DESIGN OF COMPACT PERMANENT-MAGNET SYNCHRONOUS MOTORS WITH CONCENTRATED WINDINGS

Size: px
Start display at page:

Download "DESIGN OF COMPACT PERMANENT-MAGNET SYNCHRONOUS MOTORS WITH CONCENTRATED WINDINGS"

Transcription

1 DESIGN OF COMPACT PERMANENT-MAGNET SYNCHRONOUS MOTORS WITH CONCENTRATED WINDINGS CSABA DEAK, ANDREAS BINDER Key words: Synchronous motor, Permanent magnet, Concentrated winding. The design and comparison of three permanent magnet motors for a constant power of 45 kw at rot/min rated speed, and rot/min maximum speed, with concentrated windings and different kinds of water jacket cooled stator and PM rotor is presented. Motor A and motor B have surface mounted magnets and equal tooth widths with coils wound on each tooth, but different number of stator slots, while motor C has buried magnets and unequal tooth widths and coils wound on each second tooth. The simulation results show that motor A has the smallest current rating and the highest power factor but has the biggest cogging torque and torque ripple at load. Motor B produces the smoothest torque and smallest cogging torque but also the highest total losses. Motor C yields the lowest total losses and has the better thermal behavior but has the lowest power factor and the highest current rating. 1. INTRODUCTION Modern variable speed drives demand compact electrical motors with high power- and torque density, which produce at the same time small losses. As an alternative for the squirrel cage asynchronous motor, which is used nowadays in the middle power range, three inverter-fed permanent magnet motors were designed with help of finite element program FEMAG for a constant power of 45 kw and 230 V phase voltage at rot/min rated speed and rot/min maximum speed. In order to increase the torque density and to reduce the losses, the so called modular synchronous machine with concentrated tooth coil windings is applied due to the short winding overhangs, which lead to reduced copper losses and reduced axial length [1 3]. The three models were designed with identical number of poles (2p = 24), stator inner- and outer diameter and active length (Table 2). Differences are in the stator and rotor geometries. Motor A and B have surface mounted magnets and equal tooth widths with coils wound on each tooth, while motor C has buried Darmstadt University of Technology / Department of Electrical Energy Conversion, Darmstadt, Germany, "Csaba Deak" <cdeak@ew.tu-darmstadt.de> Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 52, 2, p , Bucarest, 2007

2 184 Csaba Deak, Andreas Binder 2 magnets and unequal tooth widths with coils wound on alternate teeth. The basic design for the motors is described and the calculated steady state electromagnetic performance as well as the thermal behavior is evaluated, showing that motor A has the smallest current rating and the highest power factor but has the biggest torque ripple. Motor B produces the smoothest torque but also the highest total losses, while motor C has the best thermal utilization and the lowest total losses, but has the lowest power factor due to the higher current rating. 2. BASIC DESIGN 2.1. MOTOR GEOMETRY Three different stator and two different rotor designs were considered and optimised in order to determine the better solution for the power & torque demand (45kW/430 Nm at 1000 rot/min 45kW/143 Nm at rot/min) and the thermal demands of Thermal Class F (limit of average winding temperature 145 C). The geometries and the winding configurations are presented in Fig. 1, where U, V and W are the three phases, while + and are the wounding directions of the coils. The identical stator outer diameter, active iron length and the shaft diameter allow the application of an identical water jacket cooling system as well as identical end shields, bearings, shafts, position sensors and motor mounting, simplifying thus a lot the manufacturing process of the prototypes. The identical stator inner diameter and the identical pole number give the advantage, that the two rotors can be eventually interchanged in order to test the behaviour of the different stator-rotor combinations. a c b Fig. 1 Geometry and winding configurations: a) motor A; b) motor B; c) motor C.

3 3 Permanent magnet synchronous motors with concentrated windings STATOR DESIGN Motor A has 24 semi-closed slots with constant tooth width and coils wound on each tooth (Fig. 1a) resulting in eight coils per each phase, all connected in parallel [1]. Round copper wire is used for the windings. The number of slots per pole and phase is q = 0.5 which means a ratio of 2/3 between the coil width and the pole pitch and thus a rather low pitching factor k p of for the fundamental. The distribution factor k d is unity due to the tooth-wound coils and multiplied with the pitching factor it gives the winding factor k w [2]. The deep and narrow slots produce a big slot stray flux, leading to a rather low power factor, but are necessary in order to compensate the low winding factor with a high current loading A, thus an increased number of turns per phase (Table 1). Motor B has 18 semi-closed slots with constant tooth width and coils wound on each tooth (Fig. 1b) resulting in six coils per phase. The number of slot per pole and phase is q = 3/8 which means a ratio of 8/9 between the coil width and the pole pitch and thus a big winding factor k w of for the fundamental. This configuration produces two sub-harmonics of the air gap field at load, which results in a higher harmonic leakage causing a lower power factor. Due to the winding arrangement, three coils have to be connected in serial and then connected in parallel with the other three coils. In this case each phase conductor consists of 5 internal wires (strand in hands). The big disadvantage is the occurrence of additional copper losses due to the 1 st order current displacement. This effect is totally eliminated in motor A due to the fact that all coils are connected in parallel and thus the phase conductors consist of only one wire per turn. Motor C (Fig. 1c) has 24 open slots and unequal tooth widths [1]. The alternate teeth have parallel sides to carry prefabricated coils. The appropriate width of the intermediate teeth allows increasing the coil pitch so that a ratio close to unity between coil width and pole pitch and thus a high winding factor can be obtained [1, 2]. This is 0.98 for the fundamental (Table 1). Each slot holds one coil side of one phase, which means that the number of slot per pole and phase is q = The resulting four coils per phase are connected in parallel, so no 1 st order current displacement occurs. Profiled copper wire is used for the windings, thus an increased slot fill factor of 59% is achieved. The deep and narrow slots together with the big sub harmonic air gap field at load, which will occur at a q = 0.25 configuration, cause a low power factor, but give a good field weakening capability [2].

