(12) United States Patent (10) Patent No.: US 9, B2

Size: px
Start display at page:

Download "(12) United States Patent (10) Patent No.: US 9, B2"

Transcription

1 USOO B2 (12) United States Patent (10) Patent No.: US 9, B2 Syed et al. (45) Date of Patent: May 23, 2017 (54) CAPACITOR DISCHARGING DURING 2011/ A1* 9, 2011 Fukuta... HO2M 1/32 DEACTIVATION OF ELECTRIC VEHICLE 3.18/ DRIVE SYSTEM 2012/ A1* 1/2012 Minegishi... B60K /91 (71) Applicant: FORD GLOBAL TECHNOLOGIES 2012fOO391OO A1* 2/2012 Hirose... B60K 6, LLC, Dearborn, MI (US) 2012/ A1* 8, 2012 Shindo... B6OL , 139 (72) Inventors: Fazal U. Syed, Canton, MI (US); Siwei 2012/ A1* 12/2012 Ashida... B6OL 3/04 Cheng, Canton, MI (US); Daniel R. 477/7 Luedtke, Beverly Hills, MI (US) 2013/ A1 1/2013 Hirose... B6OL ,488 (73) Assignee: FORD GLOBAL TECHNOLOGIES, 2013/ A1* 8, 2013 Sakata... B6OL LLC, Dearborn, MI (US) TO1/ / A1 4/2014 Kanzaki... B6OL 11, 1803 (*) Notice: Subject to any disclaimer, the term of this TO1/22 patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 262 days. (21) Appl. No.: 14/160,759 Primary Examiner Drew A Dunn (22) Filed: Jan. 22, 2014 Assistant Examiner Harry O'Neill-Becerril 9 (74) Attorney, Agent, or Firm David B. Kelley; (65) Prior Publication Data MacMillan, Sobanski & Todd, LLC US 2015/02O2967 A1 Jul. 23, 2015 (51) Int. Cl. (57) ABSTRACT H ( ) - B60L. II/00 ( ) A drive system for an electric vehicle includes an input B60L 3/04 ( ) capacitor selectably coupled to a DC power source (e.g., (52) U.S. Cl battery) by a contactor. A variable voltage converter couples CPC... B60L 11/005 ( ), B60L 3/04 the input capacitor to a main link capacitor, and an inverter ( ) couples the main capacitor to a machine load (e.g., motor (58) Field of Classification Search and/or generator). During a normal or emergency shutdown, CPC... H02J 7/0052 the contactor is opened. In order to quickly discharge the USPC /166 input capacitor when the contactor opens, A) the converter See application file for complete search history. operates in a boost mode to transfer charge from the input capacitor to the main capacitor until the input capacitor (56) References Cited discharges to less than a threshold Voltage, B) the converter U.S. PATENT DOCUMENTS 8, B2 * 5/2013 Sumi... B6OL 3/04 180, , B2 * 7/2014 Oyobe... HO2P 3/22 307/10.1 deactivates to prevent transferring charge from the main capacitor to the input capacitor, and C) the main capacitor can then be discharged through the inverter. 14 Claims, 3 Drawing Sheets Confirm HW Battery Contactors Are Opened WWC Enters BoostMode 32 Ramp Down WCDuty Cycle To A Small Calibratable Duty Cycle input Capacitor Voltage < Wehras2 Yes Disable WCIGBTs Discharge Main Capacitor

2 (56) References Cited U.S. PATENT DOCUMENTS 2015, A1* 11/2015 Kanzaki... HO2M 1/32 318/ * cited by examiner US 9, B2 Page 2

3 U.S. Patent May 23, 2017 Sheet 1 of 3 US 9, B2 Controller 30 Confirm HV Battery Contactors Are Opened 31 VVC EnterS BOOSt MOde 32 Ramp Down WVC Duty Cycle To A Small Calibratable Duty Cycle 33 Input Capacitor Voltage < Vehres? 34 Yes Disable VVC IGBTs 35 Fig. 2

4 U.S. Patent May 23, 2017 Sheet 2 of 3 US 9, B2 To Current Regulators 50 Confirm HV Battery Contactors Are Opened 51 Mot/Gen Inverters Enter DC Bus Voltage Regulation Mode Mot/Gen Inverters Stay in DC Bus Voltage Regulation Mode 52 VVC Disabled? 54 Yes Discharge The Main Capacitor 55 Disable Mot/Gen Inverter IGBTs Fig. 4

5 U.S. Patent May 23, 2017 Sheet 3 of 3 US 9, B2 - Main Capacitor Voltage Input Capacitor Voltage O Fig 5 O Seconds Fig SeCOnds 70 Main Capacitor Voltage Input Capacitor Voltage 1 Fig A Fig. 8 O 0.1 "seconds

6 1. CAPACTOR DISCHARGING DURING DEACTIVATION OF ELECTRIC VEHICLE DRIVE SYSTEM Not Applicable. CROSS REFERENCE TO RELATED APPLICATIONS STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH Not Applicable. BACKGROUND OF THE INVENTION The present invention relates in general to drive systems for electric Vehicles, and, more specifically, to the rapid discharging of capacitors when shutting down the electric drive system. Electric vehicles, such as hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), use inverter driven electric machines to provide traction torque and regenerative braking torque. Such inverters typically employ an energy storage capacitor (or the main capacitor) as the DC link, which is usually interfaced with the high-voltage (HV) battery through a variable voltage converter (VVC), an input capacitor, and a pair of mechanical contactors (col lectively forming a drive system). A shutdown of the drive system can result from a vehicle key-off, a high-voltage DC interlock fault, or a vehicle crash, for example. During shutdown, the HV battery is quickly isolated from the rest of the electric system by opening the mechanical contractors. However, there will still be HV electric charge on the input capacitor and the main capacitor. Due to safety requirements, those HV electric charges should be quickly discharged within a specific time. One conventional discharging method operates as fol lows. Once the open State of the contactor is confirmed, upper and lower switches (e.g., IGBTs) of the VVC are disabled. The inverter switches the main capacitor voltage into the machine load (which may be the motor or the generator) in order to dissipate the electric charge on the main capacitor by pushing a calibratable flux-weakening current into the motor and/or the generator. The flux weakening current includes a negative D-axis current com ponent and a Zero Q-axis current component which is preferably controlled to produce Zero torque in the machine. As a result of the current flowing through the inverter to the machine, the energy stored in the main capacitor is converted into losses in the machine windings and the IGBT Switches. Consequently, the Voltage on the main capacitor starts to drop. Once the Voltage on the main capacitor drops below that of the input capacitor, the reverse-blocking diode of the upper-leg IGBT in the VVC begins to conduct, forcing the Voltage on both capacitors to be approximately the same. The flux-weakening current begins to discharge both the main capacitor and the input capacitor simultaneously. Once the main capacitor Voltage and the input capacitor Voltage drop below a Voltage threshold, the main capacitor Voltage can be maintained at this level through active bus Voltage regulation which may be desirable when the shutdown occurs while the motor or generator are rotating in order to allow a controlled ramping down of the rotation. Then once the motor and generator speed drops below a speed thresh old, the inverter continues to operate so that the discharge US 9,656,556 B current ramps down to zero, whereupon the inverter IGBTs are turned off and the discharge is completed. Although the conventional method works adequately in many circumstances, it has some limitations. Ideally, if the motor/generator inverters are pushing flux-weakening cur rents into the motor and the generator, the Voltage on the main capacitor should go down. Because of possible inac curacies in the position signals for the machines, however, a negative Q-axis current may be injected into the machines so that a regenerative torque may be produced. In Such cases, the Voltage on the main capacitor may go up instead of going down. This effect is more likely to happen when the motor or generator speed is high. Thus, the robustness of the conventional discharge strategy against position sensor inac curacy may be less than desired. In the conventional method, the discharge of the input capacitor stops when the Voltage reaches a predetermined level. The value for this level is typically low enough to ensure safety to human beings, but it must also be chosen to be high enough to maintain stable current control of the permanent magnet machines within a certain speed range (which is necessary due to the position sensor inaccuracy noted above). If the motor and generator speed is above this speed range, stable current control may not be available at a safe level of the DC bus voltage. Thus, the operating conditions where the conventional discharge Strategy is fully functional are limited. In addition, it would be desirable to decrease the time required to discharge the capacitors. Typically the main capacitor has a much larger capacitance than the input capacitor and usually operates with a much higher Voltage. Discharging the main capacitor first to the Voltage level of the input capacitor and then further discharging the two capacitors together significantly limits the discharge speed for the input capacitor, even though the reduction of the input capacitor Voltage may be more important for human safety concerns. SUMMARY OF THE INVENTION To address these foregoing problems, the present inven tion employs a discharge strategy capable of dissipating the energy on the input capacitor and isolating the main capaci tor within an extremely short period of time at any operating condition of the drive system. In one aspect of the invention, a drive system for an electric Vehicle comprises an input capacitor, a contactor with an open state and a closed State for selectably coupling the input capacitor to a DC power source, and a main capacitor. A variable voltage converter couples the input capacitor to the main capacitor and comprises a plurality of converter switches adapted for boost conversion. An inverter couples the main capacitor to a machine load and comprises a plurality of inverter Switching devices in a bridge con figuration. A controller is coupled to the converter and the inverter to discharge the input capacitor and the main capacitor when the contactor goes from the closed state to the open state by A) operating the converter in the boost mode to transfer charge from the input capacitor to the main capacitor until the input capacitor discharges to less than a threshold voltage, B) deactivating the converter switches to prevent transferring charge from the main capacitor to the input capacitor, and C) discharging the main capacitor through the inverter switches. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing one preferred embodiment of the invention.

