Microcontroller Based Power Factor Correction Using SCR

Size: px
Start display at page:

Download "Microcontroller Based Power Factor Correction Using SCR"

Transcription

1 Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), November Microcontroller Based Power Factor Correction Using SCR Vishnu Prasad Pradhan, Taruna Kumawat and Ankit Soni Abstract--- Power factor correction (PFC) is a technique of counteracting the undesirable effects of electric loads that create a power factor (P.F.) that is less than 1. Power factor correction may be applied either by an electrical power transmission utility to improve the stability and efficiency of the transmission network or, correction may be installed by individual electrical customers to reduce the costs charged to them by their electricity supplier. The most practical and economical power factor correction device is the capacitor. Incorporation of a micro-controller into static capacitor device facilities a sort of an automatic control action where by the power factor is always kept a fixed value, irrespective of the load power factor conditions. It improves the power factor because the effects of capacitance are exactly opposite those of inductance. The micro-controller determines the power factor of the system at any instant of time and determines the reactive power to be supplied and the value of capacitance to be switched in to make the power factor unity. The capacitor is switched in parallel to the load through a relay controlled by the processor. The circuit is capable of correcting the power factor for any inductive load within the rating of the system. Thyristor Switching of capacitors for power factor improvement has many advantages over conventional contactor switching. Thyristor Switching is more reliable, accurate, maintenance free and especially suitable for fast variable loads, where contactor-switching systems fail to give desired results. P I. INTRODUCTION OWER factor correction (PFC) is a technique of counteracting the undesirable effects of electric loads that create a power factor (P.F.) that is unity. Power factor correction may be applied either by an electrical power transmission utility to improve the stability and efficiency of the transmission network or, correction may be installed by individual electrical customers to reduce the cost charged to them by their electricity supplier. When an electric load has a Vishnu Prasad Pradhan, VII Semester / IV Year, Electrical and Electronics Engineering, Mandsaur Institute of Technology, Mandsaur (MIT), M.P, India. vp.pradhan@mitmandsaur.info Taruna Kumawat, VII Semester / IV Year, Electrical and Electronics Engineering, Mandsaur Institute of Technology, Mandsaur (MIT), M.P, India. taruna_kumawat2010@yahoo.com Ankit Soni, VII Semester / IV Year, Electrical and Electronics Engineering, Mandsaur Institute of Technology, Mandsaur (MIT), M.P, India. ankit.soni_eee08@mitmandsaur.info power factor lower than unity, the apparent power delivered to the load is greater than the real power that the load consumes. Only the real power is capable of doing work, but the apparent power determines the amount of current that flows into the load, for a given load voltage. Energy losses in transmission lines increase with increasing current. Power companies therefore require that customers, especially those with large loads, maintain the power factors of their respective loads within specified limits or be subject to additional charges. Engineers are often interested in the power factor of a load as one of the factors that affect the efficiency of power transmission. Power factor correction returns the power factor of an electric AC power transmission system to very near unity by switching in or out banks of capacitors or inductors, which act to cancel the inductive or capacitive effects of the load. Power factor is a measure of how effectively you are using electricity. Various types of power are at work to provide us with electrical energy. Working Power is the true or real power used in all electrical appliances to perform the work of heating, lighting, motion etc. We express this as kw or Kilowatts. Common types of resistive loads are electric heating and lighting. An inductive load, like a motor, compressor or ballast, also requires Reactive Power to generate and sustain a magnetic field in order to operate. We call this non-working power kvar s, or kilovolt amperes. We determine apparent power using the formula, kva=kvxa. Going one step further, Power Factor (PF) is the ratio of working power to apparent power, or the formula PF=kW/kVA. A high PF benefits both the member and utility, while a low power factor indicates poor utilization of electrical power. Improving the power factor can maximize current carrying capacity, improve voltage to equipment, reduce power losses, and lower electric bills. The simplest way it improve power factor is to add power factor correction capacitors to the electrical system. Power factor correction capacitors act as reactive current generators. They help offset the non-working power used by inductive loads, thereby improving the power factor. Thyristor Switching of capacitors for power factor improvement has many advantages over conventional contactor switching. Thyristor Switching is more reliable, accurate, maintenance free and especially suitable for fast variable loads, where contactor-switching systems fail to give desired results. The capacitors are switched at "Zero Current Cross Over Threshold". Comparison between Fast response Thyristor Switched and Contactor Switched Capacitor APFC system.