4 186 Csaba Deak, Andreas Binder 4 Table 1 Winding parameters Motor A B C Number of turns per coil Number of parallel connections Number of strand in hands Number of turns per phase Connection of phases Y Y Y Wire diameter/dimensions (mm) Slot fill factor Winding factor (of fundamental) Resistance per phase (at 145 C) (mω) ROTOR DESIGN High energy NdFeB permanent magnets are used with a remanence of B R = 1.1 T (150 C) and a coercive field strength of H cb = 712 ka/m. The rotors of motor A and motor B are identical with magnets mounted on the rotor surface and fixed with a bandage (Fig. 1a, b). In order to reduce the cogging torque and the torque ripple at load, the pole coverage of the magnets was reduced to 77% of the pole pitch [1]. In order to reduce the losses in the magnets due to air gap field space harmonics, segmented magnet poles are considered (Table 2). Motor C is designed with buried magnets, so no bandage is necessary (Fig. 1c). The iron contour above the magnets allows an optimisation of the air gap geometry by an appropriate modelling of the rotor surface and thus a nearly sinusoidal rotor field is obtained [1], if slot opening influence is neglected. The variable air gap has a minimum of δ 0 = 0.5 mm in the pole axis (Table 2). 3. ELECTROMAGNETIC PERFORMANCE 3.1. NO-LOAD OPERATION The open circuit air gap flux density and the cogging torque are determined by 2D numerical calculation at no-load. From the no-load field distribution (Fig. 2) it can be seen, that the intermediate teeth of motor C have a flux concentration at the stator bore due to their small width at the wedges. This means that this small area is saturated already at no-load. The flux density distribution in the air gap (Fig. 3) for four pole pitches shows that motor A and motor B have a mainly trapezoidal air gap flux density. The influence of the small inter-pole gaps as well as of the semi-closed slot openings is clearly visible, as well as the influence of segmentation of the surface magnets. The slot openings produce the biggest

5 5 Permanent magnet synchronous motors with concentrated windings 187 distortion of the radial air gap flux density distribution, considered in the middle of the air gap. Due to the open slots, thus bigger slot openings and the unequally distributed slots, this effect is much bigger for motor C causing a high harmonic content of the air gap field even if the rotor surface optimisation yields a nearly sinusoidal rotor field [1]. * teeth with coils Table 2 Motor dimensions Motor A B C Stator outer diameter (mm) Stator bore diameter (mm) Active length (mm) Stator yoke height (mm) Number of stator slots Stator tooth width (mm) * Stator slot opening (mm) Air gap (mm) (=δ 0 ) Bandage (mm) Number of poles Magnets / pole Magnet height (mm) Magnet width (mm) Pole coverage ratio α m (%) Rotor yoke height (mm) Shaft diameter (mm) The gaps between the magnet segments of one pole do not have an influence on the air gap field as it was the case with motor A and motor B, because of the smooth rotor iron surface. The cogging torque of a motor depends on the ratio between the number of slots and poles, the stator/rotor geometry and also on the pole coverage of the magnets. Here un-skewed stator and rotor are considered. The influence of the pole coverage on the cogging torque and on the torque ripple at load at rated current and field oriented control (I sd = 0) was examined in [1] for motor A for a pole coverage varying between 55% and 100%, resulting in a minimum ripple at 77 % pole coverage. The cogging torque of motor A is reduced by 40% compared to 100% pole coverage ratio and is 5.3% of the rated torque. With the same pole coverage, Motor B has a much smaller cogging torque of 0.7% of rated torque while motor C produces a cogging torque of 1.9% of the rated torque (Fig. 4).

6 188 Csaba Deak, Andreas Binder 6 a b c Fig. 2 Calculated no-load field distribution: a) motor A; b) motor B; c) motor C.

7 7 Permanent magnet synchronous motors with concentrated windings 189 a b c Fig. 3 Calculated radial component of air gap flux density distribution at no-load: a) motor A; b) motor B; c) motor C.

8 190 Csaba Deak, Andreas Binder 8 Cogging torque [N m] Rotor position Fig. 4 Cogging torque at α m = 77% LOAD OPERATION The three motors are designed for power converter operation with a fundamental r.m.s. phase voltage of 230 V. They have to generate a steady-state torque of 430 Nm at rot/min rated speed and 143 Nm at maximum speed of rot/min. This requires a high current loading A, which leads to a rather big synchronous reactance and a low power factor at field oriented control, where only q-component current I sq is applied. In order to determine the necessary currents at rated and maximum speed for given torque, the current I s and angle γ (angle between q-axis and I s ) are varied until the demanded torque and the maximum phase voltage is reached. The power factor can be improved if also a negative d- component current I sd is supplied to the windings (Fig. 5). This will shift the current phasor I s towards the voltage phasor U s. At constant phase current I s, I sq is reduced due to I sq =I s I sd and thus U s is shifted towards the q-axis, reducing the angle ϕ between phase current and voltage. By increasing γ, U s will be reduced due to the increased I sd while the power factor cosϕ will increase [1]. Varying γ between 0 and 35 el, the torque will increase at the beginning, and then it decreases again. The reason for this behaviour is the reluctance torque, which is prominent, when also d-component current is applied. The voltage decreases with increasing γ and reaches the value 230 V at 16 el for motor A, 20 el for motor B and 18 el for motor C, respectively. At these angles the torque still has

9 9 Permanent magnet synchronous motors with concentrated windings 191 the requested value and the power factor is increased by 0.1 compared to operation with γ = 0 el. The results of the simulated steady state electromagnetic performance are presented in Table 3 for rated speed and Table 4 for maximum speed respectively. a b c Fig. 5 Phasor diagrams at rated speed: a) motor A; b) motor B; c) motor C. Table 3 Electromagnetic performance at rated speed Motor A B C Speed (rot/min) Phase voltage (V) Frequency (Hz) Phase current (A) Angle γ ( el) Power factor Torque (Nm) Torque ripple (of rated torque) Current loading (A/cm) Current density (A/mm 2 ) Thermal load A J (A/cm A/mm 2 ) Ohmic losses (at 145 C) (W)* Iron losses in stator (W)* *Calculated for sinusoidal voltage and current supply.

10 192 Csaba Deak, Andreas Binder 10 Table 4 Electromagnetic performance at maximum speed Motor A B C Speed (rot/min) Phase voltage (V) Frequency (Hz) Phase current (A) Angle γ ( el) Power factor Torque (Nm) Torque ripple (% of rated torque) Current loading (A/cm) Current density (A/mm 2 ) Thermal load A J (A/cm A/mm 2 ) Ohmic losses (at 145 C) (W)* Iron losses in stator (W)* *Calculated for sinusoidal voltage and current supply. Analysing the torque ripple at rated speed (Fig. 6) results, that motor B has the smoothest torque with the smallest ripple, while motor A and motor C produce similar torque ripple amplitudes. Additional losses, which occur in the windings due to 1 st and 2 nd order current displacement and in the magnets due to flux pulsation are calculated at sinusoidal and voltage source inverter supply. A PWM operation with 3 khz inverter pulse frequency was simulated (Table 5). Fig. 6 Torque ripple at rated speed.