7 3 FIG. 2 is a flowchart showing one preferred method of the invention. FIG. 3 is a block diagram of an active bus-voltage regulation mode useful during discharging of the input capacitor. FIG. 4 is a flowchart of a method using the regulation mode of FIG. 3. FIGS. 5 and 6 show the capacitor voltages and the inductor current, respectively, within a drive system using a conventional discharge method. FIGS. 7 and 8 show the capacitor voltages and the inductor current, respectively, within a drive system using a discharge method according to the present invention. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The invention utilizes a high-performance discharge strat egy that follows an "input capacitor first, main capacitor second approach. In general, the invention confirms that the battery contactor is open, and then places the VVC in a boost mode (e.g., with the VVC IGBTs switching normally). As a result of the VVC boost operation, most energy stored in the input capacitor is pumped into the main capacitor. Since the main linking capacitor is not discharged first, the input capacitor is discharged to a very low voltage very quickly regardless of the motor/generator speed. In particular, the overall discharge time for the input capacitor can be improved by two orders of magnitude. Referring now to FIG. 1, an electric vehicle drive system 10 includes a DC power source 11 (such as a battery pack or a fuel cell) coupled by contactor switches 12 and 13 to an input capacitor 14. Contactors 12 and 13 are preferably mechanical Switches having an open state and a closed State for selectively coupling battery 11 to input capacitor 14 according to a driving mode of drive system 10. A variable voltage converter (VVC) 15 couples input capacitor 14 to a main capacitor 16 which functions as a linking capacitor for converters 17 and 19, for example. Each inverter includes a plurality of Switching devices in a bridge configuration. The switches in inverter 17 are switched in a desired manner to drive a motor 18. Inverter 19 is switched to regenerate energy from a generator 20 onto main capacitor 16. VVC 15 has a known configuration including an upper converter switch 21 and a lower converter switch 22, with a junction between switches 21 and 22 coupled to input capacitor 14 by an inductor 23. VVC 15 can bilaterally transfer charge between capacitors 14 and 16 as known in the art in either a boost mode (e.g., converting the battery Voltage on input capacitor 14 to a higher voltage across capacitor 16 for purposes of driving motor 18) or a buck mode (e.g., to convert a voltage from generator 20 and inverter 19 to a voltage for recharging battery 11). Each of the switching devices in VVC 15 and inverters 17 and 19 are preferably comprised of an insulated-gate bipolar transistor (IGBT). Each IGBT includes a reverse-blocking diode such as diode 24 in upper converter switch 21. Each IGBT has a respective control (e.g., base) terminal coupled to a controller 25 which controls the switches according to various operating modes of the converter and inverters. In the conventional ( main capacitor first') discharging method, it was diode 24 that would conduct current once main capacitor 16 was discharged to a Voltage less than the Voltage on input capacitor 14, thereby resulting in a dis charging of input capacitor 14 no faster than main capacitor 16. In contrast, the present invention starts the discharge US 9,656,556 B process by operating converter 15 in a boost conversion mode thereby allowing input capacitor 14 to quickly tran sition to a Voltage lower than the Voltage across main capacitor 16. In particular, controller 25 is configured to operate converter 15 and one or both of inverters 17 and 19 in a manner to discharge the input capacitor and the main capacitor when the contactor goes from the closed state to the open state by A) operating the converter in the boost mode to transfer charge from the input capacitor to the main capacitor until the input capacitor discharges to less than a threshold voltage, and B) deactivating the converter Switches to prevent transferring charge from the main capacitor to the input capacitor. In addition, controller 25 operates to C) discharge the main capacitor through the inverter switches (either immediately or after the discharg ing of the input capacitor). In any case, the input capacitor is discharged in as little as 2 milliseconds instead of the 200 milliseconds of the conventional method. Thereafter, the inverter(s) can discharge the main capacitor using any desired method. In a first preferred method shown in FIG. 2, the invention confirms that the high-voltage battery contactor(s) is/are open in step 30. In step 31, the converter enters the boost mode, thereby beginning to transfer charge from the input capacitor to the main capacitor and reducing the Voltage across the input capacitor. While in the boost mode, the present invention may preferably ramp down the converter duty cycle to a small (calibratable) duty cycle as shown in step 32. In this embodiment, the duty cycle determines the Voltage ratio between the input capacitor and the main capacitor, and the act of ramping down the duty cycle lowers the input capacitor voltage. A check is made in step 33 to determine whether the input capacitor Voltage has dis charged to less than a threshold Voltage, V. If not, then a return is made to step 32 to continue to ramp down the duty cycle. Once the input capacitor Voltage is less than the threshold voltage, the converter switches are disabled in step 34. By deactivating the converter, the transfer of charge from the main capacitor back to the input capacitor is prevented. With the input capacitor discharged, the main capacitor is discharged in step 35. Although not shown in FIG. 2, the discharging of the main capacitor in step 35 can be initiated simultaneously with step 31, if desired. When in the input capacitor dumps its electric charge onto the main capacitor through the converter boost operation, Switching losses present in the converter and the relatively larger capacitance of the main capacitor will usually ensure that there will not be any significant Voltage overshoot on the main capacitor as a result of the charge received from the input capacitor. However, if the main capacitor Voltage is already near an upper limit before the discharge starts, there may be a need to further Suppress any potential Voltage overshoot on the main capacitor while the converter is boosting. To prevent the overshoot, one or more of the machine loads (i.e., the motor or generator) can be operated in an active bus-voltage regulation mode wherein the main capacitor Voltage is actively regulated to follow a com manded value. An implementation of active bus-voltage regulation is shown in FIG. 3. The main capacitor Voltage V is com pared to a commanded voltage (upper Voltage limit) V* in a Summer 40 which provides a difference signal to a pro portional-integral (PI) regulator 41. The output of regulator 41 is coupled to the input of an amplifier 42 to generate a Q-axis current command i. Amplifier 42 has a gain cor responding to the signed speed (), of the motor or generator. AD-axis current command ID is set to a characteristic short