2 Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), November II. POWER Power is the time rate at which work is done or energy is transferred. In calculus terms, power is the derivative of work with respect to time. The SI unit of power is the watt (W) or joule per second (J/s). Horsepower is a unit of power in the British system of measurement. 2.1 Types of Power There are three types of power: a. Active power b. Reactive power c. Apparent power 2.2 Power Factor AC power flow has the three components: real power (P), measured in watts (W); apparent power (S), measured in voltamperes (VA); and reactive power (Q), measured in reactive volt-amperes (VAr). The power factor is defined as: Power factor = Real Power Apparent Power For a DC circuit the power is P=VI and this relationship also holds for the instantaneous power in an AC circuit. However, the average power in an AC circuit expressed in terms of the rms voltage and current is P avg = VI COSΦ Where φ is the phase angle between the voltage and current. The additional term is call the power factor. Power factor = COS φ = R / Z 2.3 Causes of Low Power Factor The important inductive loads responsible for low power factor are as follows- 1. Most of the Ac motors are induction type. Threephase induction motor operates at a power factor about 0.8 lagging at full load. At light load these motors works at a very small power factor of the order of 0.2 to 0.3 lagging. Single phase motors operate at power factor of around A transformer draws magnetizing current from the supply. At a normal load, this current does not affect the power factor much but at light loads the primary current power factor is low. 3. Arc lamps, electric discharge lamps, industrial heating furnace, welding equipment operate at low lagging power factor. 2.4 Disadvantage of Low Power Factor The important disadvantages of low power factor are: 1. The first is that transmission lines and other power circuit elements are usually more reactive than resistive. Reactive components of current produce larger voltage drop than resistive components, and add to the total IZ = (I(R + LX)) drop, therefore, the system voltage regulation suffers more and additional voltage- regulating equipment may be required for satisfactory operation of the equipment using power. 2. The second disadvantage is the inefficient utilization of the transmission equipment since more current flow per unit of real power transmitted is necessary due to the reactive power also carried in the power lines. If the current necessary to satisfy reactive power could be reduced, more useful power could be transmitted through the present system. 3. The third disadvantage is the cost of the increased power loss in transmission lines. The increased power loss is due to the unnecessary reactive power, which is in the system. The reactive power losses vary as the square of the reactive current or as the inverse of the power factor squared. 4. Higher currents give rise to higher copper loss in the system and therefore the efficiency of the system is reduced. Also the cost of the energy loss in the system is increased. 5. Higher current gives larger voltage drop in cables and other apparatus. This result in poor voltage regulation. 2.5 Power Factor Correction Many loads are highly inductive, such a lightly loaded motors and illumination transformers and ballasts. You may want to correct the power factor by adding parallel capacitors. You can also add series capacitors to "remove" the effect of leakage inductance that limits the output current. When a load draws reactive power from the supply, its power factor is said to be lagging, the phase angle between voltages and current is 90º with voltage leading. When the reactive power is exported to the supply, its power factor is said to be leading, the phase angle between voltages and current is 90º with current leading. This is reference to the phase of the load current with respect to the supply voltage. 2.6 For Linear Loads Figure 2.1: Wave Form Power factor correction brings the power factor of an AC power circuit closer to 1 by supplying reactive power of opposite sign, adding capacitors or inductors which act to cancel the inductive or capacitive effects of the load, respectively. For example, the inductive effect of motor loads

3 Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), November may be offset by locally connected capacitors. If a load had a capacitive value, inductors (also known as reactors in this context) are connected to correct the power factor. In the electricity industry, inductors are said to consume reactive power and capacitors are said to supply it, even though the reactive power is actually just moving back and forth on each AC cycle. 2.7 For Non-Linear Load A non-linear load on a power system is typically a rectifier (such as used in a power supply), or some kind of discharge device such as a fluorescent lamp, electric welding machine, or arc furnace. Because current in these systems is interrupted by a switching arc action, the current contains frequency components that are multiples of the power system frequency. Non-linear loads change the shape of the current waveform from a sine wave to some other form. Non-linear loads create harmonic currents in addition to the original (fundamental frequency) AC current. Addition of linear components such as capacitors and inductors cannot cancel these harmonic currents, so other methods such as filters or active power factor correction are required to smooth out their current demand over each cycle of alternating current and so reduce the generated harmonic currents. There are two types of power factor controller used for the non-linear loads: 1. Passive PFC 2. Active PFC III. WHY CORRECT THE POWER FACTOR? The current through the reactive component (I reactive) dissipates no power, and neither does it register on the watthour meter. However, the reactive current does dissipate power when flowing through other resistive components in the system, like the wires, the switches, and the loss part of a transformer (R line). Switches have to interrupt the total current, not just the active component. Wires have to be big enough to carry the entire current, etc. Correcting the power factor reduces the amount of over sizing necessary. 3.1 Power Factor Improvement Methods Normally the power factor of the whole load on large generating stations is in the region of 0.8 to 0.9. However sometimes it is lower in such cases it is generally desirable to take special steps to improve the power factor. This can be achieved by the following methods: By using Static Capacitor The power factor can be improved by connecting capacitors in parallel with the equipment operating at lagging power factor. The capacitor (generally known as static capacitor) draws a leading current and partly or completely neutralizes the lagging power factor component of load current. This raises the power factor of load. For three phase load, the capacitor can be connected in delta or star. Static capacitors are invariably used for power factor improvement in factories. Hence by connecting a capacitor in parallel with an inductive load, the power factor is improved and the current taken from the supply is reduced without altering either the current or power taken by the load. Figure 3.1: Static Capacitor By Synchronous Condenser A synchronous condenser is a synchronous motor operating at no load. It is a property of such a motor that it takes lagging kva, when the field current is below a certain value and a leading kva when the field current is above this value. The efficiency of this machine is very high. The real power it takes will be small, just its losses. For simplicity, let us consider a line having resistance R and inductive reactance X, and work in terms of voltage to neutral Ep, which may be assumed to be the same at the two ends of the line. The use of rotating synchronous condensers, common through the 1950s, is now making a comeback as an alternative to capacitors for power factor correction. Figure 3.2: Synchronous Condenser 3.2 Drawbacks of Low Power Factor The current for a given load supplied at constant voltage will be higher at a lower power factor and lower at higher power factor. The higher current due to poor power factor affects the system and results in following disadvantages. 1. Ratings of generators and transformers are proportional to their output current. Hence inversely proportional to power factor, therefore, large generators and transformers are required to deliver same load but at low power factor.