11 11 Permanent magnet synchronous motors with concentrated windings 193 Table 5 Additional losses in windings and in magnets [W] Motor A Motor B Motor C Speed (rot/min) Supply Sinus Winding Magnets Supply Inverter Winding Magnets COMPARISON OF THE ELECTROMAGNETIC PERFORMANCES Comparing the designed motors A, B and C, based on no-load and load calculations, we can see that motor A has the smallest current rating and the highest power factor at rated speed but has the biggest thermal load due to I 2 R losses as well as the biggest cogging torque and torque ripple at load. Motor B produces the smoothest torque at all investigated operating points but has also the highest total losses due to increased additional eddy current losses especially at high frequencies. This is a major setback for the thermal behaviour. Regarding the current rating and the power factor, motor B stands between motor A and C. Compared to motor A, motor C produces smaller cogging torque and torque ripple but needs a 20% higher current at rated speed. Nevertheless due to the 30% smaller phase resistance it generates smaller ohmic losses and has a lower thermal load at both points of operation. The bigger slot openings cause a bigger harmonic distortion of the air gap field, even if the rotor field is almost sinusoidal due to the rotor outer contour optimisation, so that the power factor of motor C is the lowest at rated speed. The currents at maximum speed of motor B and motor C for 143 Nm are almost the same as the current of motor A due to the higher synchronous reactance, which allows a better field weakening ability. The fractional slot configuration leads to increased losses in the magnets especially at higher speed which could cause an overheating of the magnets. In the considered cases the lowest magnet losses occur for motor C at both rated and maximum speed while in motor B the surface mounted magnets and the bigger slot openings due to lower slot number than motor A shows the highest losses in the magnets. 4. THERMAL ANALYSIS An identical water-jacket cooling system at 45 C is designed for all three motors with a circumferential spiral cooling duct with 14 turns and with a heat

12 194 Csaba Deak, Andreas Binder 12 transfer coefficient of α K = W/m 2 K, which corresponds to 9 l/s water flow rate and 1.66 m/s water velocity [1]. A 2D thermal calculation was performed with help of finite element program ANSYS to verify the thermal behaviour of the motors, first without any resin impregnation in the slots. Due to the symmetrical heat distribution, only two magnet poles are simulated for motor A and motor C and four magnet poles for motor B with the corresponding stator segments. Due to the smaller slot fill factor (lower heat transfer) and bigger copper losses, motor A would excessively heat up without resin impregnation with a maximum temperature of above 200 C in the windings while motor C would reach a maximum temperature of above 300 C which is more than the temperature limit of the isolation. To avoid this, the coils are embedded in resin. For simulation, a heat conduction average value of resin and air of W/mK has been used. In this way the maximum temperature is reduced to 144 C (Fig. 7a) and 203 C respectively (Fig. 7b). The heat transfer of motor C is the best due to the high slot fill factor and so the temperature does not exceed 110 C (Fig. 7c) at rated and maximum speed (Table 6). a c b Fig. 7 Temperature distribution at rated speed: a) motor A; b) motor B; c) motor C.

13 13 Permanent magnet synchronous motors with concentrated windings 195 Table 6 Calculated winding temperatures Motor A Motor B Motor C Speed (rot/min) ϑ Hotspot ( C) (max. 155 C) ϑ average ( C) (max. 145 C) Speed (1/min) ϑ Hotspot ( C) (max. 155 C) ϑ average ( C) (max. 145 C) Motor B on the other hand exceeds the temperature limit at both rated and maximum speed due to the additional 1 st order losses caused by current displacement. 5. CONCLUSIONS Three permanent magnet motors were designed with concentrated tooth coil windings for a constant power of 45 kw and 230 V phase voltage at rot/min rated speed and rot/min maximum speed. Due to the high electromagnetic utilisation and the fractional slot winding design, the power factor of these models ranges only between , but it is improved by 0.1 with help of negative d- current supplied to the windings. The models are designed with identical number of poles, stator inner- and outer diameter and active length. Motor A and motor B have surface mounted rotor magnets and equal tooth widths with coils wound on each tooth, while motor C has buried magnets and unequal tooth widths with coils wound on alternate teeth. The calculated electromagnetic performance at no-load and load operation shows, that motor C has a better thermal utilisation, smaller cogging torque and torque ripple at load, yields lower total losses at rated speed due to the smaller phase resistance but has a smaller power factor and 20% higher current rating than motor A. Motor B produces the smallest torque ripples but also the highest total losses due to increased additional eddy current losses which lead to high temperatures in the windings at high speed, exceeding the thermal limits of the insulation. Motor A and motor C are currently built as prototypes (Figs. 8, 9).

14 196 Csaba Deak, Andreas Binder 14 a Fig. 8 Built prototype stators (under construction): a) motor A; b) motor C. b a b Fig. 9 Built prototype rotors (under construction): a) motor A; b) motor C.

15 15 Permanent magnet synchronous motors with concentrated windings 197 The two motors will be tested in order to verify and evaluate the calculation results. Then the two rotors will be interchanged and the new stator-rotor combinations will be tested also. Received on 16 July 2006 REFERENCES 1. C. Deak, A. Binder, Highly utilised permanent magnet synchronous machines with tooth-wound coils for industrial applications, Proc. Electromotion 05, Lausanne, Switzerland, Sept. 2005, CD-ROM. 2. T. Koch, A. Binder, Permanent magnet machines with fractional slot winding for electric traction, Proc. ICEM 02, Brugge, Belgium, Aug. 2002, CD-ROM. 3. D. Ishak, Z. Q. Zhu, D. Howe, Permanent-magnet brushless machine with unequal tooth widths and similar slot and pole numbers, IEEE Transactions on Industry Applications, 41, 2, March/April 2005, pp

CHAPTER 5 ANALYSIS OF COGGING TORQUE

CHAPTER 5 ANALYSIS OF COGGING TORQUE 95 CHAPTER 5 ANALYSIS OF COGGING TORQUE 5.1 INTRODUCTION In modern era of technology, permanent magnet AC and DC motors are widely used in many industrial applications. For such motors, it has been a challenge

More information

Joule losses of magnets in permanent magnet synchronous machines - case concentrated winding machine

Joule losses of magnets in permanent magnet synchronous machines - case concentrated winding machine Joule losses of magnets in permanent magnet synchronous machines - case concentrated winding machine Hanne Jussila Lappeenranta University of Technology 1 Joule losses of permanent magnets Eddy current

More information

Permanent Magnet Machines for Distributed Generation: A Review

Permanent Magnet Machines for Distributed Generation: A Review Permanent Magnet Machines for Distributed Generation: A Review Paper Number: 07GM0593 Authors: Tze-Fun Chan, EE Department, The Hong Kong Polytechnic University, Hong Kong, China Loi Lei Lai, School of

More information

Converteam: St. Mouty, A. Mirzaïan FEMTO-ST: A. Berthon, D. Depernet, Ch. Espanet, F. Gustin

Converteam: St. Mouty, A. Mirzaïan FEMTO-ST: A. Berthon, D. Depernet, Ch. Espanet, F. Gustin Permanent Magnet Design Solutions for Wind Turbine applications Converteam: St. Mouty, A. Mirzaïan FEMTO-ST: A. Berthon, D. Depernet, Ch. Espanet, F. Gustin Outlines 1. Description of high power electrical

