Energy Inc. 30 Shelter Rock

More information

Ardalan Vahidi. Clemson Renewable Energy Systems Lab Mechanical Engineering Clemson University

Ardalan Vahidi. Clemson Renewable Energy Systems Lab Mechanical Engineering Clemson University Ardalan Vahidi Clemson Renewable Energy Systems Lab Mechanical Engineering Clemson University Ultracapacitor-assisted conventional powertrains Ultracapacitor-assisted fuel cells Future research plan: Ultracapacitor

More information

Advanced Small Cell with XP Technology

Advanced Small Cell with XP Technology DATASHEET 3.0V 3F ULTRACAPACITOR CELL BCAP0003 P300 X11 / X1 Advanced Small Cell TM with XP Technology Maxwell Technologies 3V 3F ultracapacitor cell is part of Maxwell s latest full-featured 3.0V product

More information

Supercapacitors: A Comparative Analysis

Supercapacitors: A Comparative Analysis Supercapacitors: A Comparative Analysis Authors: Sneha Lele, Ph.D., Ashish Arora, M.S.E.E., P.E. Introduction Batteries, fuel cells, capacitors and supercapacitors are all examples of energy storage devices.

More information

The xev Industry Insider Report

The xev Industry Insider Report The xev Industry Insider Report December 2016 REPORT OUTLINE I. xev Market Trends 1. Overview Current xev Market Conditions xev Market Direction: High Voltage xev Market Direction: Low Voltage Market Drivers

More information

Keeping up with the increasing demands for electrochemical energy storage

Keeping up with the increasing demands for electrochemical energy storage Keeping up with the increasing demands for electrochemical energy storage Jeff Sakamoto 2015 Top of the learning curve: optimize current technology 2020 Frontiers of Li-ion technology: new materials 2030

More information

NEC TOKIN America Inc. Sep. 2016

NEC TOKIN America Inc. Sep. 2016 NEC TOKIN America Inc. Sep. 2016 What is a Super capacitor? When two different phases of solid and liquid come into contact, positive and negative charge are distributed confronting each other in a very

More information

From materials to vehicle what, why, and how? From vehicle to materials

From materials to vehicle what, why, and how? From vehicle to materials From materials to vehicle what, why, and how? From vehicle to materials Helena Berg Outline 1. Electric vehicles and requirements 2. Battery packs for vehicles 3. Cell selection 4. Material requirements

More information

Nickel-Zinc Large Format Batteries for Military Ground Vehicles

Nickel-Zinc Large Format Batteries for Military Ground Vehicles 2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER AND ENERGY (P&E) MINI-SYMPOSIUM AUGUST 17-19 DEARBORN, MICHIGAN Todd Tatar, Jeff Philips, Salil Soman, and Richard Brody PowerGenix

More information

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle 2012 IEEE International Electric Vehicle Conference (IEVC) Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle Wilmar Martinez, Member National University Bogota, Colombia whmartinezm@unal.edu.co

More information

Energy Storage Commonality Military vs. Commercial Trucks

Energy Storage Commonality Military vs. Commercial Trucks DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Energy Storage Commonality Military vs. Commercial Trucks Joseph K Heuvers, PE Energy Storage Team Ground Vehicle Power

More information

Gaseous Fuels in Transportation -- Prospects and Promise

Gaseous Fuels in Transportation -- Prospects and Promise Gaseous Fuels in Transportation -- Prospects and Promise Dr. James J. Eberhardt, Director U.S. Department of Energy Presented at the Gas Storage Workshop Kingston, Ontario, Canada July 11-12, 2001 OHVT

More information

Future Lithium Demand in Electrified Vehicles. Ted J. Miller

Future Lithium Demand in Electrified Vehicles. Ted J. Miller Future Lithium Demand in Electrified Vehicles Ted J. Miller August 5, 2010 Outline Vehicle Electrification at Ford Advanced Battery Technology Lithium Batteries Electrified Vehicle Market Forecasts Key

More information

2010 Advanced Energy Conference. Electrification Technology and the Future of the Automobile. Mark Mathias

2010 Advanced Energy Conference. Electrification Technology and the Future of the Automobile. Mark Mathias 2010 Advanced Energy Conference Electrification Technology and the Future of the Automobile Mark Mathias Electrochemical Energy Research Lab General Motors R&D New York, NY Nov. 8, 2010 Transitioning From

More information

Research Progress of Advanced Lithium Ion Polymer Battery Technology

Research Progress of Advanced Lithium Ion Polymer Battery Technology The 34 th Florida International Battery Seminar Research Progress of Advanced Lithium Ion Polymer Battery Technology Peter Cheng Highpower Research Institute ----------------------------------------------------March

More information

Batteries for Electric Vehicles a Survey and Recommendation

Batteries for Electric Vehicles a Survey and Recommendation PRELIMINARY REPORT FOR THE UNIVERSITYCITY PROJECT Batteries for Electric Vehicles a Survey and Recommendation Volkan Y. Senyurek and Cheng-Xian (Charlie) Lin Department of Mechanical and Materials Engineering

More information

Lithium Ion Batteries - for vehicles and other applications

Lithium Ion Batteries - for vehicles and other applications Lithium Ion Batteries - for vehicles and other applications Tekes 2008-12-03 Kai Vuorilehto / European Batteries What do we need? High energy (Wh/kg) driving a car for 5 hours High power (W/kg) accelerating

More information

OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD

OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD OUTLINE INTRODUCTION SYSTEM CONFIGURATION AND OPERATIONAL MODES ENERGY MANAGEMENT ALGORITHM CONTROL ALGORITHMS SYSTEM OPERATION WITH VARYING LOAD CONCLUSION REFERENCES INTRODUCTION Reliable alternative

More information

FRAUNHOFER INSTITUTE FOR CHEMICAL TECHNOLOGY ICT REDOX-FLOW BATTERY

FRAUNHOFER INSTITUTE FOR CHEMICAL TECHNOLOGY ICT REDOX-FLOW BATTERY FRAUNHOFER INSTITUTE FOR CHEMICAL TECHNOLOGY ICT REDOX-FLOW BATTERY REDOX-FLOW BATTERY REDOX-FLOW BATTERY Redox-flow batteries are efficient and have a longer service life than conventional batteries.