4 Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), November The cross sectional area of the bus-bar and the contact surface of the switch gear is required to be enlarged for the same power to be delivered, but at low power factor. 3. For the same power to be transmitted, but at low power factor, the transmission line or distributor or cable has to carry more current. The size of the conductor will have to be increased if current density in the line is to be kept constant. Thus more conductor material is required for transmission lines, distributors and cables to deliver the same load but at low power factor. 4. Energy losses are proportional to the square of the current, hence inversely proportional to the square of the power factor i.e., more energy losses incur at low power factor, which results in poor efficiency. 5. Low lagging power factor results in large voltage drop in generators, transformers, transmission lines and distributors, which results in poor regulation. Hence extra regulating equipments is required to keep the voltage drop within permissible limits. 6. Low lagging power factor reduces the handling capacity of all the elements of the system. IV. MICROCONTROLLER BASED PFC Static capacitors used for power factor correction have many advantages such as low cost, low space consumption, very low losses, extremely high efficiency, fast control, easy availability and safe handling. Despite these merits, power factor correction using static capacitors have not become the final word in power factor correction due to its inherent drawbacks such as need of complicated maintenance, higher 4.1 Block Diagram cost of the capacitors for high output and its uncontrollable nature. Of this, the uncontrollable nature or power capacitors have imposed the limit on universal acceptance of static capacitors for power factor correction. That is static capacitors currently used for power factor correction is available as bank of static capacitors which can be connected across the load either in star or delta. The problem with such banks is that they always draw the same amount of leading reactive power irrespective of the actual lagging reactive power drawn by the load. Thus capacitor banks are insensitive to power factor of the load and changes in power factor of the load. Some kind of controllable capacitor banks have been developed, but its not automatic, i.e. it needs an operator to determine the power factor of load, then determine the value of capacitance to be switched and then switches it from the bank. Thus features have declined the popularity of static capacitors in the field of power factor correction. This project aims at incorporating a sort of an automatic control of power factor of the load. This makes the device capable of sensing the power factor and the changes in power factor of the load and apply a correction as and when needed in the correct amount. Thus the power factor can always be kept at a fixed value or even unity. Thus effort is made to make an ordinary capacitor bank an automatic and controllable power factor correcting device. Thus the static capacitors can revert some of the most serious inherent drawbacks, thus increasing its popularity in power factor correction in electrical equipments and distributions and transmission networks. AC 230 V Zero Crossing Detectors SCR Step Down X-mer 9V-0-9V, 500mA Microcontroller AT89C51 Opto-Coupled Firing Circuit Capacitor Bank Regulated 5V DC ADC 0804 CT Load Figure 4.1: Block Diagram of Microcontroller Based PFC

5 Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), November Circuit Diagram 4.3 Zero Crossing Detector Figure 4.2: Circuit Diagram of Microcontroller Based Power Factor Correction Using SCR 4.4 Regulated +5V Power Supply Figure 4.3: Zero Crossing Detectors Figure 4.4: Regulated +5V Power Supply

6 Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), November Analog-to-Digital Converter & Current Transformer 4.6 Microcontroller & Display Figure 4.5: Analog-to-Digital Converter & Current Transformer 4.7 Thyristor Switch & PFC (Capacitor Bank Figure 4.6: Microcontroller & Display Figure 4.7: Thyristor Switch & PFC (Capacitor Bank)

7 Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), November Component Layout 4.9 PCB Layout Figure 4.8: Component Layout Figure 4.9: PCB Layout

8 Proceedings of International Conference on Innovation & Research in Technology for Sustainable Development (ICIRT 2012), November V. CONCLUSION This project work is an attempt to design and implement the power factor controller using micro controller. In this work there is a provision to define the own current minimum range and power factor minimum and maximum range and then according to the lagging power factor it takes the control action. This project gives more reliable and user friendly power factor controller. This project makes possible to store the real time action taken by the microcontroller. This project also facilitates to show the power factor changes on LCD in real time. REFERENCES [1] Principles of power system by V. K. Mehta [2] Power Electronics by Dr. P. S. Bhimbhra [3] Electrical power system by Ashfaq Husain [4] Electrical power system by C. L. Wadhwa [5] Advanced Microprocessors and peripherals by A.K. Ray and K.M. Bhurchandi [6] [7] [8] [9] [10]

Power Quality. Power Factor Wiring and Service. Background. Introduction. bchydro.com

Power Quality. Power Factor Wiring and Service. Background. Introduction. bchydro.com Power Quality Power Factor Wiring and Service Scope Power factor is a major consideration in efficient building or system operation. It is the measure of how effectively your equipment is converting electric

More information

Is Uncorrected Power Factor Costing You Money?

Is Uncorrected Power Factor Costing You Money? Is Uncorrected Power Factor Costing You Money? Are You Being Overcharged by Your Energy Provider? Find Out! Everyone s trying to lower their energy bill these days. If you re a business owner, facilities

More information

Power Factor Correction

Power Factor Correction AE9-1249 R10 August 2008 Power Factor Correction Index Page 1. Introduction... 1 2. Electrical Fundamentals... 1 3. Electrical Formulas... 2 4. Apparent Power and Actual Power... 2 5. Effects of Poor Power

More information

Working Principle of Power Saver as per Manufacture:

Working Principle of Power Saver as per Manufacture: Analysis the Truth behind Household Power Savers Introduction: A House hold power saving devices has recently received a lot of attention from both consumers and manufacturers. It is generally used in

More information

Electrical Power Electric power electrical electric power Electric power electric electric

Electrical Power Electric power electrical electric power Electric power electric electric Power Calculations Electrical Power Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Electric power is

More information

TECHNICAL TERMS AND ABBREVIATIONS

TECHNICAL TERMS AND ABBREVIATIONS THIRD REVISED SHEET NO. 3.1 CANCELS SECOND REVISED SHEET NO. 3.1 TECHNICAL TERMS AND ABBREVIATIONS ALTERNATING CURRENT (A-C): AMPERE: BASE RATES: BRITISH THERMAL UNIT (BTU): CAPACITOR or CAPACITANCE: CAPACITY

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (SJIF): 3.632 International Journal of Advance Research in Engineering, Science & Technology e-issn: 2393-9877, p-issn: 2394-2444 Volume 3, Issue 4, April-2016 AUTOMATIC POWER FACTOR CORRECTION

More information

ABB n.v Power Quality in LV installations

ABB n.v Power Quality in LV installations ABB n.v. - 1 - Power Quality in LV installations PQ problems in LV installations 750 500 250 Volts 0-250 -500 Amps -750 3000 2000 1000 0-1000 -2000-3000 10:25:43.72 10:25:43.73 10:25:43.74 10:25:43.75

More information

Pump ED 101. Power Factor (Part 2) - - Electricity Behaving Better

Pump ED 101. Power Factor (Part 2) - - Electricity Behaving Better Pump ED 101 Power Factor (Part 2) - - Electricity Behaving Better Joe Evans, Ph.D http://www.pumped101.com Last month we took a close look at the flow of voltage and current in purely resistive and inductive