More information

Design of Brushless Permanent-Magnet Machines. J.R. Hendershot Jr. T.J.E. Miller

Design of Brushless Permanent-Magnet Machines. J.R. Hendershot Jr. T.J.E. Miller Design of Brushless Permanent-Magnet Machines J.R. Hendershot Jr. T.J.E. Miller Contents 1 GENERAL INTRODUCTION l 1.1 Definitions and types of brushless motor 1 1.2 Commutation,. 4 1.3 Operation of 3-phase

More information

Electrical Machines -II

Electrical Machines -II Objective Type Questions: 1. Basically induction machine was invented by (a) Thomas Alva Edison (b) Fleming (c) Nikola Tesla (d) Michel Faraday Electrical Machines -II 2. What will be the amplitude and

More information

University of L Aquila. Permanent Magnet-assisted Synchronous Reluctance Motors for Electric Vehicle applications

University of L Aquila. Permanent Magnet-assisted Synchronous Reluctance Motors for Electric Vehicle applications University of L Aquila Department of Industrial and Information Engineering and Economics Permanent Magnet-assisted Synchronous Reluctance Motors for Electric Vehicle applications A. Ometto, F. Parasiliti,

More information

THE advancement in the manufacturing of permanent magnets

THE advancement in the manufacturing of permanent magnets IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 8, AUGUST 2007 3435 Design Consideration to Reduce Cogging Torque in Axial Flux Permanent-Magnet Machines Delvis Anibal González, Juan Antonio Tapia, and Alvaro

More information

Effect of Permanent Magnet Rotor Design on PMSM Properties

Effect of Permanent Magnet Rotor Design on PMSM Properties Transactions on Electrical Engineering, Vol. 1 (2012), No. 3 98 Effect of Permanent Magnet Rotor Design on PMSM Properties SEKERÁK Peter, HRABOVCOVÁ Valéria, RAFAJDUS Pavol, KALAMEN Lukáš, ONUFER Matúš

More information

Optimization Design of an Interior Permanent Magnet Motor for Electro Hydraulic Power Steering

Optimization Design of an Interior Permanent Magnet Motor for Electro Hydraulic Power Steering Indian Journal of Science and Technology, Vol 9(14), DOI: 10.17485/ijst/2016/v9i14/91100, April 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Optimization Design of an Interior Permanent Magnet

More information

The Effects of Magnetic Circuit Geometry on Torque Generation of 8/14 Switched Reluctance Machine

The Effects of Magnetic Circuit Geometry on Torque Generation of 8/14 Switched Reluctance Machine 213 XXIV International Conference on Information, Communication and Automation Technologies (ICAT) October 3 November 1, 213, Sarajevo, Bosnia and Herzegovina The Effects of Magnetic Circuit Geometry on

More information

Asynchronous slip-ring motor synchronized with permanent magnets

Asynchronous slip-ring motor synchronized with permanent magnets ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(1), pp. 199-206 (2017) DOI 10.1515/aee-2017-0015 Asynchronous slip-ring motor synchronized with permanent magnets TADEUSZ GLINKA, JAKUB BERNATT Institute of Electrical

More information

Chapter 2 PRINCIPLES OF AFPM MACHINES. 2.1 Magnetic circuits Single-sided machines Double-sided machines with internal PM disc rotor

Chapter 2 PRINCIPLES OF AFPM MACHINES. 2.1 Magnetic circuits Single-sided machines Double-sided machines with internal PM disc rotor Chapter 2 PRINCIPLES OF AFPM MACHINES In this chapter the basic principles of the AFPM machine are explained in details. Considerable attention is given to the magnetic circuits, windings, torque production,

More information

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method Title Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method Author(s) Wang, Y; Chau, KT; Chan, CC; Jiang, JZ

More information

Aspects of Permanent Magnet Machine Design

Aspects of Permanent Magnet Machine Design Aspects of Permanent Magnet Machine Design Christine Ross February 7, 2011 Grainger Center for Electric Machinery and Electromechanics Outline Permanent Magnet (PM) Machine Fundamentals Motivation and

More information

A novel flux-controllable vernier permanent-magnet machine

A novel flux-controllable vernier permanent-magnet machine Title A novel flux-controllable vernier permanent-magnet machine Author(s) Liu, C; Zhong, J; Chau, KT Citation The IEEE International Magnetic Conference (INTERMAG2011), Teipei, Taiwan, 25-29 April 2011.

More information

Cogging Reduction of a Low-speed Direct-drive Axial-gap Generator

Cogging Reduction of a Low-speed Direct-drive Axial-gap Generator APSAEM14 Jorunal of the Japan Society of Applied Electromagnetics and Mechanics Vol.23, No.3 (2015) Regular Paper Cogging Reduction of a Low-speed Direct-drive Axial-gap Generator Tomoki HASHIMOTO *1,

More information

Design and Analysis of Novel Bearingless Permanent Magnet Synchronous Motor for Flywheel Energy Storage System

Design and Analysis of Novel Bearingless Permanent Magnet Synchronous Motor for Flywheel Energy Storage System Progress In Electromagnetics Research M, Vol. 51, 147 156, 216 Design and Analysis of Novel Bearingless Permanent Magnet Synchronous Motor for Flywheel Energy Storage System Huangqiu Zhu and Ronghua Lu*

More information

Experimental Evaluations of the Dual-Excitation Permanent Magnet Vernier Machine

Experimental Evaluations of the Dual-Excitation Permanent Magnet Vernier Machine Experimental Evaluations of the Dual-Excitation Permanent Magnet Vernier Machine Akio Toba*, Hiroshi Ohsawa*, Yoshihiro Suzuki**, Tukasa Miura**, and Thomas A. Lipo*** Fuji Electric Co. R&D, Ltd. * 1 Fuji-machi,

More information

Development and Test of a High Force Tubular Linear Drive Concept with Discrete Wound Coils for Industrial Applications

Development and Test of a High Force Tubular Linear Drive Concept with Discrete Wound Coils for Industrial Applications Development and Test of a High Force Tubular Linear Drive Concept with Discrete Wound Coils for Industrial Applications Ralf Wegener 1 Member IEEE, Sebastian Gruber, 2 Kilian Nötzold, 2 Florian Senicar,

More information

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 47 CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 4.1 INTRODUCTION Wind energy has been the subject of much recent research and development. The only negative

More information

An investigation on development of Precision actuator for small robot

An investigation on development of Precision actuator for small robot An investigation on development of Precision actuator for small robot Joo Han Kim*, Se Hyun Rhyu, In Soung Jung, Jung Moo Seo Korea Electronics Technology Institute (KETI) * 203-103 B/D 192 Yakdae-Dong,

More information

New Self-Excited Synchronous Machine with Tooth Concentrated Winding

New Self-Excited Synchronous Machine with Tooth Concentrated Winding New Self-Excited Synchronous Machine with Tooth Concentrated Winding Gurakuq Dajaku 1) and Dieter Gerling 2), IEEE 1 FEAAM GmbH, D-85577 Neubiberg, Germany 2 Universitaet der Bundeswehr Muenchen, D-85577