8 US 9,656,556 B2 5 circuit current of the machine -I. The Q-axis and D-axis current commands are applied to current regulators 43, so that an appropriate level of current is dissipated into the machine load in order to maintain the main capacitor Voltage at less than the limit. 5 A method incorporating the voltage regulation of FIG. 3 is shown in FIG. 4. In step 50, an opened state of the high-voltage battery contactor(s) is/are confirmed (e.g., resulting from a key-off command or the detection of an emergency shutdown condition Such as a collision). The 10 variable voltage converter begins to operate in the boost mode to discharge the input capacitor into the main capacitor and the motor or generator inverters enter the bus-voltage regulation mode in step 51. A check is performed in step 52 to determine whether the converter has been disabled after 15 discharging the input capacitor (e.g., using the method shown in FIG. 2). If not yet disabled, then the inverters stay in the bus-voltage regulation mode in step 53. Once dis abling of the converter is detected in step 52, then the discharge of the main capacitor begins (or continues) in step Once rotation speed of the machine load(s) drops to zero and the Voltage across the main capacitor has been dis charged, then the inverter switches are disabled in step 55. A comparison of the typical performance of the present invention with that of the conventional method is shown in 25 FIGS FIG. 5 shows a discharge using the conventional method, wherein a curve 60 is the main capacitor Voltage and a curve 62 is the input capacitor Voltage. The main capacitor voltage starts out at a nominal value of 400 V. When discharge starts, the main capacitor Voltage begins to 30 decay along a trace 61. After a delay, the main capacitor voltage has decreased to a level equal to an initial value of the input capacitor Voltage. The input capacitor Voltage maintains its original level until the Voltages are equal at a point 63. Thereafter, both capacitors discharge at an equal 35 rate until reaching a safe threshold Voltage at a point 64. After the start of discharging, it requires 200 ms in order for the input capacitor voltage to drop to the safe threshold. FIG. 6 shows a curve 65 representing the current flowing from the input capacitor which is initially Zero and ramps upward at during the discharge phase of the input capacitor. In contrast, FIG. 7 shows results obtained using the present invention, wherein a curve 70 plots the main capaci tor Voltage and curve 71 plots the input capacitor Voltage. As Soon as the discharging starts, the input capacitor Voltage 45 begins to drops along line segment 72. Within about 2 ms. the input capacitor Voltage drops below the safe Voltage threshold. The main capacitor Voltage discharges along line segment 73, requiring about as much time as was required for the conventional method. However, the input capacitor 50 has already been fully discharged throughout this time, and the high-voltage on the main capacitor becomes isolated from the external environment. FIG. 8 shows a plot of the input capacitor current 75 which achieves a high value at 76 during the boost mode in order to quickly transfer all the 55 charge off the input capacitor. As a result of the improved discharge strategy of the present invention, the input capacitor can be discharged much faster than previously possible. Furthermore, the input capacitor Voltage can be quickly discharged at any motor or 60 generator speed. Furthermore, the present invention option ally uses a closed loop control for the main capacitor Voltage discharge which is robust against motor or generator posi tion sensor inaccuracies. What is claimed is: A drive system for an electric Vehicle, comprising: an input capacitor; 6 a contactor with an open state and a closed State for Selectably coupling the input capacitor to a DC power Source; a main capacitor, a variable Voltage converter coupling the input capacitor to the main capacitor, the converter comprising a plurality of converter switches adapted for boost con version; an inverter for coupling the main capacitor to a machine load, the inverter comprising a plurality of inverter Switching devices in a bridge configuration; a controller coupled to the converter and the inverter to discharge the input capacitor and the main capacitor when the contactor goes from the closed state to the open state by A) operating the converter in the boost mode to transfer charge from the input capacitor to the main capacitor until the input capacitor discharges to less than a threshold Voltage, B) deactivating the con Verter Switches to prevent transferring charge from the main capacitor to the input capacitor, and C) discharg ing the main capacitor through the inverter Switches. 2. The drive system of claim 1 wherein the variable Voltage converter operates with a duty cycle that ramps down during discharge of the input capacitor. 3. The drive system of claim 1 wherein the inverter is controlled in an active bus-voltage regulation mode during discharge of the input capacitor to prevent overshoot of a Voltage across the main capacitor. 4. The drive system of claim 1 wherein the variable Voltage converter includes an inductor coupled from the input capacitor to a junction between the converter switch ing devices, and wherein the converter Switching devices are coupled in series across the main capacitor. 5. The drive system of claim 1 wherein the machine load is comprised of a traction motor. 6. The drive system of claim 1 wherein the machine load is comprised of a generator. 7. A method to shut down a drive system of an electric vehicle, comprising the steps of: opening a contactor between a DC power Source and an input capacitor of the drive system; operating a variable Voltage converter in a boost mode between the input capacitor and a main capacitor of the drive system to transfer charge from the input capacitor to the main capacitor; deactivating the converter when the input capacitor dis charges to less than a threshold Voltage; activating inverter Switches coupled between the main capacitor and a machine load to discharge the main capacitor to a predetermined Voltage by dissipating the charge on the main capacitor into the machine load. 8. The method of claim 7 wherein the step of operating the variable Voltage converter in a boost mode is comprised of ramping down a duty cycle at which the variable Voltage converter is Switched during discharge of the input capacitor. 9. The method of claim 7 further comprising the step of: controlling the inverter Switches in an active bus-voltage regulation mode during discharge of the input capacitor to prevent overshoot of a Voltage across the main capacitor. 10. A method of discharging capacitors in an electric vehicle drive system, comprising: operating a variable Voltage converter in a boost mode to transfer charge from an input capacitor to a main linking capacitor in response to disconnection of a DC power source to the input capacitor,

9 7 deactivating the converter when the input capacitor dis charges to less than a threshold Voltage; and operating an inverter to discharge the main linking capaci tor into a machine load. 11. The method of claim 10 wherein the step of operating the variable Voltage converter in a boost mode is comprised of ramping down a duty cycle at which the variable Voltage converter is Switched during discharge of the input capacitor. 12. The method of claim 10 further comprising the step of: controlling the inverter in an active bus-voltage regulation mode during discharge of the input capacitor to prevent overshoot of a Voltage across the main linking capaci tor. 13. The method of claim 10 wherein the step of operating the inverter to discharge the main linking capacitor begins Substantially simultaneously with the step of operating the variable Voltage converter in a boost mode. 14. The method of claim 10 wherein the step of operating the inverter to discharge the main linking capacitor begins after the step of deactivating the converter. k k k k k US 9,656,556 B

(12) United States Patent

(12) United States Patent US009685.796 B2 (12) United States Patent Poirier (10) Patent No.: (45) Date of Patent: Jun. 20, 2017 (54) (71) (72) (73) (*) (21) (22) (65) (51) (52) (58) CURRENT BALANCING DEVICE FOR PARALLEL BATTERY

More information

USOO5963O14A United States Patent (19) 11 Patent Number: 5,963,014 Chen (45) Date of Patent: Oct. 5, 1999

USOO5963O14A United States Patent (19) 11 Patent Number: 5,963,014 Chen (45) Date of Patent: Oct. 5, 1999 USOO5963O14A United States Patent (19) 11 Patent Number: 5,963,014 Chen (45) Date of Patent: Oct. 5, 1999 54 SERIALLY CONNECTED CHARGER Primary Examiner Edward H. Tso Attorney, Agent, or Firm-Rosenberger,