More information

IJRASET 2013: All Rights are Reserved

IJRASET 2013: All Rights are Reserved Power Factor Correction by Implementation of Reactive Power Compensation Methods of 220 KV Substation MPPTCL Narsinghpur Ria Banerjee 1, Prof. Ashish Kumar Couksey 2 1 Department of Energy Technology,

More information

POWER FACTOR CORRECTION USING SHUNT COMPENSATION

POWER FACTOR CORRECTION USING SHUNT COMPENSATION International Journal of Electrical and Electronics Engineering (IJEEE) ISSN(P): 2278-9944; ISSN(E): 2278-9952 Vol. 3, Issue 3, May 2014, 39-48 IASET POWER FACTOR CORRECTION USING SHUNT COMPENSATION DHRUVI

More information

DC CIRCUITS ELECTROMAGNETISM

DC CIRCUITS ELECTROMAGNETISM DC CIRCUITS 1. State and Explain Ohm s Law. Write in brief about the limitations of Ohm s Law. 2. State and explain Kirchhoff s laws. 3. Write in brief about disadvantages of series circuit and advantages

More information

American Journal of Science, Engineering and Technology

American Journal of Science, Engineering and Technology American Journal of Science, Engineering and Technology 017; (4): 10-131 http://www.sciencepublishinggroup.com/j/ajset doi: 10.11648/j.ajset.017004.14 Application of Distribution System Automatic Capacitor

More information

Medium Voltage. Power Factor Correction Reactive Compensation Harmonic Filters. Electrical Power Quality Management at its best.

Medium Voltage. Power Factor Correction Reactive Compensation Harmonic Filters. Electrical Power Quality Management at its best. Medium Voltage Power Factor Correction Reactive Compensation Harmonic Filters POWER QUALITY Electrical Power Quality Management at its best. From electricity generation, transmission, thru its distribution

More information

International Journal of Advance Engineering and Research Development. Automatic Power Factor Correction in EHV System

International Journal of Advance Engineering and Research Development. Automatic Power Factor Correction in EHV System Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 Automatic Power

More information

ELG4125: Flexible AC Transmission Systems (FACTS)

ELG4125: Flexible AC Transmission Systems (FACTS) ELG4125: Flexible AC Transmission Systems (FACTS) The philosophy of FACTS is to use power electronics for controlling power flow in a transmission network, thus allowing the transmission line to be loaded

More information

Chapter 3.1: Electrical System

Chapter 3.1: Electrical System Part-I: Objective type Questions and Answers Chapter 3.1: Electrical System 1. The heat input required for generating one kilo watt-hour of electrical output is called as. a) Efficiency b) Heat Rate c)

More information

MYRON ZUCKER CALMANUAL POWER FACTOR CORRECTION APPLICATION GUIDE INC.

MYRON ZUCKER CALMANUAL POWER FACTOR CORRECTION APPLICATION GUIDE INC. MYRON ZUCKER CALMANUAL POWER FACTOR CORRECTION APPLICATION GUIDE INC. CALMANUAL HOW TO APPLY CAPACITORS TO LOW VOLTAGE POWER SYSTEMS. SECTION INDEX SECTION I POWER FACTOR UNDERSTANDING POWER FACTOR...

More information

TABLE OF CONTENTS CHAPTER 1 ELECTRICAL THEORY About This Textbook...xi. Passing Your Exam...xiv. How to Use the National Electrical Code...

TABLE OF CONTENTS CHAPTER 1 ELECTRICAL THEORY About This Textbook...xi. Passing Your Exam...xiv. How to Use the National Electrical Code... TABLE OF CONTENTS About This Textbook...xi Passing Your Exam...xiv How to Use the National Electrical Code... 1 CHAPTER 1 ELECTRICAL THEORY... 7 Unit 1 Electrician s Math and Basic Electrical Formulas...

More information

Power Quality Luis Vargas Research Engineer 9/18/2008

Power Quality Luis Vargas Research Engineer 9/18/2008 Page: 1 of 5 Luis Vargas Research Engineer 9/18/2008 Page: 2 of 5 As we make advances on green technology, we get a better understanding of the efficiencies and deficiencies on how we consume electricity.

More information

TABLE OF CONTENTS. About the Mike Holt Enterprises Team... xviii CHAPTER 1 ELECTRICAL THEORY... 1

TABLE OF CONTENTS. About the Mike Holt Enterprises Team... xviii CHAPTER 1 ELECTRICAL THEORY... 1 TABLE OF CONTENTS Introduction...xv About the Mike Holt Enterprises Team... xviii CHAPTER 1 ELECTRICAL THEORY... 1 Unit 1 Electrician s Math and Basic Electrical Formulas... 1 Part A Electrician s Math...

More information

UNIT 1 ELECTRICIAN S MATH AND BASIC ELECTRICAL FORMULAS...1 Introduction...1. UNIT 2 ELECTRICAL CIRCUITS...49 Introduction...49

UNIT 1 ELECTRICIAN S MATH AND BASIC ELECTRICAL FORMULAS...1 Introduction...1. UNIT 2 ELECTRICAL CIRCUITS...49 Introduction...49 UNIT 1 ELECTRICIAN S MATH AND BASIC ELECTRICAL FORMULAS...1 Introduction...1 PART A ELECTRICIAN S MATH...1 Introduction...1 1.1 Whole Numbers...1 1.2 Decimal...1 1.3 Fractions...1 1.4 Percentages...2 1.5

More information

PQC-STATCON. PPHVC-Power Quality Solutions. Instantaneous and stepless power quality compensation for dynamic reactive power and unbalanced loads

PQC-STATCON. PPHVC-Power Quality Solutions. Instantaneous and stepless power quality compensation for dynamic reactive power and unbalanced loads PQC-STATCON PPHVC-Power Quality Solutions Instantaneous and stepless power quality compensation for dynamic reactive power and unbalanced loads Contents What is poor power quality? Reasons for investing