More information

EVS25. Shenzhen, China, Nov 5-9, 2010

EVS25. Shenzhen, China, Nov 5-9, 2010 Page00053 EVS5 Shenzhen, China, Nov 5-9, 010 Application for Step-sewing of Rotor of IPM Motors Used in EV Hongliang Ying 1, Zhouyun Zhang 1, Jun Gong 1, Surong Huang, Xuanming Ding 1 1 Technique center

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lectures-37 Polyphase (3-phase) Induction Motor 2 Determination of Induction Machine Parameters Three tests are needed to determine the parameters in an induction

More information

COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR

COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR A. Nazifah Abdullah 1, M. Norhisam 2, S. Khodijah 1, N. Amaniza 1,

More information

WITH the requirements of reducing emissions and

WITH the requirements of reducing emissions and IEEE TRANSACTIONS ON MAGNETICS, VOL. 51, NO. 3, MARCH 2015 8201805 Investigation and Design of a High-Power Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles Wei Hua, Gan Zhang, and

More information

QUESTION BANK SPECIAL ELECTRICAL MACHINES

QUESTION BANK SPECIAL ELECTRICAL MACHINES SEVENTH SEMESTER EEE QUESTION BANK SPECIAL ELECTRICAL MACHINES TWO MARK QUESTIONS 1. What is a synchronous reluctance 2. What are the types of rotor in synchronous reluctance 3. Mention some applications

More information

Concentrated Winding Axial Flux Permanent Magnet Motor with Plastic Bonded Magnets and Sintered Segmented Magnets

Concentrated Winding Axial Flux Permanent Magnet Motor with Plastic Bonded Magnets and Sintered Segmented Magnets Proceedings of the 28 International Conference on Electrical Machines Paper ID 1113 Concentrated Winding Axial Flux Permanent Magnet Motor with Plastic Bonded Magnets and Sintered Segmented Magnets Hanne

More information

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR 33 CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR 3.1 INTRODUCTION This chapter presents the design of frameless Limited Angle Brushless Torque motor. The armature is wound with toroidal

More information

Iron loss and eddy-current loss analysis in a low-power BLDC motor with magnet segmentation *

Iron loss and eddy-current loss analysis in a low-power BLDC motor with magnet segmentation * ARCHIVES OF ELECTRICAL ENGINEERING VOL. 61(1), pp. 33-46 (2012) DOI 10.2478/v10171-012-0003-5 Iron loss and eddy-current loss analysis in a low-power BLDC motor with magnet segmentation * ADRIAN MŁOT 1,

More information

This is a repository copy of Torque performance of axial flux permanent magnet fractional open slot machine with unequal teeth

This is a repository copy of Torque performance of axial flux permanent magnet fractional open slot machine with unequal teeth This is a repository copy of Torque performance of axial flux permanent magnet fractional open slot machine with unequal teeth Article: Kierstead, H.J., Wang, R-J., Kamper, M.J., (20) Torque performance

More information

INTRODUCTION Principle

INTRODUCTION Principle DC Generators INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. Principle Whenever a conductor is moved within a

More information

Comparison of different 600 kw designs of a new permanent magnet generator for wind power applications

Comparison of different 600 kw designs of a new permanent magnet generator for wind power applications Comparison of different 600 kw designs of a new permanent magnet generator for wind power applications E. Peeters, Vito, Boeretang 200, 2400 Mol, Belgium, eefje.peeters@vito.be, tel +32 14 33 59 23, fax

More information

Cooling Enhancement of Electric Motors

Cooling Enhancement of Electric Motors Cooling Enhancement of Electric Motors Authors : Yasser G. Dessouky* and Barry W. Williams** Dept. of Computing & Electrical Engineering Heriot-Watt University Riccarton, Edinburgh EH14 4AS, U.K. Fax :

More information

Axial Flux. Seven-Phase Machine

Axial Flux. Seven-Phase Machine Soft Magnetic Composite Axial Flux Seven-Phase Machine F. Locment, E. Semail and F. Piriou Laboratory of Power Electronic of Lille 1/21 ENSAM & University of Lille, France Soft Magnetic Composite Axial

More information

Comparative Performance of FE-FSM, PM-FSM and HE-FSM with Segmental Rotor Hassan Ali Soomro a, Erwan Sulaiman b and Faisal Khan c

Comparative Performance of FE-FSM, PM-FSM and HE-FSM with Segmental Rotor Hassan Ali Soomro a, Erwan Sulaiman b and Faisal Khan c Comparative Performance of FE-FSM, PM-FSM and HE-FSM with Segmental Rotor Hassan Ali Soomro a, Erwan Sulaiman b and Faisal Khan c Department of Electrical power Engineering, Universiti Tun Hussein Onn

More information

Comparison and analysis of flux-switching permanent-magnet double-rotor machine with 4QT used for HEV

Comparison and analysis of flux-switching permanent-magnet double-rotor machine with 4QT used for HEV Title Comparison and analysis of flux-switching permanent-magnet double-rotor machine with 4QT used for HEV Author(s) Mo, L; Quan, L; Zhu, X; Chen, Y; Qiu, H; Chau, KT Citation The 2014 IEEE International

More information

Design Analysis of a Dual Rotor Permanent Magnet Machine driven Electric Vehicle

Design Analysis of a Dual Rotor Permanent Magnet Machine driven Electric Vehicle Design Analysis of a Dual Rotor Permanent Magnet Machine driven Electric Vehicle Mohd Izzat Bin Zainuddin 1, Aravind CV 1,* 1 School of Engineering, Taylor s University, Malaysia Abstract. Electric bike

More information

Investigation & Analysis of Three Phase Induction Motor Using Finite Element Method for Power Quality Improvement

Investigation & Analysis of Three Phase Induction Motor Using Finite Element Method for Power Quality Improvement International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 9 (2014), pp. 901-908 International Research Publication House http://www.irphouse.com Investigation & Analysis

More information

SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR*

SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR* Vol. 1(36), No. 2, 2016 POWER ELECTRONICS AND DRIVES DOI: 10.5277/PED160212 SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR* MACIEJ GWOŹDZIEWICZ, JAN ZAWILAK Wrocław University

More information

Department of Electrical Power Engineering, Universiti Tun Hussein Onn Malaysia, Locked Bag 101, Batu Pahat, Johor, Malaysia

Department of Electrical Power Engineering, Universiti Tun Hussein Onn Malaysia, Locked Bag 101, Batu Pahat, Johor, Malaysia Performance Comparison of 12S-14P Inner and Field Excitation Flux Switching Motor Syed Muhammad Naufal Syed Othman a, Erwan Sulaiman b, Faisal Khan c, Zhafir Aizat Husin d and Mohamed Mubin Aizat Mazlan