More information

140 WDD PRECHARGE ENABLE Y-40s

140 WDD PRECHARGE ENABLE Y-40s USOO5856752A United States Patent (19) 11 Patent Number: Arnold (45) Date of Patent: *Jan. 5, 1999 54) DRIVER CIRCUIT WITH PRECHARGE AND ACTIVE HOLD 5,105,104 5,148,047 4/1992 Eisele et al.... 326/86 9/1992

More information

(12) United States Patent

(12) United States Patent USOO8384329B2 (12) United States Patent Natsume (54) (75) (73) (*) (21) (22) (65) (30) (51) (52) (58) WIPER SYSTEMAND WIPER CONTROL METHOD Inventor: Takashi Natsume, Toyohashi (JP) Assignee: ASMO Co.,

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States US 20070247877A1 (12) Patent Application Publication (10) Pub. No.: US 2007/0247877 A1 KWON et al. (43) Pub. Date: Oct. 25, 2007 54) ACTIVE-CLAMP CURRENTSOURCE 3O Foreign Application

More information

Earl Sch yang y Lee, 5,457,342 10/1995 Herbst, II /712

Earl Sch yang y Lee, 5,457,342 10/1995 Herbst, II /712 US005920264A United States Patent (19) 11 Patent Number: Kim et al. (45) Date of Patent: Jul. 6, 1999 54) COMPUTER SYSTEM PROTECTION 5,189,314 2/1993 Georgiou et al.... 307/271 DEVICE 5,287.292 2/1994

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0091943 A1 Manor et al. US 2012009 1943A1 (43) Pub. Date: (54) (76) (21) (22) (86) (60) SOLAR CELL CHARGING CONTROL Inventors:

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States US 201401 11961A1 (12) Patent Application Publication (10) Pub. No.: US 2014/011 1961 A1 Liu et al. (43) Pub. Date: Apr. 24, 2014 (54) WIRELESS BROADBAND DEVICE Publication Classification

More information

(12) United States Patent (10) Patent No.: US 6,590,360 B2

(12) United States Patent (10) Patent No.: US 6,590,360 B2 USOO659036OB2 (12) United States Patent (10) Patent No.: Hirata et al. (45) Date of Patent: Jul. 8, 2003 (54) CONTROL DEVICE FOR PERMANENT 4,879,502 A * 11/1989 Endo et al.... 318/808 MAGNET MOTOR SERVING

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Itabashi et al. USOO6329777B1 (10) Patent No.: (45) Date of Patent: Dec. 11, 2001 (54) MOTOR DRIVE CONTROL APPARATUS AND METHOD HAVING MOTOR CURRENT LIMIT FUNCTION UPON MOTOR

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Fujita 11 Patent Number: (45) Date of Patent: 4,727,957 Mar. 1, 1988 (54) RUBBER VIBRATION ISOLATOR FOR MUFFLER 75 Inventor: Akio Fujita, Fujisawa, Japan 73) Assignee: Bridgestone

More information

United States Patent (19) Miller

United States Patent (19) Miller United States Patent (19) Miller 54 LAMPHOLDER FITTING WITH THREE-WAY BRIGHTNESS SOLD-STATE FLUORESCENT LAMP BALLAST 76) Inventor: Jack V. Miller, 700 N. Auburn Ave., Sierra Madre, Calif. 91024 21 Appl.

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO7357465B2 (10) Patent No.: US 7,357.465 B2 Young et al. (45) Date of Patent: Apr. 15, 2008 (54) BRAKE PEDAL FEEL SIMULATOR 3,719,123 A 3/1973 Cripe 3,720,447 A * 3/1973 Harned

More information

ENGINE. ean III. United States Patent (19) Pinkowski CONTROL. A method and system for controlling the illumination of a

ENGINE. ean III. United States Patent (19) Pinkowski CONTROL. A method and system for controlling the illumination of a United States Patent (19) Pinkowski III USOO5606308A 11 Patent Number: 45) Date of Patent: Feb. 25, 1997 54 75) (73 21 22 51 (52) (58) 56) METHOD AND SYSTEM FOR CONTROLLING THE LLUMINATION OFA VEHICULAR

More information

(12) United States Patent (10) Patent No.: US 9,035,508 B2

(12) United States Patent (10) Patent No.: US 9,035,508 B2 US009035508B2 (12) United States Patent (10) Patent No.: US 9,035,508 B2 Grosskopf et al. (45) Date of Patent: May 19, 2015 (54) ROTATING RESISTOR ASSEMBLY H02K II/042 (2013.01); H02K II/0057 (2013.01):

More information

(12) United States Patent (10) Patent No.: US 9,624,044 B2

(12) United States Patent (10) Patent No.: US 9,624,044 B2 USOO9624044B2 (12) United States Patent (10) Patent No.: US 9,624,044 B2 Wright et al. (45) Date of Patent: Apr. 18, 2017 (54) SHIPPING/STORAGE RACK FOR BUCKETS (56) References Cited (71) Applicant: CWS

More information

(12) United States Patent (10) Patent No.: US 6,429,647 B1

(12) United States Patent (10) Patent No.: US 6,429,647 B1 USOO6429647B1 (12) United States Patent (10) Patent No.: US 6,429,647 B1 Nicholson (45) Date of Patent: Aug. 6, 2002 (54) ANGULAR POSITION SENSOR AND 5,444,369 A 8/1995 Luetzow... 324/207.2 METHOD OF MAKING

More information

(12) United States Patent (10) Patent No.: US 8,651,070 B2

(12) United States Patent (10) Patent No.: US 8,651,070 B2 USOO8651070B2 (12) United States Patent (10) Patent No.: US 8,651,070 B2 Lindner et al. (45) Date of Patent: Feb. 18, 2014 (54) METHOD AND APPARATUS TO CONTROL USPC... 123/41.02, 41.08-41.1, 41.44, 198C

More information

USOO58065OOA United States Patent (19) 11 Patent Number: 5,806,500 Fargo et al. (45) Date of Patent: Sep. 15, 1998

USOO58065OOA United States Patent (19) 11 Patent Number: 5,806,500 Fargo et al. (45) Date of Patent: Sep. 15, 1998 USOO58065OOA United States Patent (19) 11 Patent Number: 5,806,500 Fargo et al. (45) Date of Patent: Sep. 15, 1998 54 FUEL VAPOR RECOVERY SYSTEM 5,456,238 10/1995 Horiuchi et al.. 5,460,136 10/1995 Yamazaki

More information

75 Inventors: William H. Robertson, Jr., Plantation; Primary Examiner-Peter S. Wong

75 Inventors: William H. Robertson, Jr., Plantation; Primary Examiner-Peter S. Wong USOO592O178A United States Patent (19) 11 Patent Number: 5,920,178 Robertson, Jr. et al. (45) Date of Patent: Jul. 6, 1999 54) BATTERY PACK HAVING INTEGRATED 56) References Cited CHARGING CIRCUIT AND CHARGING

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1. Poulsen (43) Pub. Date: Oct. 25, 2012

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1. Poulsen (43) Pub. Date: Oct. 25, 2012 US 20120268067A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0268067 A1 Poulsen (43) Pub. Date: (54) CHARGING STATION FOR ELECTRIC (52) U.S. Cl.... 320/109; 29/401.1 VEHICLES