More information

DYNACOMP. The top-class reactive power compensator

DYNACOMP. The top-class reactive power compensator DYNACOMP The top-class reactive power compensator Dynacomp vs Electromechanical switching of capacitors Electromechanical switching of capacitors The Dynacomp : the top-class dynamic compensator Transients

More information

Technical News. Power Factor Correction. What technology is best for you? Specialists in electrical and automation products, systems and solutions

Technical News. Power Factor Correction. What technology is best for you? Specialists in electrical and automation products, systems and solutions Issue #79 - Winter 2018 Technical News Specialists in electrical and automation products, systems and solutions Power Factor Correction What technology is best for you? Written by Samuel Hodgetts NHP nhp.com.au

More information

Table of Contents. CHAPTER 1 ElECTRiCAl THEoRY Mike Holt enterprises, inc neC.Code ( )

Table of Contents. CHAPTER 1 ElECTRiCAl THEoRY Mike Holt enterprises, inc neC.Code ( ) CHAPTER 1 ElECTRiCAl THEoRY... 1 UniT 1 electrician s MaTH and BasiC electrical formulas... 3 Introduction to Unit 1... 3 Part A Electrician s Math... 3 Introduction... 3 1.1 Whole Numbers... 3 1.2 Decimals...

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: STATIC DRIVES Class : EEE III TUTORIAL QUESTION BANK Group I QUESTION BANK ON SHORT ANSWER QUESTION UNIT-I 1 What is meant by electrical

More information

Reactive Power Management Using TSC-TCR

Reactive Power Management Using TSC-TCR Reactive Power Management Using TSC-TCR Kumarshanu Chaurasiya 1, Sagar Rajput 1, Sachin Parmar 1, Prof. Abhishek Patel 2 1 Student, Department of Electrical Engineering, Vadodara institute of engineering,

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK 16EET41 SYNCHRONOUS AND INDUCTION MACHINES UNIT I SYNCHRONOUS GENERATOR 1. Why the stator core is laminated? 2. Define voltage regulation

More information

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT Prof. Chandrashekhar Sakode 1, Vicky R. Khode 2, Harshal R. Malokar 3, Sanket S. Hate 4, Vinay H. Nasre 5, Ashish

More information

HOKKIM. Control & Protection Relays. giving you control. Utilization: Power Factor Regulator : 14-STEP CYCLIC POWER FACTOR REGULATOR.

HOKKIM. Control & Protection Relays. giving you control. Utilization: Power Factor Regulator : 14-STEP CYCLIC POWER FACTOR REGULATOR. HOKKIM giving you control Control & Protection Relays Model Description : HL-14c : 14-STEP CYCLIC POWER FACTOR REGULATOR. Utilization: Power Factor Regulator LEDs to indicate power on, capacitive or inductive

More information

kvah Billing - Frequently Asked Questions (FAQs)

kvah Billing - Frequently Asked Questions (FAQs) kvah Billing - Frequently Asked Questions (FAQs) 1. What is kvah billing? a. Electrical Energy has two components viz. Active Energy (kwh) and Reactive Energy (kvarh). Vector sum of these two components

More information

Power Factor Correction

Power Factor Correction Power Factor Correction Power Factor Correction and Voltage Optimisation have been around since the turn of the 20 th century and although in many cases their individual benefits and attributes make them

More information

POWER FACTOR REBATE-BOLD DECISION FROM REGULATOR

POWER FACTOR REBATE-BOLD DECISION FROM REGULATOR 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 153 POWER FACTOR REBATE-BOLD DECISION FROM REGULATOR Shefali K.Talati, S.B.Modi, U.C.Trivedi, K.M.Dave # Electrical Research and Development

More information

1 Low-voltage Power-factor Correction capacitors KNK APPLICATION DESIGN

1 Low-voltage Power-factor Correction capacitors KNK APPLICATION DESIGN APPLICATION The KNK capacitors are used for power - factor correction of inductive consumers (transformers, electric motors, rectifiers) in industrial networks for voltages of up to 660 V. DESIGN Cylindrical

More information

Table of Contents. CHAPTER 1 BASIC ELECTRICAL THEORY (Essential for Journeyman and Master s Licensing Exams)... 1

Table of Contents. CHAPTER 1 BASIC ELECTRICAL THEORY (Essential for Journeyman and Master s Licensing Exams)... 1 Introduction... x About This Textbook...xi Passing Your Exam...xiv How to Use the National Electrical Code... xviii About the Author...xxi About the Graphic Illustrator...xxii Mike Holt Enterprises Team...

More information

Alternator as a voltage Generating source and its response to the leading power factor loads

Alternator as a voltage Generating source and its response to the leading power factor loads Alternator as a voltage Generating source and its response to the leading power factor loads Presentation by: Jay Deshpande (Engineered Solutions- Mission Critical) Kohler Power Systems Washington, DC

More information

Measurement of induction motor characteristics

Measurement of induction motor characteristics Measurement of induction motor characteristics ES163 Electrical and Electronic Systems MR TJ KENNAUGH School of Engineering, University of Warwick 27/01/01 Summary The aim of the laboratory is to increase

More information

EKT112 Principles of Measurement and Instrumentation. Power Measurement

EKT112 Principles of Measurement and Instrumentation. Power Measurement EKT112 Principles of Measurement and Instrumentation Power Measurement 1 Outline Power? Power in DC and AC Circuits Power Measurements Power Instrumentation (Wattmeter) 2 Concept of Electric POWER Power

More information

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor 1 Chaudhari Krunal R, 2 Prof. Rajesh Prasad 1 PG Student, 2 Assistant Professor, Electrical Engineering

More information

Automatic capacitor banks and Automatic Power factor Correction Panels of inductive character loads in low voltage power networks.

Automatic capacitor banks and Automatic Power factor Correction Panels of inductive character loads in low voltage power networks. SME APFC Panels Description: APFC Panel means Automatic Power Factor Correction Panel. In some cases, in industrial applications, the loading pattern of the entire network will change from time to time.