More information

THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES

THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES 11 THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES TECHNOLOGY OVERVIEW Batteries store electricity as chemical energy so that it can be recovered for later use. There are many different battery types;

More information

Towards competitive European batteries

Towards competitive European batteries Towards competitive European batteries GC.NMP.2013-1 Grant. 608936 Lecture I: Materials improvement and cells manufacturing Leclanché GmbH External Workshop Brussels, 23.05.2016 1 Plan About Leclanché

More information

I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage

I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage MIT Student In this lecture, we will learn some examples of electrochemical energy storage. A general idea of electrochemical energy

More information

Effect of Hybridization on the Performance of Fuel Cell Energy/Power Systems (FCEPS) for Unmanned Aerial Vehicle (UAV)

Effect of Hybridization on the Performance of Fuel Cell Energy/Power Systems (FCEPS) for Unmanned Aerial Vehicle (UAV) Effect of Hybridization on the Performance of Fuel Cell Energy/Power Systems (FCEPS) for Unmanned Aerial Vehicle (UAV) (Paper No: IMECE2010-38884) Dr. Mebs Virji Co-authors : K. Bethune, R. Rocheleau University

More information

Requirement, Design, and Challenges in Inorganic Solid State Batteries

Requirement, Design, and Challenges in Inorganic Solid State Batteries Requirement, Design, and Challenges in Inorganic Solid State Batteries Venkat Anandan Energy Storage Research Department 1 Ford s Electrified Vehicle Line-up HEV Hybrid Electric Vehicle C-Max Hybrid Fusion

More information

Copyright 2016 Surya Powerfarad Energies Limited. P a g e 1

Copyright 2016 Surya Powerfarad Energies Limited.     P a g e 1 P a g e 1 Introduction: Wind Pitch Control systems dynamically adjust blade position relative to wind speed in order to maximize the efficiency for power generation and to minimize the effect of tower

More information

REGENERATIVE BRAKING FOR AN ELECTRIC VEHICLE USING HYBRID ENERGY STORAGE SYSTEM

REGENERATIVE BRAKING FOR AN ELECTRIC VEHICLE USING HYBRID ENERGY STORAGE SYSTEM International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 4, Oct 2013, 35-42 TJPRC Pvt. Ltd. REGENERATIVE BRAKING FOR AN ELECTRIC VEHICLE USING HYBRID

More information

Quallion Matrix Battery Technology for Lithium-ion Lead Acid Replacement & Wide Operating Temperature Range Cells. May 2011

Quallion Matrix Battery Technology for Lithium-ion Lead Acid Replacement & Wide Operating Temperature Range Cells. May 2011 Quallion Matrix Battery Technology for Lithium-ion Lead Acid Replacement & Wide Operating Temperature Range Cells May 2011 Introduction Employing a core strategy of leveraging R&D, niche focus, complementary

More information

Energy Storage for the Grid

Energy Storage for the Grid GE Energy Energy Storage for the Grid Devon Manz Nick Miller Hamid Elahi GE Energy Consulting GE Copyright 2011 1 Storage Electricity Power Pumped Hydro Compressed Air Energy Battery Flywheel Ultracap

More information

Ultracapacitor Characterization Using a Novel Dynamic Parameter Identification Modeling Technique for Electric Transportation Applications

Ultracapacitor Characterization Using a Novel Dynamic Parameter Identification Modeling Technique for Electric Transportation Applications Ultracapacitor Characterization Using a Novel Dynamic Parameter Identification Modeling Technique for Electric Transportation Applications By Amandeep Singh Presented in Partial Fulfillment of the Requirements

More information

Maxwell Technologies GmbH Brucker Strasse 21 D Gilching Germany Phone: +49 (0) Fax: +49 (0)

Maxwell Technologies GmbH Brucker Strasse 21 D Gilching Germany Phone: +49 (0) Fax: +49 (0) WHITE PAPER ULTRACAPACITOR ASSISTED ELECTRIC DRIVES FOR TRANSPORTATION John M. Miller, J-N-J Miller, plc and Richard Smith Introduction Vehicle introduction of electric drives has primarily been for traction

More information

Batteries for electric commercial vehicles and mobile machinery

Batteries for electric commercial vehicles and mobile machinery Batteries for electric commercial vehicles and mobile machinery Tekes EVE annual seminar, Dipoli 6.11.2012 Dr. Mikko Pihlatie VTT Technical Research Centre of Finland 2 Outline 1. Battery technology for

More information

Supercapacitors: Summary

Supercapacitors: Summary Supercapacitors: Summary Generalities on Supercapacitors Principle Model of a supercapacitor Series connection of supercapacitors Sizing of a supercapacitive tank Sizing method Energy efficiency and power

More information