More information

(12) United States Patent (10) Patent No.: US 8, B2

(12) United States Patent (10) Patent No.: US 8, B2 US0087.08325B2 (12) United States Patent (10) Patent No.: US 8,708.325 B2 Hwang et al. (45) Date of Patent: Apr. 29, 2014 (54) PAPER CLAMPINGAPPARATUS FOR (56) References Cited OFFICE MACHINE (75) Inventors:

More information

conductance to references and provide outputs. Output cir

conductance to references and provide outputs. Output cir USOO5757192A United States Patent (19) 11 Patent Number: McShane et al. 45) Date of Patent: May 26, 1998 54 METHOD AND APPARATUS FOR 4.881,038 11/1989 Champlin. DETECTING A BAD CELL IN A STORAGE 4,912,416

More information

(12) United States Patent (10) Patent No.: US 8,840,124 B2

(12) United States Patent (10) Patent No.: US 8,840,124 B2 USOO884O124B2 (12) United States Patent (10) Patent No.: Serhan et al. (45) Date of Patent: Sep. 23, 2014 (54) ROLLATOR HAVING ASITTO-LOCK BRAKE (56) References Cited (75) Inventors: Michael Serhan, Arcadia,

More information

(12) United States Patent

(12) United States Patent USOO7324657B2 (12) United States Patent Kobayashi et al. (10) Patent No.: (45) Date of Patent: US 7,324,657 B2 Jan. 29, 2008 (54) (75) (73) (*) (21) (22) (65) (30) Foreign Application Priority Data Mar.

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO698.1746B2 (10) Patent No.: US 6,981,746 B2 Chung et al. (45) Date of Patent: Jan. 3, 2006 (54) ROTATING CAR SEAT MECHANISM 4,844,543 A 7/1989 Ochiai... 297/344.26 4,925,227

More information

2, J. (12) United States Patent. 5 (.x / (10) Patent No.: US 8,172,042 B2. (45) Date of Patent: May 8, 2012

2, J. (12) United States Patent. 5 (.x / (10) Patent No.: US 8,172,042 B2. (45) Date of Patent: May 8, 2012 USOO8172042B2 (12) United States Patent Wesson et al. () Patent No.: (45) Date of Patent: May 8, 2012 (54) (75) (73) (*) (21) (22) (86) (87) (65) (51) (52) (58) ELEVATOR POWER SYSTEM Inventors: John P.

More information

(12) United States Patent (10) Patent No.: US 8,899,031 B2

(12) United States Patent (10) Patent No.: US 8,899,031 B2 US008899.031B2 (12) United States Patent (10) Patent No.: US 8,899,031 B2 Turnis et al. (45) Date of Patent: Dec. 2, 2014 (54) COLD START VALVE (58) Field of Classification Search CPC... F15B 21/042: F15B

More information

(12) United States Patent (10) Patent No.: US 7,592,736 B2

(12) United States Patent (10) Patent No.: US 7,592,736 B2 US007592736 B2 (12) United States Patent (10) Patent No.: US 7,592,736 B2 Scott et al. (45) Date of Patent: Sep. 22, 2009 (54) PERMANENT MAGNET ELECTRIC (56) References Cited GENERATOR WITH ROTOR CIRCUMIFERENTIALLY

More information

s: K K Isk is is ki. It

s: K K Isk is is ki. It US007859 125B2 (12) United States Patent (10) Patent No.: US 7,859,125 B2 Nielsen et al. (45) Date of Patent: Dec. 28, 2010 (54) METHOD OF CONTROLLING A WIND 6,924,565 B2 * 8/2005 Wilkins et al.... 29044

More information

(12) United States Patent (10) Patent No.: US 6,435,993 B1. Tada (45) Date of Patent: Aug. 20, 2002

(12) United States Patent (10) Patent No.: US 6,435,993 B1. Tada (45) Date of Patent: Aug. 20, 2002 USOO6435993B1 (12) United States Patent (10) Patent No.: US 6,435,993 B1 Tada (45) Date of Patent: Aug. 20, 2002 (54) HYDRAULIC CHAIN TENSIONER WITH 5,707.309 A 1/1998 Simpson... 474/110 VENT DEVICE AND

More information

USOO A United States Patent (19) 11 Patent Number: 5,900,734 Munson (45) Date of Patent: May 4, 1999

USOO A United States Patent (19) 11 Patent Number: 5,900,734 Munson (45) Date of Patent: May 4, 1999 USOO5900734A United States Patent (19) 11 Patent Number: 5,900,734 Munson (45) Date of Patent: May 4, 1999 54) LOW BATTERY VOLTAGE DETECTION 5,444,378 8/1995 Rogers... 324/428 AND WARNING SYSTEM 5,610,525

More information

(12) United States Patent

(12) United States Patent US007307230B2 (12) United States Patent Chen (10) Patent No.: (45) Date of Patent: US 7,307,230 B2 Dec. 11, 2007 (54) MECHANISM FOR CONTROLLING CIRCUITCLOSINGAOPENING OF POWER RATCHET WRENCH (75) Inventor:

More information

(12) United States Patent (10) Patent No.: US 7,047,956 B2. Masaoka et al. (45) Date of Patent: May 23, 2006

(12) United States Patent (10) Patent No.: US 7,047,956 B2. Masaoka et al. (45) Date of Patent: May 23, 2006 US007047956B2 (12) United States Patent (10) Patent No.: Masaoka et al. (45) Date of Patent: May 23, 2006 (54) KICKBACK PREVENTING DEVICE FOR (56) References Cited ENGINE (75) Inventors: Akira Masaoka,

More information

US 7, B2. Loughrin et al. Jan. 1, (45) Date of Patent: (10) Patent No.: and/or the driven component. (12) United States Patent (54) (75)

US 7, B2. Loughrin et al. Jan. 1, (45) Date of Patent: (10) Patent No.: and/or the driven component. (12) United States Patent (54) (75) USOO7314416B2 (12) United States Patent Loughrin et al. (10) Patent No.: (45) Date of Patent: US 7,314.416 B2 Jan. 1, 2008 (54) (75) (73) (*) (21) (22) (65) (51) (52) (58) (56) DRIVE SHAFT COUPLNG Inventors:

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States US 200800301 65A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0030165 A1 Lisac (43) Pub. Date: Feb. 7, 2008 (54) METHOD AND DEVICE FOR SUPPLYING A CHARGE WITH ELECTRIC

More information

(12) (10) Patent No.: US 7,080,888 B2. Hach (45) Date of Patent: Jul. 25, 2006

(12) (10) Patent No.: US 7,080,888 B2. Hach (45) Date of Patent: Jul. 25, 2006 United States Patent US007080888B2 (12) (10) Patent No.: US 7,080,888 B2 Hach (45) Date of Patent: Jul. 25, 2006 (54) DUAL NOZZLE HYDRO-DEMOLITION 6,049,580 A * 4/2000 Bodin et al.... 376/.316 SYSTEM 6,224,162

More information

(12) United States Patent

(12) United States Patent USO09597628B2 (12) United States Patent Kummerer et al. (10) Patent No.: (45) Date of Patent: Mar. 21, 2017 (54) (71) (72) (73) (*) (21) (22) (65) (60) (51) (52) OPTIMIZATION OF A VAPOR RECOVERY UNIT Applicant:

More information

(12) United States Patent (10) Patent No.: US 6,641,228 B2

(12) United States Patent (10) Patent No.: US 6,641,228 B2 USOO6641228B2 (12) United States Patent (10) Patent No.: US 6,641,228 B2 Liu (45) Date of Patent: Nov. 4, 2003 (54) DETACHABLE FRONT WHEEL STRUCTURE (56) References Cited OF GOLF CART U.S. PATENT DOCUMENTS