More information

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION 1. What is meant by drive and electric drive? Machines employed for motion control are called drives and may employ any one of the prime movers for

More information

Induction Generator: Excitation & Voltage Regulation

Induction Generator: Excitation & Voltage Regulation Induction Generator: Excitation & Voltage Regulation A.C. Joshi 1, Dr. M.S. Chavan 2 Lecturer, Department of Electrical Engg, ADCET, Ashta 1 Professor, Department of Electronics Engg, KIT, Kolhapur 2 Abstract:

More information

Automatic Power Factor Correction Using Capacitor Banks and 8051 microcontroller

Automatic Power Factor Correction Using Capacitor Banks and 8051 microcontroller International Journal of Engineering and Technical Research (IJETR) Automatic Power Factor Correction Using Capacitor Banks and 8051 microcontroller Praveen V.A, Sumaya Fathima, Sumalata I. A, Badiger

More information

LUNERA BALLASTLED TECHNOLOGY AND POWER FACTOR

LUNERA BALLASTLED TECHNOLOGY AND POWER FACTOR LUNERA BALLASTLED TECHNOLOGY AND POWER FACTOR Replacing metal halide lamps in magnetic ballast-driven fi xtures with the Lunera MH HID LED Gen 2, a LED plug-and-play replacement, causes the ballast to

More information

Power Quality and Energy Management

Power Quality and Energy Management Power Quality and Energy Management 1 2 Contents Power Quality...2 Power Factor Correction...4 Voltage Optimisation...8 Harmonic Filters and Reactors...12 1 Captech is Power Investigation and identification

More information

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR 100 CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR 6.1 INTRODUCTION Conventional energy resources are not sufficient to meet the increasing electrical power demand. The usages of

More information

Volume 2 Charts, Formulas, and Other Useful Information

Volume 2 Charts, Formulas, and Other Useful Information Volume 2 Charts, Formulas, and Other Useful Information Aluminum Conductor Conductor Terminations 61 Compact Aluminum (Conduit Fill Tables) 68-79 Ampacity Dwelling Services 48 1-phase Loads on a 3-phase

More information

Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG)

Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG) Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG) 1 Mali Richa Pravinchandra, 2 Prof. Bijal Mehta, 3 Mihir D. Raval 1 PG student, 2 Assistant Professor,

More information

smartvar Dynamic VAR Compensator

smartvar Dynamic VAR Compensator smartvar Dynamic VAR Compensator DOES YOUR BUSINESS NEED TO SAVE MONEY? Discover a quick and easy way to identify cost saving opportunities. Improve the dynamic processes in your facility with smartvar.

More information

Power Quality. Static Var Generator (SVG) SVG Wallmount & SVG Cabinet Mount

Power Quality. Static Var Generator (SVG) SVG Wallmount & SVG Cabinet Mount Power Quality Static Var Generator (SVG) SVG Wallmount & SVG Cabinet Mount www.ges-group.com INTRODUCTION Introduction to Power Factor Power factor is a measure of how effectively your electrical equipment

More information

Installation and Maintenance Instructions. World Leader in Modular Torque Limiters. PTM-4 Load Monitor

Installation and Maintenance Instructions. World Leader in Modular Torque Limiters. PTM-4 Load Monitor World Leader in Modular Torque Limiters Installation and Maintenance Instructions PTM-4 Load Monitor 1304 Twin Oaks Street Wichita Falls, Texas 76302 (940) 723-7800 Fax: (940) 723-7888 E-mail: sales@brunelcorp.com

More information

LUNERA BALLASTLED TM TECHNOLOGY AND POWER FACTOR

LUNERA BALLASTLED TM TECHNOLOGY AND POWER FACTOR LUNERA BALLASTLED TM TECHNOLOGY AND POWER FACTOR Replacing metal halide lamps in magnetic ballast-driven fi xtures with the Lunera Susan Lamp, a LED plug-and-play replacement, causes the ballast to have

More information

Chapter 3.10: Energy Efficient Technologies in Electrical Systems

Chapter 3.10: Energy Efficient Technologies in Electrical Systems Chapter 3.10: Energy Efficient Technologies in Electrical Systems Part-I: Objective type questions and answers 1. Maximum demand controller is used to. a) switch off essential loads in a logical sequence

More information

Transforming Energy.. For Advanced Technology

Transforming Energy.. For Advanced Technology Transforming Energy.. Manufacturers of CE approved Transformers & Reactors Five Decades of Manufacturing Experience Manufacturers of Quality Reliable Transformers. Auto C 201,4 th Cross Peenya Induatrial

More information

UPS Ratings-Not so Apparent

UPS Ratings-Not so Apparent App Notes ~ Outdoor Power System Design and Cost Considerations Application Notes Outdoor Power System Design and Cost Considerations 1 Authors Peter Nystrom President TSi Power Corp. Jason Marckx Chief

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 0 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING : Static Drives : A60225 : III -

More information

Regulation: R16 Course & Branch: B.Tech EEE

Regulation: R16 Course & Branch: B.Tech EEE SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (Descriptive) Subject with Code : Electrical Machines-II (16EE215) Regulation: R16 Course & Branch: B.Tech

More information

Zero Cross Over Turn On Thyristor Switch Card for Capacitor Bank

Zero Cross Over Turn On Thyristor Switch Card for Capacitor Bank Zero Cross Over Turn On Thyristor Switch Card for Capacitor Bank TSC-306-S/TSC-303-S TSC-306-D/TSC-303-D Description: Libratherm offers Thyristor Switch Card model TSC-306 which is specially designed for

More information

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines Department of Electrical Engineering Lecture Introduction to Electrical Machines 1 In this Lecture Induction motors and synchronous machines are introduced Production of rotating magnetic field Three-phase

More information

Unit III-Three Phase Induction Motor:

Unit III-Three Phase Induction Motor: INTRODUCTION Unit III-Three Phase Induction Motor: The three phase induction motor runs on three phase AC supply. It is an ac motor. The power is transferred by means of induction. So it is also called