More information

Electromagnetic and Thermal Modeling of a Permanent Magnet Synchronous Machine with Either a Laminated or SMC Stator

Electromagnetic and Thermal Modeling of a Permanent Magnet Synchronous Machine with Either a Laminated or SMC Stator Electromagnetic and Thermal Modeling of a Permanent Magnet Synchronous Machine with Either a Laminated or SMC Stator David K. Farnia Burgess Norton Mfg. Geneva, IL 60134 dkfarnia@burgessnorton.com Tetsuya

More information

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 4 (Sep. - Oct. 2013), PP 25-32 SIMULINK Based Model for Determination of Different

More information

Procedia - Social and Behavioral Sciences 195 ( 2015 ) World Conference on Technology, Innovation and Entrepreneurship

Procedia - Social and Behavioral Sciences 195 ( 2015 ) World Conference on Technology, Innovation and Entrepreneurship Available online at www.sciencedirect.com ScienceDirect Procedia - Social and Behavioral Sciences 195 ( 2015 ) 2586 2591 World Conference on Technology, Innovation and Entrepreneurship Application of Finite

More information

Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine

Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine Energies 2014, 7, 1393-1426; doi:10.3390/en7031393 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure

More information

Brushless dc motor (BLDC) BLDC motor control & drives

Brushless dc motor (BLDC) BLDC motor control & drives Brushless dc motor (BLDC) BLDC motor control & drives Asst. Prof. Dr. Mongkol Konghirun Department of Electrical Engineering King Mongkut s University of Technology Thonburi Contents Brushless dc (BLDC)

More information

Rotor Design & Performance for a BDFM

Rotor Design & Performance for a BDFM 439 1 Rotor Design & Performance for a BDFM P J Tavner +, R A McMahon *, P Roberts *, E Abdi-Jalebi *, X Wang *, M Jagieła #, T Chick* Abstract Analysis of the behaviour of the Brushless Doubly Fed Machine

More information

Permanent magnet machines and actuators

Permanent magnet machines and actuators Permanent magnet machines and actuators Geraint Jewell The University of Sheffield Symposium on Materials for a Sustainable Future 11/09/09 1 Key PM Properties for Electro-Mechanical Devices High remanence

More information

INVESTIGATIVE STUDY OF A NOVEL PERMANENT MAGNET FLUX SWITCHING MACHINE EMPLOYING ALTERNATE CIRCUMFERENTIAL AND RADIAL PERMANENT MAGNET

INVESTIGATIVE STUDY OF A NOVEL PERMANENT MAGNET FLUX SWITCHING MACHINE EMPLOYING ALTERNATE CIRCUMFERENTIAL AND RADIAL PERMANENT MAGNET INVESTIGATIVE STUDY OF A NOVEL PERMANENT MAGNET FLUX SWITCHING MACHINE EMPLOYING ALTERNATE CIRCUMFERENTIAL AND RADIAL PERMANENT MAGNET M. Jenal and E. Sulaiman Research Center for Applied Electromagnetics

More information

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor Jun Kang, PhD Yaskawa Electric America, Inc. 1. Power consumption by electric motors Fig.1 Yaskawa V1000 Drive and a PM motor

More information

CHAPTER 3 BRUSHLESS DC MOTOR

CHAPTER 3 BRUSHLESS DC MOTOR 53 CHAPTER 3 BRUSHLESS DC MOTOR 3.1 INTRODUCTION The application of motors has spread to all kinds of fields. In order to adopt different applications, various types of motors such as DC motors, induction

More information

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load,,, ABSTRACT- In this paper the steady-state analysis of self excited induction generator is presented and a method to calculate

More information

Chapter 1 INTRODUCTION. 1.1 Scope. 1.2 Features

Chapter 1 INTRODUCTION. 1.1 Scope. 1.2 Features Chapter 1 INTRODUCTION 1.1 Scope The term axial flux permanent magnet (AFPM) machine in this book relates only to permanent magnet (PM) machines with disc type rotors. Other AFPM machine topologies, e.g.

More information

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility European Conference on Nanoelectronics and Embedded Systems for Electric Mobility emobility emotion 25-26 th September 2013, Toulouse, France 6-phase Fault-Tolerant Permanent Magnet Traction Drive for

More information

Design of disk type PM synchronous generator based on halbach

Design of disk type PM synchronous generator based on halbach Design of disk type PM synchronous generator based on halbach Chuan ZHANG 1, Shu Qin LIU 1,a 1 School of Electrical Engineering, Shandong University, Ji nan 250061, Shandong Province, China; Abstract.

More information

Design Analysis of a Novel Double-Sided Axial- Flux Permanent-Magnet Generator for Micro-Wind Power Applications

Design Analysis of a Novel Double-Sided Axial- Flux Permanent-Magnet Generator for Micro-Wind Power Applications Design Analysis of a Novel Double-Sided Axial- Flux Permanent-Magnet Generator for Micro-Wind Power Applications Mihai CHIRCA, Stefan BREBAN, Claudiu OPREA, Mircea M. RADULESCU Technical University of

More information

PM Assisted, Brushless Wound Rotor Synchronous Machine

PM Assisted, Brushless Wound Rotor Synchronous Machine Journal of Magnetics 21(3), 399-404 (2016) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2016.21.3.399 PM Assisted, Brushless Wound Rotor Synchronous Machine Qasim Ali 1,

More information

Losses Calculation of an Aerospace Retraction Wheel Motor with Regarding to Electromagnetic-Field Analysis Investigation

Losses Calculation of an Aerospace Retraction Wheel Motor with Regarding to Electromagnetic-Field Analysis Investigation Journal of Energy and Power Engineering 10 (2016) 183-190 doi: 10.17265/1934-8975/2016.03.006 D DAVID PUBLISHING Losses Calculation of an Aerospace Retraction Wheel Motor with Regarding to Electromagnetic-Field

More information

Design and Comparison of Axial-Flux Permanent Magnet Motors for In-Wheel Electric Vehicles by 3D-FEM

Design and Comparison of Axial-Flux Permanent Magnet Motors for In-Wheel Electric Vehicles by 3D-FEM o. E-4-AAA-0000 Design and Comparison of Axial-Flux Permanent Magnet Motors for In-Wheel Electric Vehicles by 3D-FEM S.M. JafariShiadeh, M. Ardebili Department of Computer and Electrical Engineering K..