More information

(12) United States Patent (10) Patent No.: US 6,255,755 B1

(12) United States Patent (10) Patent No.: US 6,255,755 B1 USOO6255755B1 (12) United States Patent (10) Patent No.: Fei (45) Date of Patent: *Jul. 3, 2001 (54) SINGLE PHASE THREE SPEED MOTOR 3,619,730 11/1971 Broadway et al.... 318/224 R WITH SHARED WINDINGS 3,774,062

More information

(12) United States Patent (10) Patent No.: US 9,168,973 B2

(12) United States Patent (10) Patent No.: US 9,168,973 B2 US009 168973B2 (12) United States Patent (10) Patent No.: US 9,168,973 B2 Offe (45) Date of Patent: Oct. 27, 2015 (54) MOTORCYCLE SUSPENSION SYSTEM (56) References Cited (71) Applicant: Andrew Offe, Wilunga

More information

(12) (10) Patent No.: US 6,915,721 B2. Hsu et al. (45) Date of Patent: Jul. 12, 2005

(12) (10) Patent No.: US 6,915,721 B2. Hsu et al. (45) Date of Patent: Jul. 12, 2005 United States Patent USOO6915721B2 (12) (10) Patent No.: US 6,915,721 B2 Hsu et al. (45) Date of Patent: Jul. 12, 2005 (54) CORDLESS RATCHET WRENCH 6,311,583 B1 11/2001 Izumisawa... 81/57.13 6,715,380

More information

United States Patent (19) Cox

United States Patent (19) Cox United States Patent (19) Cox 54 CAPACITOR TESTING APPARATUS 76) Inventor: Elbert W. Cox, P. O. Box 770, The Dalles, Oreg. 21 Appl. No.: 883,142 22 Filed: Mar. 3, 1978 51) Int. C.... G01R 27/26 52 U.S.

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO6989498B1 (10) Patent No.: US 6,989,498 B1 Linder et al. (45) Date of Patent: Jan. 24, 2006 (54) METHOD AND DEVICE FOR LOCKING (56) References Cited U.S. PATENT DOCUMENTS

More information

(12) United States Patent

(12) United States Patent US00704.4047B1 (12) United States Patent Bennett et al. (10) Patent No.: (45) Date of Patent: (54) (75) (73) (*) (21) (22) (51) (52) (58) CYLNDER MOUNTED STROKE CONTROL Inventors: Robert Edwin Bennett,

More information

United States Patent (19) Kline et al.

United States Patent (19) Kline et al. United States Patent (19) Kline et al. 11 Patent Number: 45 Date of Patent: Jul. 3, 1990 54 BRAKING SYSTEMAND BREAK-AWAY BRAKNG SYSTEM 76 Inventors: Wayne K. Kline, R.D. 1, Box 340, Turbotville, Pa. 17772;

More information

(12) United States Patent

(12) United States Patent U008713746B2 (12) United tates Patent Dallos, Jr. et al. (10) Patent No.: U 8,713,746 B2 (45) Date of Patent: May 6, 2014 (54) (75) (73) (*) (21) (22) (65) (51) (52) (58) DETACHABLE REAR WIPER YTEM Inventors:

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US00906 1731B1 (10) Patent No.: US 9,061,731 B1 DO (45) Date of Patent: Jun. 23, 2015 (54) SELF-CHARGING ELECTRIC BICYCLE (56) References Cited (71) Applicant: Hung Do, Las Vegas,

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007218212B2 (10) Patent No.: US 7,218,212 B2 HL (45) Date of Patent: May 15, 2007 (54) TWO-STEPCONTROL SIGNAL DEVICE 5,281,950 A 1/1994 Le... 340/475 WITH A U-TURN SIGNAL 5,663,708

More information

United States Patent (19) Hormel et al.

United States Patent (19) Hormel et al. United States Patent (19) Hormel et al. 54 (75) (73) 21) 22) (51) 52) (58) 56) LAMP FAILURE INDICATING CIRCUIT Inventors: Ronald F. Hormel, Mt. Clemens; Frederick O. R. Miesterfeld, Troy, both of Mich.

More information

Kikuiri et al. (45) Date of Patent: Jun. 3, (54) CAPACITIVE PRESSURE SENSOR 5, A 12, 1996 Ko /53

Kikuiri et al. (45) Date of Patent: Jun. 3, (54) CAPACITIVE PRESSURE SENSOR 5, A 12, 1996 Ko /53 (12) United States Patent USOO7382599B2 (10) Patent No.: US 7,382,599 B2 Kikuiri et al. (45) Date of Patent: Jun. 3, 2008 (54) CAPACITIVE PRESSURE SENSOR 5,585.311 A 12, 1996 Ko... 438/53 5,656,781 A *

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Imai USOO6581225B1 (10) Patent No.: US 6,581,225 B1 (45) Date of Patent: Jun. 24, 2003 (54) MATTRESS USED FOR PREVENTING BEDSORES OR THE LIKE (76) Inventor: KaZumichi Imai, 7-29-1222,

More information

od f 11 (12) United States Patent US 7,080,599 B2 Taylor Jul. 25, 2006 (45) Date of Patent: (10) Patent No.:

od f 11 (12) United States Patent US 7,080,599 B2 Taylor Jul. 25, 2006 (45) Date of Patent: (10) Patent No.: US007080599B2 (12) United States Patent Taylor (10) Patent No.: (45) Date of Patent: Jul. 25, 2006 (54) RAILROAD HOPPER CAR TRANSVERSE DOOR ACTUATING MECHANISM (76) Inventor: Fred J. Taylor, 6485 Rogers

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States US 201200 13216A1 (12) Patent Application Publication (10) Pub. No.: US 2012/0013216 A1 Liu et al. (43) Pub. Date: Jan. 19, 2012 (54) CORELESS PERMANENT MAGNET MOTOR (76) Inventors:

More information

(12) United States Patent

(12) United States Patent US009113558B2 (12) United States Patent Baik (10) Patent No.: (45) Date of Patent: US 9,113,558 B2 Aug. 18, 2015 (54) LED MOUNT BAR CAPABLE OF FREELY FORMING CURVED SURFACES THEREON (76) Inventor: Seong

More information

(12) United States Patent (10) Patent No.: US 6,626,061 B2. Sakamoto et al. (45) Date of Patent: Sep. 30, 2003

(12) United States Patent (10) Patent No.: US 6,626,061 B2. Sakamoto et al. (45) Date of Patent: Sep. 30, 2003 USOO6626061B2 (12) United States Patent (10) Patent No.: Sakamoto et al. (45) Date of Patent: Sep. 30, 2003 (54) ACCELERATOR PEDAL DEVICE 6,276,229 B1 * 8/2001 Gohring et al... 74/513 6,289,762 B1 9/2001

More information

(12) United States Patent (10) Patent No.: US 8,215,503 B2. Appel et al. (45) Date of Patent: Jul. 10, 2012

(12) United States Patent (10) Patent No.: US 8,215,503 B2. Appel et al. (45) Date of Patent: Jul. 10, 2012 US008215503B2 (12) United States Patent (10) Patent No.: US 8,215,503 B2 Appel et al. (45) Date of Patent: Jul. 10, 2012 (54) CRANE WITH TELESCOPIC BOOM 3,921,819 A * 1 1/1975 Spain... 212,349 4,394,108

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0290654 A1 GOVari et al. US 20070290654A1 (43) Pub. Date: Dec. 20, 2007 (54) INDUCTIVE CHARGING OF TOOLS ON SURGICAL TRAY (76)