More information

Renewable Energy Systems 14

Renewable Energy Systems 14 Renewable Energy Systems 14 Buchla, Kissell, Floyd Chapter Outline The Electric Power Grid 14 Buchla, Kissell, Floyd 14-1 THREE-PHASE AC 14-2 THREE-PHASE TRANSFORMERS 14-3 GRID OVERVIEW 14-4 SMART GRID

More information

Learning Objectives:

Learning Objectives: Topic 5.5 High Power Switching Systems Learning Objectives: At the end of this topic you will be able to; recall the conditions under which a thyristor conducts; explain the significance of the following

More information

Exercise 6. Three-Phase AC Power Control EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to three-phase ac power control

Exercise 6. Three-Phase AC Power Control EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to three-phase ac power control Exercise 6 Three-Phase AC Power Control EXERCISE OBJECTIVE When you have completed this exercise, you will know how to perform ac power control in three-phase ac circuits, using thyristors. You will know

More information

Advance Electronic Load Controller for Micro Hydro Power Plant

Advance Electronic Load Controller for Micro Hydro Power Plant Journal of Energy and Power Engineering 8 (2014) 1802-1810 D DAVID PUBLISHING Advance Electronic Load Controller for Micro Hydro Power Plant Dipesh Shrestha, Ankit Babu Rajbanshi, Kushal Shrestha and Indraman

More information

Reactive Power Compensation using 12 MVA Capacitor Bank in 132/33 KV Distribution Substation

Reactive Power Compensation using 12 MVA Capacitor Bank in 132/33 KV Distribution Substation Reactive Power Compensation using 12 MVA Capacitor Bank in 132/33 KV Distribution Substation Yogesh U Sabale 1, Vishal U Mundavare 2, Pravin g Pisote 3, Mr. Vishal K Vaidya 4 1, 2, 3, 4 Electrical Engineering

More information

EPRLAB FAQ v1.0 Page 1 / 8 Copyright EPRLAB December 2015

EPRLAB FAQ v1.0 Page 1 / 8 Copyright EPRLAB December 2015 e EPRLAB FAQ v1.0 Page 1 / 8 e EPRLAB Electric Power Research Laboratory, EPRLAB is a high-tech power electronics company that has been specialized on design, manufacturing and implementation of industrial

More information

Liebert. FP 50Z kva

Liebert. FP 50Z kva Liebert FP 50Z 5 250 kva Enabling Tomorrow s CRITICAL EDGE INFRASTRUCTURE We helped some of the largest names in the industry bring new capacity online faster and at a lower cost when search and social

More information

R07 SET - 1

R07 SET - 1 R07 SET - 1 II B. Tech II Semester Supplementary Examinations April/May 2013 ELECTRICAL MACHINES - II (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions All

More information

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER EXPERIMENT CALIBRATION OF PHASE ENERGY METER THEORY:- Energy Meters are integrating instruments used to measure the quantity of electrical energy supplied to a circuit in a given time. Single phase energy

More information

R13 SET - 1. b) Describe different braking methods employed for electrical motors. [8M]

R13 SET - 1. b) Describe different braking methods employed for electrical motors. [8M] Code No:RT32026 R13 SET - 1 III B. Tech II Semester Regular Examinations, April - 2016 POWER SEMICONDUCTOR DRIVES (Electrical and Electronics Engineering) Time: 3 hours Maximum Marks: 70 Note: 1. Question

More information

Low Voltage Power Factor Corrections

Low Voltage Power Factor Corrections Low Voltage Power Factor Corrections Capacitors Contents General information on Iskra Capacitors Type Page Introduction 4 1. Single-phase capacitor type KNK5015 230 550 V, 1,67.5 kvar 2. Three-phase capacitors

More information

Application Note CTAN #127

Application Note CTAN #127 Application Note CTAN #127 Guidelines and Considerations for Common Bus Connection of AC Drives An important advantage of AC drives with a fixed DC is the ability to connect the es together so that energy

More information

Review paper on Fault analysis and its Limiting Techniques.

Review paper on Fault analysis and its Limiting Techniques. Review paper on Fault analysis and its Limiting Techniques. Milap Akbari 1, Hemal Chavda 2, Jay Chitroda 3, Neha Kothadiya 4 Guided by: - Mr.Gaurang Patel 5 ( 1234 Parul Institute of Engineering &Technology,

More information

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014 Q.2 a. Explain in detail eddy current losses in a magnetic material. Explain the factors on which it depends. How it can be reduced? IETE 1 b. A magnetic circuit with a single air gap is shown in given

More information

Chapter 3.2: Electric Motors

Chapter 3.2: Electric Motors Part I: Objective type questions and answers Chapter 3.2: Electric Motors 1. The synchronous speed of a motor with 6 poles and operating at 50 Hz frequency is. a) 1500 b) 1000 c) 3000 d) 750 2. The efficiency

More information

White Paper Load Banks for Power System Testing

White Paper Load Banks for Power System Testing White Paper s for Power System Testing A load bank provides a consistent and repeatable electrical load that can be accurately controlled, measured and recorded. Load banks convert or dissipate the resultant

More information

Electrical Machines -II

Electrical Machines -II Objective Type Questions: 1. Basically induction machine was invented by (a) Thomas Alva Edison (b) Fleming (c) Nikola Tesla (d) Michel Faraday Electrical Machines -II 2. What will be the amplitude and

More information

Eskisehir Light Train- Correcting Capacitive

Eskisehir Light Train- Correcting Capacitive Case Study-Estram Light Train Eskisehir Light Train- Correcting Capacitive Power Factor Eskisehir, a city in the Anatolia region of Turkey is located in an area inhabited since at least 3500 BCE- the copper

More information

POWER FACTOR CORRECTION OF FAST DYNAMICS INDUSTRIAL LOADS

POWER FACTOR CORRECTION OF FAST DYNAMICS INDUSTRIAL LOADS ABSTRACT POWER FACTOR CORRECTION OF FAST DYNAMICS INDUSTRIAL LOADS Marcos Isoni, Electrician Engineer / Power Quality Specialist In many industrial plants (as well in some large commercial buildings),