More information

AXIAL FLUX PERMANENT MAGNET BRUSHLESS MACHINES

AXIAL FLUX PERMANENT MAGNET BRUSHLESS MACHINES AXIAL FLUX PERMANENT MAGNET BRUSHLESS MACHINES Jacek F. Gieras, Rong-Jie Wang and Maarten J. Kamper Kluwer Academic Publishers, Boston-Dordrecht-London, 2004 TABLE OF CONTENETS page Preface v 1. Introduction

More information

INFLUENCE OF MAGNET POLE ARC VARIATION ON THE COGGING TORQUE OF RADIAL FLUX PERMANENT MAGNET BRUSHLESS DC (PMBLDC) MOTOR

INFLUENCE OF MAGNET POLE ARC VARIATION ON THE COGGING TORQUE OF RADIAL FLUX PERMANENT MAGNET BRUSHLESS DC (PMBLDC) MOTOR INFLUENCE OF MAGNET POLE ARC VARIATION ON THE COGGING TORQUE OF RADIAL FLUX PERMANENT MAGNET BRUSHLESS DC (PMBLDC) MOTOR Amit N.Patel 1, Aksh P. Naik 2 1,2 Department of Electrical Engineering, Institute

More information

Axial Flux Permanent Magnet Brushless Machines

Axial Flux Permanent Magnet Brushless Machines Jacek F. Gieras Rong-Jie Wang Maarten J. Kamper Axial Flux Permanent Magnet Brushless Machines Second Edition Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Features 1 1.3 Development of AFPM Machines

More information

Comparison of IPM and SPM motors using ferrite magnets for low-voltage traction systems

Comparison of IPM and SPM motors using ferrite magnets for low-voltage traction systems EVS28 KINTEX, Korea, May 3-6, 215 Comparison of IPM and SPM motors using ferrite magnets for low-voltage traction systems Yong-Hoon Kim 1, Suwoong Lee 1, Eui-Chun Lee 1, Bo Ram Cho 1 and Soon-O Kwon 1

More information

9. Examples of hydro energy conversion

9. Examples of hydro energy conversion 9. Examples of hydro energy conversion VATech Hydro, Austria Prof. A. Binder 9/1 Variable speed pump storage power plant Prof. A. Binder 9/2 Conventional pump storage power plant with synchronous motor-generators

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b

Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b 1 Politeknik Negeri Batam, parkway st., Batam Center, Batam, Indonesia 2 Politeknik Negeri

More information

COMPARING SLOTTED vs. SLOTLESS BRUSHLESS DC MOTORS

COMPARING SLOTTED vs. SLOTLESS BRUSHLESS DC MOTORS COMPARING SLOTTED vs. SLOTLESS Authored By: Engineering Team Members Pittman Motors Slotless brushless DC motors represent a unique and compelling subset of motors within the larger category of brushless

More information

Characteristics Analysis of Novel Outer Rotor Fan-type PMSM for Increasing Power Density

Characteristics Analysis of Novel Outer Rotor Fan-type PMSM for Increasing Power Density Journal of Magnetics 23(2), 247-252 (2018) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2018.23.2.247 Characteristics Analysis of Novel Outer Rotor Fan-type PMSM for Increasing

More information

Modelling and Design of a 3 kw Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines

Modelling and Design of a 3 kw Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines Modelling and Design of a 3 kw Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines Acharya Parash 1,a, Papadakis Antonis 2, Shaikh Muhammad Naveed 3 1 Lecturer, Department

More information

DESIGN OF DC MACHINE

DESIGN OF DC MACHINE DESIGN OF DC MACHINE 1 OUTPUT EQUATION P a = power developed by armature in kw P = rating of machine in kw E = generated emf, volts; V = terminal voltage, volts p = number of poles; I a = armaure current,

More information

Design of a Cost-Efficient High-Speed High- Efficiency PM Machine for Compressor Applications

Design of a Cost-Efficient High-Speed High- Efficiency PM Machine for Compressor Applications Design of a Cost-Efficient High-Speed High- Efficiency PM Machine for Compressor Applications A. Gilson, S. Tavernier, M. Gerber and C. Espanet Moving Magnet Technologies Besançon, France adrien.gilson@movingmagnet.com

More information

High Performance Machine Design Considerations

High Performance Machine Design Considerations High Performance Machine Design Considerations High Performance Machine Design Considerations Abstract From Formula One race cars to consumer vehicles, the demand for high performing, energy efficient

More information

DERATING OF THREE-PHASE SQUIRREL-CAGE INDUCTION MOTOR UNDER BROKEN BARS FAULT UDC : Jawad Faiz, Amir Masoud Takbash

DERATING OF THREE-PHASE SQUIRREL-CAGE INDUCTION MOTOR UNDER BROKEN BARS FAULT UDC : Jawad Faiz, Amir Masoud Takbash FACTA UNIVERSITATIS Series: Automatic Control and Robotics Vol. 12, N o 3, 2013, pp. 147-156 DERATING OF THREE-PHASE SQUIRREL-CAGE INDUCTION MOTOR UNDER BROKEN BARS FAULT UDC 621.313.33:621.316.1.017 Jawad

More information

A Novel 24-Slots/10-Poles Winding Topology for Electric Machines

A Novel 24-Slots/10-Poles Winding Topology for Electric Machines International Electric Machines and Drives A Novel 24-Slots/10-Poles Winding Topology for Electric Machines Gurakuq Dajaku FEAAM GmbH D-85577 Neubiberg, Germany Tel: +49 89 6004 4120, Fax: +49 89 6004

More information

Planning and application of electrical drives (PAED) - Drives for electric vehicles. Hybrid and electrical vehicles Text book

Planning and application of electrical drives (PAED) - Drives for electric vehicles. Hybrid and electrical vehicles Text book Planning and application of electrical drives 1/116 Electric drives for ZEV Institut für Elektrische Energiewandlung Planning and application of electrical drives (PAED) - Drives for electric vehicles

More information

Magnet Skew in Cogging Torque Minimization of Axial Gap Permanent Magnet Motors

Magnet Skew in Cogging Torque Minimization of Axial Gap Permanent Magnet Motors Proceedings of the International Conference on Electrical Machines Paper ID 11 Magnet Skew in Cogging Torque Minimization of Axial Gap Permanent Magnet Motors M. Aydin maydin@ieee.org Dept. of Mechatronics

More information

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS 66 CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS 4.1 INTRODUCTION In this chapter, the prototype hardware development of proposed

More information

Elbtalwerk GmbH. Universität Karlsruhe Elektrotechnisches Institut. Switched Reluctance Motor. Compact High-torque Electric Motor. Current.