More information

United States Patent (19) 11) 4,324,219

United States Patent (19) 11) 4,324,219 United States Patent (19) 11) 4,324,219 Hayashi 45) Apr. 13, 1982 54). SPARK INTENSIFIER IN GASOLINE 56) References Cited ENGINE U.S. PATENT DOCUMENTS s 703,759 7/1902 Brown... 123/169 PH 75) Inventor:

More information

(12) United States Patent (10) Patent No.: US 6,205,840 B1

(12) United States Patent (10) Patent No.: US 6,205,840 B1 USOO620584OB1 (12) United States Patent (10) Patent No.: US 6,205,840 B1 Thompson (45) Date of Patent: Mar. 27, 2001 (54) TIME CLOCK BREATHALYZER 4,749,553 * 6/1988 Lopez et al.... 73/23.3 X COMBINATION

More information

(12) United States Patent (10) Patent No.: US 6,588,825 B1

(12) United States Patent (10) Patent No.: US 6,588,825 B1 USOO6588825B1 (12) United States Patent (10) Patent No.: US 6,588,825 B1 Wheatley (45) Date of Patent: Jul. 8, 2003 (54) RAIN DIVERTING DEVICE FOR A 6,024.402 A * 2/2000 Wheatley... 296/100.18 TONNEAU

More information

(12) United States Patent (10) Patent No.: US 6,196,085 B1

(12) United States Patent (10) Patent No.: US 6,196,085 B1 USOO6196085B1 (12) United States Patent (10) Patent No.: US 6,196,085 B1 Chimonides et al. (45) Date of Patent: Mar. 6, 2001 (54) COUPLING AN ACCESSORY TO AN ENGINE 3,576,336 4/1971 Uhlig... 403/281 CRANKSHAFT

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0139355A1 Lee et al. US 2013 O1393.55A1 (43) Pub. Date: Jun. 6, 2013 (54) (75) (73) (21) (22) (60) HINGEMECHANISMAND FOLDABLE

More information

(12) United States Patent (10) Patent No.: US 6,446,482 B1. Heskey et al. (45) Date of Patent: Sep. 10, 2002

(12) United States Patent (10) Patent No.: US 6,446,482 B1. Heskey et al. (45) Date of Patent: Sep. 10, 2002 USOO64.46482B1 (12) United States Patent (10) Patent No.: Heskey et al. (45) Date of Patent: Sep. 10, 2002 (54) BATTERY OPERATED HYDRAULIC D408.242 S 4/1999 Yamamoto... D8/61 COMPRESSION TOOL WITH RAPID

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0119926 A1 LIN US 2013 0119926A1 (43) Pub. Date: May 16, 2013 (54) WIRELESS CHARGING SYSTEMAND METHOD (71) Applicant: ACER

More information

(12) United States Patent (10) Patent No.: US 7,055,613 B1. Bissen et al. (45) Date of Patent: Jun. 6, 2006

(12) United States Patent (10) Patent No.: US 7,055,613 B1. Bissen et al. (45) Date of Patent: Jun. 6, 2006 US007055613B1 (12) United States Patent (10) Patent No.: US 7,055,613 B1 Bissen et al. (45) Date of Patent: Jun. 6, 2006 (54) SELF LEVELING BOOM SYSTEM WITH (58) Field of Classification Search... 169/24,

More information

(12) United States Patent

(12) United States Patent US008998577B2 (12) United States Patent Gustafson et al. (10) Patent No.: US 8,998,577 B2 (45) Date of Patent: Apr. 7, 2015 (54) (75) (73) (*) (21) (22) (65) (51) (52) TURBINE LAST STAGE FLOW PATH Inventors:

More information

United States Patent 19 Schechter

United States Patent 19 Schechter United States Patent 19 Schechter (54) 75 73) 21) (22) (51) (52) 58 (56) SPOOL VALVE CONTROL OF AN ELECTROHYDRAULIC CAMILESS WALVETRAIN Inventor: Michael M. Schechter, Farmington Hills, Mich. Assignee:

More information

(12) United States Patent

(12) United States Patent USOO8905448B2 (12) United States Patent Vaz Coelho et al. (10) Patent No.: (45) Date of Patent: US 8,905,448 B2 Dec. 9, 2014 (54) SIZE-ADJUSTABLE, PIVOTABLE TRIPLE CONNECTION DEVICE (75) Inventors: Joao

More information

(12) United States Patent (10) Patent No.: US 6,791,205 B2

(12) United States Patent (10) Patent No.: US 6,791,205 B2 USOO6791205B2 (12) United States Patent (10) Patent No.: Woodbridge (45) Date of Patent: Sep. 14, 2004 (54) RECIPROCATING GENERATOR WAVE 5,347,186 A 9/1994 Konotchick... 310/17 POWER BUOY 5,696,413 A 12/1997

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO9284.05OB2 (10) Patent No.: US 9.284,050 B2 Bagai (45) Date of Patent: Mar. 15, 2016 (54) AIRFOIL FOR ROTOR BLADE WITH (56) References Cited REDUCED PITCHING MOMENT U.S. PATENT

More information

United States Patent (19) Muranishi

United States Patent (19) Muranishi United States Patent (19) Muranishi (54) DEVICE OF PREVENTING REVERSE TRANSMISSION OF MOTION IN A GEAR TRAIN 75) Inventor: Kenichi Muranishi, Ena, Japan 73) Assignee: Ricoh Watch Co., Ltd., Nagoya, Japan

More information

(12) United States Patent Burkitt et a1.

(12) United States Patent Burkitt et a1. US008567174B2 (12) United States Patent Burkitt et a1. (10) Patent N0.: (45) Date of Patent: US 8,567,174 B2 Oct. 29, 2013 (54) (75) (73) (*) (21) (22) (86) (87) (65) (60) (51) (52) (58) VALVE ASSEMBLY

More information

(12) United States Patent (10) Patent No.: US B1

(12) United States Patent (10) Patent No.: US B1 USOO7628442B1 (12) United States Patent (10) Patent No.: Spencer et al. (45) Date of Patent: Dec. 8, 2009 (54) QUICK RELEASE CLAMP FOR TONNEAU (58) Field of Classification Search... 296/100.04, COVER 296/100.07,

More information

(12) United States Patent (10) Patent No.: US 6,220,819 B1

(12) United States Patent (10) Patent No.: US 6,220,819 B1 USOO6220819B1 (12) United States Patent (10) Patent No.: US 6,220,819 B1 Chien et al. (45) Date of Patent: Apr. 24, 2001 (54) CENTRIFUGAL PUMP IMPELLER 3.368,744 2/1968 Jenn... 416/237 4,236,871 12/1980

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 20090045655A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0045655A1 Willard et al. (43) Pub. Date: Feb. 19, 2009 (54) MULTI-PANEL PANORAMIC ROOF MODULE (75) Inventors:

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 US 20140361742A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0361742 A1 CHUNG et al. (43) Pub. Date: Dec. 11, 2014 (54) ELECTRIC VEHICLE CHARGER (52) U.S. Cl. CPC... B60L

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US00893 1520B2 (10) Patent No.: US 8,931,520 B2 Fernald (45) Date of Patent: Jan. 13, 2015 (54) PIPE WITH INTEGRATED PROCESS USPC... 138/104 MONITORING (58) Field of Classification

More information

(12) United States Patent (10) Patent No.: US 6,805,593 B2

(12) United States Patent (10) Patent No.: US 6,805,593 B2 USOO6805593B2 (12) United States Patent (10) Patent No.: US 6,805,593 B2 Spaulding et al. (45) Date of Patent: Oct. 19, 2004 (54) QUICK CONNECT BATTERY TERMINAL 3,764,961. A 10/1973 Poltras... 439/759