More information

QUESTION BANK SPECIAL ELECTRICAL MACHINES

QUESTION BANK SPECIAL ELECTRICAL MACHINES SEVENTH SEMESTER EEE QUESTION BANK SPECIAL ELECTRICAL MACHINES TWO MARK QUESTIONS 1. What is a synchronous reluctance 2. What are the types of rotor in synchronous reluctance 3. Mention some applications

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : PSD (16EE223) Year & Sem: III-B.Tech & II-Sem Course & Branch: B.Tech

More information

ELECTRIC POWER AND HOUSEHOLD CIRCUITS

ELECTRIC POWER AND HOUSEHOLD CIRCUITS ELECTRIC POWER AND HOUSEHOLD CIRCUITS HEATING EFFECT OF CURRENT Heating effect of electricity is one of the widely-used effects in the world. When electric current is passed through a conductor, it generates

More information

Systematic Survey for Role of Reactive Power Compensating Devices in Power System

Systematic Survey for Role of Reactive Power Compensating Devices in Power System MIT International Journal of Electrical and Instrumentation Engineering, Vol. 3, No. 2, August 2013, pp. 89 94 89 Systematic Survey for Role of Reactive Power Compensating Devices in Power System Gaurav

More information

UNIT-I ALTERNATORS PART-A

UNIT-I ALTERNATORS PART-A UNIT-I ALTERNATORS 1. What principle is used in Alternators? 2. What are the requirements of an alternator? 3. Mention the types of alternator rotor. 4. What is hunting in alternators? 5. What are the

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill)

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill) GENERATOR INTERCONNECTION APPLICATION Category 2 (Combined) For All Projects with Aggregate Generator Output of More Than 20 kw but Less Than or Equal to 150 kw Also Serves as Application for Category

More information

CONTROLLIX CORPORATION CONTROLLIX.COM LOW VOLTAGE AUTOMATIC SWITCH CAPACITOR BANK SPECIFICATIONS

CONTROLLIX CORPORATION CONTROLLIX.COM LOW VOLTAGE AUTOMATIC SWITCH CAPACITOR BANK SPECIFICATIONS LOW VOLTAGE AUTOMATIC SWITCH CAPACITOR BANK SPECIFICATIONS I. SCOPE a. This specification describes the necessary requirements for the design, fabrication, and operation of automatically switched, low

More information

ECE1750, Spring Motor Drives and Other

ECE1750, Spring Motor Drives and Other ECE1750, Spring 2018 Motor Drives and Other Applications 1 Three-Phase Induction Motors Reliable Rugged Long lived Low maintenance Efficient (Source: EPRI Adjustable Speed Drives Application Guide) The

More information

ENERGY EFFICIENT MOTORS AND POWER SAVING Dr. K. Brahmanandam E.E.E Department, M.V.S.R.E.C, Hyderabad, India

ENERGY EFFICIENT MOTORS AND POWER SAVING Dr. K. Brahmanandam E.E.E Department, M.V.S.R.E.C, Hyderabad, India ENERGY EFFICIENT MOTORS AND POWER SAVING Dr. K. Brahmanandam E.E.E Department, M.V.S.R.E.C, Hyderabad, India Abstract In the Industries most of the motors are standard three phase induction motors. The

More information

A Review on Reactive Power Compensation Technologies

A Review on Reactive Power Compensation Technologies IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 11, 2017 ISSN (online): 2321-0613 A Review on Reactive Power Compensation Technologies Minal Dilip Sathe 1 Gopal Chaudhari

More information

Power System Solutions (PSS)

Power System Solutions (PSS) About Power System Solutions mission The Power System Solutions Mission Statement To achieve customer satisfaction by providing innovative solutions to improve upon power quality, energy efficiency, and

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 MECHANICAL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A40203 Class : II B. Tech I Semester Branch :

More information

Electric cars: Technology

Electric cars: Technology In his lecture, Professor Pavol Bauer explains all about how power is converted between the various power sources and power consumers in an electric vehicle. This is done using power electronic converters.

More information

Application manual Dry type power factor correction capacitors

Application manual Dry type power factor correction capacitors Application manual Dry type power factor correction capacitors L O W V O L T A G E N E T W O R K Q U A L I T Y General Index General information... 6.2 6.3 Basic concepts What is power factor Why improve

More information

Synchronous motor control. 8/15/2007 Powerflow Technologies Inc 1

Synchronous motor control. 8/15/2007 Powerflow Technologies Inc 1 Synchronous motor control 8/15/2007 Powerflow Technologies Inc 1 PLC Lubrication units Cooling Water DCS PLC Dampers SUB BD Breaker Protection relay Field Application Kiln System Fan Hydraulic Unit Instrumentation

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ME 6351 ELECTRICAL DRIVES AND CONTROL UNIVERSITY QUESTIONS AND ANSWERS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ME 6351 ELECTRICAL DRIVES AND CONTROL UNIVERSITY QUESTIONS AND ANSWERS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ME 6351 ELECTRICAL DRIVES AND CONTROL UNIVERSITY QUESTIONS AND ANSWERS 1) What is the Necessity of starter? UNIT 3 Two Marks Both

More information

JORIND 9(2) December, ISSN

JORIND 9(2) December, ISSN LOSS MINIMISATION IN TRANSMISSION AND DISTRIBUTION NETWORKS S. Musa and A. G. Ellams Department of Electrical Engineering, Kaduna Polytechnic, Kaduna Abstract One of the outstanding and major problems

More information

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors 1. What are the two main parts of a three-phase motor? Stator and Rotor 2. Which part of a three-phase squirrel-cage induction motor is a

More information

CHAPTER 19 DC Circuits Units

CHAPTER 19 DC Circuits Units CHAPTER 19 DC Circuits Units EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Circuits Containing Capacitors in Series and

More information