Elbtalwerk GmbH. Universität Karlsruhe Elektrotechnisches Institut. Switched Reluctance Motor. Compact High-torque Electric Motor. Current. Elbtalwerk GmbH Switched Reluctance Motor Compact High-torque Electric Motor Current B1 Winding A1 D4 C1 C4 Pole D1 Rotation B4 A2 Rotor tooth Shaft A4 B2 Field line D3 C2 C3 D2 Stator A3 B3 Cooling air

More information

Bonded versus Sintered Interior PM Motor for Electric and Hybrid Vehicles

Bonded versus Sintered Interior PM Motor for Electric and Hybrid Vehicles ! "# " Bonded versus Sintered Interior PM Motor for Electric and Hybrid Vehicles A. FONSECA and Ch. CHILLET ICEM 2002, Brugge, Belgium, August 2002 $ # Objective Comparison of Bonded and Sintered IPM Motor

More information

This is a repository copy of Development of a shutter type magnetic gear

This is a repository copy of Development of a shutter type magnetic gear This is a repository copy of Development of a shutter type magnetic Article: Brönn, L., Wang, R-J., Kamper, M.J., (2010) Development of a shutter type magnetic, Proc. of the Southern African Universities

More information

10. Starting Method for Induction Motors

10. Starting Method for Induction Motors 10. Starting Method for Induction Motors A 3-phase induction motor is theoretically self starting. The stator of an induction motor consists of 3-phase windings, which when connected to a 3-phase supply

More information

86400 Parit Raja, Batu Pahat, Johor Malaysia. Keywords: Flux switching motor (FSM), permanent magnet (PM), salient rotor, electric vehicle

86400 Parit Raja, Batu Pahat, Johor Malaysia. Keywords: Flux switching motor (FSM), permanent magnet (PM), salient rotor, electric vehicle Preliminary Design of Salient Rotor Three-Phase Permanent Magnet Flux Switching Machine with Concentrated Winding Mahyuzie Jenal 1, a, Erwan Sulaiman 2,b, Faisal Khan 3,c and MdZarafi Ahmad 4,d 1 Research

More information

Title. CitationIEEE Transactions on Magnetics, 48(11): Issue Date Doc URL. Rights. Type. File Information

Title. CitationIEEE Transactions on Magnetics, 48(11): Issue Date Doc URL. Rights. Type. File Information Title A Ferrite PM In-Wheel Motor Without Rare Earth Mater Author(s)Sone, Kodai; Takemoto, Masatsugu; Ogasawara, Satoshi CitationIEEE Transactions on Magnetics, 48(11): 2961-2964 Issue Date 212-11 Doc

More information

Green energy conversion

Green energy conversion Green energy conversion Prof. Dr.-Ing. habil. Andreas Binder Department of Electrical Energy Conversion Darmstadt University of Technology abinder@ew.tu-darmstadt.de Prof. A. Binder 1.1/1 Contents of lecture

More information

Lab Electrical Power Engineering I

Lab Electrical Power Engineering I INSTITUT FÜR ELEKTRISCHE MASCHINEN RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lab Electrical Power Engineering I Test 3: Induction machine with squirrel cage rotor and slip ring rotor 1 Experiment

More information

Design of Sensorless Controlled IPMSM with Concentrated Winding for EV Drive at Low speed

Design of Sensorless Controlled IPMSM with Concentrated Winding for EV Drive at Low speed EVS27 Barcelona, Spain, November 17-20, 2013 Design of Sensorless Controlled IPMSM with Concentrated Winding for EV Drive at Low speed Myung-Seop Lim 1, Seung-Hee Chai 1 and Jung-Pyo Hong 1, Senior Member,

More information

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES YEAR / SEM : IV / VII UNIT I SYNCHRONOUS RELUCTANCE

More information

Research on Torque Ripple Optimization of Switched Reluctance Motor Based on Finite Element Method

Research on Torque Ripple Optimization of Switched Reluctance Motor Based on Finite Element Method Progress In Electromagnetics Research M, Vol. 74, 115 123, 18 Research on Torque Ripple Optimization of Switched Reluctance Motor Based on Finite Element Method Libing Jing * and Jia Cheng Abstract Torque

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY MAMALLAPURAM, CHENNAI

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY MAMALLAPURAM, CHENNAI DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY MAMALLAPURAM, CHENNAI -603104 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK VII SEMESTER EE6501-Power system Analysis

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK 16EET41 SYNCHRONOUS AND INDUCTION MACHINES UNIT I SYNCHRONOUS GENERATOR 1. Why the stator core is laminated? 2. Define voltage regulation

More information

Application of Soft Magnetic Composite Material in the Field of Electrical Machines Xiaobei Li 1,2,a, Jing Zhao 1,2,b*, Zhen Chen 1,2, c

Application of Soft Magnetic Composite Material in the Field of Electrical Machines Xiaobei Li 1,2,a, Jing Zhao 1,2,b*, Zhen Chen 1,2, c Applied Mechanics and Materials Online: 2013-08-30 I: 1662-7482, Vols. 380-384, pp 4299-4302 doi:10.4028/www.scientific.net/amm.380-384.4299 2013 Trans Tech Publications, witzerland Application of oft

More information

Soft Magnetic Composite Core A New Perspective For Small AC Motors Design

Soft Magnetic Composite Core A New Perspective For Small AC Motors Design Soft Magnetic Composite Core A New Perspective For Small AC Motors Design L. Petkovska and G. Cvetkovski Ss. Cyril and Methodius University Faculty of Electrical Engineering and Information Technologies

More information

Prototype of an Axial Flux Permanent Magnet Generator for Wind Energy Systems Applications

Prototype of an Axial Flux Permanent Magnet Generator for Wind Energy Systems Applications Prototype of an Axial Flux Permanent Magnet Generator for Wind Energy Systems Applications A. P. Ferreira 1, A. M. Silva 2, A. F. Costa 2 1 School of Technology and Management, Polytechnic Institute of

More information

EVS28 KINTEX, Korea, May 3-6, 2015

EVS28 KINTEX, Korea, May 3-6, 2015 EVS28 KINTEX, Korea, May 3-6, 2015 Development and performance investigation of 60kW induction motor with copper diecasting rotor for electric vehicle propulsion applications Yondo Chun, Pilwan Han, Jaehak

More information

Performance Improvements from Slotless Motors. Robert Mastromattei Director of Business Developmet Celera Motion

Performance Improvements from Slotless Motors. Robert Mastromattei Director of Business Developmet Celera Motion Performance Improvements from Slotless Motors Robert Mastromattei Director of Business Developmet Celera Motion Smooth Motion Today we will explore the design differences, benefits, and tradeoffs of slotless

More information

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors Journal of Magnetics 21(2), 173-178 (2016) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2016.21.2.173 Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal

More information

Electrical Engineering Department, Government Engineering College, Bhuj, India. Figure 1 Dual rotor single stator Axial Flux PM motor

Electrical Engineering Department, Government Engineering College, Bhuj, India. Figure 1 Dual rotor single stator Axial Flux PM motor American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Lecture 20: Stator Control - Stator Voltage and Frequency Control

Lecture 20: Stator Control - Stator Voltage and Frequency Control Lecture 20: Stator Control - Stator Voltage and Frequency Control Speed Control from Stator Side 1. V / f control or frequency control - Whenever three phase supply is given to three phase induction motor

More information

This is a repository copy of Influence of design parameters on cogging torque in permanent magnet machines.

This is a repository copy of Influence of design parameters on cogging torque in permanent magnet machines. This is a repository copy of Influence of design parameters on cogging torque in permanent magnet machines. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/889/ Article: Zhu,

More information