More information

(12) (10) Patent No.: US 7, B2 Devroy (45) Date of Patent: Apr. 1, 2008

(12) (10) Patent No.: US 7, B2 Devroy (45) Date of Patent: Apr. 1, 2008 United States Patent USOO7351934B2 (12) (10) Patent No.: US 7,351.934 B2 Devroy (45) Date of Patent: Apr. 1, 2008 (54) LOW VOLTAGE WARMING BLANKET 4,633,062 A * 12/1986 Nishida et al.... 219,212 5,148,002

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007884512B2 (10) Patent No.: US 7,884,512 B2 Horng et al. (45) Date of Patent: Feb. 8, 2011 (54) FIXING STRUCTURE FOR PRINTED (56) References Cited CIRCUIT BOARD OF MICRO MOTOR

More information

USOO A United States Patent (19) 11 Patent Number: 5,892,675 Yatsu et al. (45) Date of Patent: Apr. 6, 1999

USOO A United States Patent (19) 11 Patent Number: 5,892,675 Yatsu et al. (45) Date of Patent: Apr. 6, 1999 USOO5892675A United States Patent (19) 11 Patent Number: Yatsu et al. (45) Date of Patent: Apr. 6, 1999 54 ACCURRENT SOURCE CIRCUIT FOR 4,876,635 10/1989 Park et al.... 363/17 CONVERTING DC VOLTAGE INTO

More information

(12) United States Patent (10) Patent No.: US 6,543,270 B2

(12) United States Patent (10) Patent No.: US 6,543,270 B2 USOO654327OB2 (12) United States Patent (10) Patent No.: US 6,543,270 B2 Cmelik (45) Date of Patent: Apr. 8, 2003 (54) AUTOBODY DENT REPAIR TOOL 4,461,192 A * 7/1984 Suligoy et al.... 81/177.7 4,502,317

More information

Patent Application Publication Nov. 27, 2014 Sheet 1 of 7 US 2014/ A1

Patent Application Publication Nov. 27, 2014 Sheet 1 of 7 US 2014/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0346290 A1 YOSHIDA et al. US 20140346290A1 (43) Pub. Date: Nov. 27, 2014 (54) (71) (72) (73) (21) (22) (63) (30) SLIDING TYPE

More information

E. E. E.O.E. comprises a diverter valve downstream of the turbine, an

E. E. E.O.E. comprises a diverter valve downstream of the turbine, an USOO63056B1 (12) United States Patent (10) Patent No.: Lui (45) Date of Patent: Oct. 23, 2001 (54) INTEGRATED BLEED AIR AND ENGINE 5,363,641 11/1994 Dixon et al.. STARTING SYSTEM 5,414,992 5/1995 Glickstein.

More information

(12) United States Patent (10) Patent No.: US 6,469,466 B1

(12) United States Patent (10) Patent No.: US 6,469,466 B1 USOO6469466B1 (12) United States Patent (10) Patent No.: US 6,469,466 B1 Suzuki (45) Date of Patent: Oct. 22, 2002 (54) AUTOMATIC GUIDED VEHICLE JP 7-2S1768 10/1995 JP 8-1553 1/1996 (75) Inventor: Takayuki

More information

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0058755A1 Madurai-Kumar et al. US 20170058755A1 (43) Pub. Date: (54) (71) (72) (21) (22) (63) (60) ELECTRICALLY DRIVEN COOLING

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US009277323B2 (10) Patent No.: L0cke et al. (45) Date of Patent: Mar. 1, 2016 (54) COMPACT AUDIO SPEAKER (56) References Cited (71) Applicant: Apple Inc., Cupertino, CA (US) U.S.

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1. Cervantes et al. (43) Pub. Date: Jun. 7, 2007

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1. Cervantes et al. (43) Pub. Date: Jun. 7, 2007 US 20070 126577A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0126577 A1 Cervantes et al. (43) Pub. Date: Jun. 7, 2007 (54) DOOR LATCH POSITION SENSOR Publication Classification

More information

of a quadratic function f(x)=aox+box+co whose con

of a quadratic function f(x)=aox+box+co whose con US005624250A United States Patent 19 11 Patent Number: 5,624,250 Son 45) Date of Patent: Apr. 29, 1997 54 TOOTH PROFILE FOR COMPRESSOR FOREIGN PATENT DOCUMENTS SCREW ROTORS 1197432 7/1970 United Kingdom.

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States US 201401.46424A1 (12) Patent Application Publication (10) Pub. No.: US 2014/014.6424 A1 Sueishi (43) Pub. Date: May 29, 2014 (54) EARTH LEAKAGE CIRCUIT BREAKER AND (52) U.S. Cl. IMAGE

More information

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1 US 2010O293805A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0293805 A1 Chang (43) Pub. Date: Nov. 25, 2010 (54) NAIL GEL SOLIDIFICATION APPARATUS Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States US 20080000052A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0000052 A1 Hong et al. (43) Pub. Date: Jan. 3, 2008 (54) REFRIGERATOR (75) Inventors: Dae Jin Hong, Jangseong-gun

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Ogasawara et al. (54) 75 RDING LAWN MOWER Inventors: Hiroyuki Ogasawara; Nobuyuki Yamashita; Akira Minoura, all of Osaka, Japan Assignee: Kubota Corporation, Osaka, Japan Appl.

More information

United States Patent (19) Kim et al.

United States Patent (19) Kim et al. United States Patent (19) Kim et al. 54 METHOD OF AND APPARATUS FOR COATING AWAFER WITH A MINIMAL LAYER OF PHOTORESIST 75 Inventors: Moon-woo Kim, Kyungki-do; Byung-joo Youn, Seoul, both of Rep. of Korea

More information

(12) United States Patent (10) Patent No.: US 6,779,516 B1

(12) United States Patent (10) Patent No.: US 6,779,516 B1 USOO6779516B1 (12) United States Patent (10) Patent No.: Shureb () Date of Patent: Aug. 24, 2004 (54) CLOSED CRANKCASE VENTILATION 4.856,487 A * 8/1989 Furuya... 123/574 SYSTEM WITH FLOW METER FOR 5,003,943

More information

(12) United States Patent (10) Patent No.: US 6,484,362 B1

(12) United States Patent (10) Patent No.: US 6,484,362 B1 USOO648.4362B1 (12) United States Patent (10) Patent No.: US 6,484,362 B1 Ku0 (45) Date of Patent: Nov. 26, 2002 (54) RETRACTABLE HANDLE ASSEMBLY WITH 5,692,266 A 12/1997 Tsai... 16/113.1 MULTIPLE ENGAGING

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Yenisey 54 FUSE OR CIRCUIT BREAKER STATUS INDICATOR 75) Inventor: 73) Assignee: Osman M. Yenisey, Manalapan, N.J. AT&T Bell Laboratories, Murray Hill, N.J. (21) Appl. No.: 942,878

More information

(12) United States Patent

(12) United States Patent USOO7654162B2 (12) United States Patent Braaten (54) DEVICE FOR INSTALLATION OF A PROBE AND PROBEACCOMMODATING ARRANGEMENT (75) Inventor: Nils A. Braaten, Trondheim (NO) (73) Assignee: Roxar ASA, Stavanger

More information

--- HG) F CURRENT (12) Patent Application Publication (10) Pub. No.: US 2012/ A1. f 60 HG) (19) United States MEASUREMENT

--- HG) F CURRENT (12) Patent Application Publication (10) Pub. No.: US 2012/ A1. f 60 HG) (19) United States MEASUREMENT (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0169284 A1 Park US 20120169284A1 (43) Pub. Date: Jul. 5, 2012 (54) (75) (73) (21) (22) (30) BATTERY CHARGING METHOD AND BATTERY

More information