Towards Green Environment and Renewable Energy: Waste Vegetable Frying Oil for Biodiesel Synthesis

Size: px
Start display at page:

Download "Towards Green Environment and Renewable Energy: Waste Vegetable Frying Oil for Biodiesel Synthesis"

Transcription

1 Towards Green Environment and Renewable Energy: Waste Vegetable Frying Oil for Biodiesel Synthesis Eman A. Ashour 1, Maha A. Tony 2 1 Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt 2 Basic Engineering Science Department, Faculty of Engineering, Shbin El-Koum, Minoufia University, Minoufia, Egypt maha_tony1@yahoo.com Abstract- In this study biodiesel was synthesized from waste cooking frying oil (WFO) collected from El-Minia city, Egypt by alkali-catalyzed transesterification. Optimization of reaction conditions such as catalyst amount, reaction temperature, reaction time and oil to methanol molar ratio have been studied. The best conversion value which getting the yield of 98.16% was obtained from 1.0% KOH catalyst was used at 3 hr of reaction time, the reaction temperature was 65 C and 1:6 oil to methanol molar ratio. Furthermore, different ratios of the WFO were blended with commercial diesel, namely, B10, B20, B30, B50 and without any addition which is called B100. Moreover, the physicochemical properties such as biodiesel viscosity, density, flash point, and higher heating value (HHV) of the obtained biodiesel were verified and compared with that of commercial diesel which recommending the use of the WFO biodiesel. Finally, the GHG (greenhouse gases emissions) of the WFO biodiesel advocate the biodiesel use. Keywords- Biodiesel, Transesterification, Waste cooking frying oil, greenhouses emissions. I. INTRODUCTION The global supply of oil and natural gas from the conventional sources is unlikely to meet the growth in energy demand over the next 25 years. Crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. Concern for the environment become necessity especially with the increasing emission of toxic chemicals from various industries and increasing concerns of global warming. Due to all of those reasons, there is ever growing urge to develop fuel substitutes that are renewable and sustainable [1]. Biomass derived fuels such as methane, ethanol, and biodiesel are well accepted alternatives to diesel fuels as they are economically feasible, renewable, environmentally friendly emission profile and is readily biodegradable and can be produced easily in developing areas [2]. Moreover, biodiesel fuel has become more attractive because of its environmental benefits [1, 3] due to the fact that plants and vegetable oils and animal fats are renewable biomass sources. Biodiesel represents a largely closed carbon dioxide cycle (approximately 78%), as it is derived from renewable biomass sources. Compared to petroleum diesel, biodiesel has lower emission of pollutants, it is biodegradable and enhances the engine lubricity and contributes to sustainability [4, 5]. Biodiesel has a higher cetane number than diesel fuel, no aromatics, no sulfur, and contains 10 11% oxygen by weight [6]. Huge quantities of waste cooking oils and animal fats are available throughout the world, especially in the developing countries. Management of such oils and fats pose a significant challenge because of their disposal problems and possible contamination of the water and land resources. Waste cooking oil arises from many different sources, including domestic, commercial and industrial. Even though some of this waste cooking oil is used for soap production, a major part of it is discharged into the environment. Thus, consuming it in the biodiesel production is one of the economical solutions to preserve the environment and solve the problem of the presence of such a problem in the environment. One of the major advantage of using biodiesel as an alternative fuel is reducing air contaminants (matter and volatile organic compounds) emitted from the use of petroleum diesel. Biodiesel offer a very promising alternative to diesel oil since they are renewable and have similar properties. Biodiesel (monoalkyl esters) is obtained by transesterification of triglyceride oil with alcohol in the presence of catalyst under suitable reaction condition. Transesterification is the process of transforming one type of ester into another type of ester. The reaction is catalyzed by the presence of the strong base, NaOH [2, 5-7]. Gui et al., in 2008, [8] recommended the use of waste edible oil as an ideal food stock to non-edible oil for biodiesel production. Chhetri et al., in 2008, [9] produced biodiesel (ethyl ester) which was prepared from waste cooking oil, the viscosity of the biodiesel ethyl ester was found to be 5.03 mm 2 /sec at 40 o C, however, the viscosity of waste cooking oil measured in room temperature was 72 mm 2 /sec, thus, they recommended the production of biodiesel from waste cooking oils for diesel substitute. Hossain and Boyce in 2009 [10] produced the biodiesel from pure sunflower cooking oil and waste sunflower cooking oil. Raja et al., in 2011 [11] demonstrated that the transesterification of Jatropha oil one Reference Number: JO-P

2 of the most promising options for the production of biodiesel for the use of conventional fossil fuels. Mahgoub et al., 2015 [12], demonstrated that the biodiesel produced from cooking vegetable oil reached to a conversion value of 96% form 0.35 wt% NaOH catalyst amount, 30 min reaction time, 55 C reaction temperature and 1:6 oil to methanol molar ratio. Abdelmoez et al., (2016) [13] claimed that Jojoba oil presented a qualified candidate for the production of biodiesel he maximum theoretical expected yields of methyl jojoboate, jojobyl alcohol and methanol recovery were found to be 99.14, 93.3 and 99.9%, respectively. Global biodiesel production is expected to reach 39 Billion L by 2024 corresponding to a 27% increase from 2014 (Fig. 1). The European Union is expected to be by far the major producer of biodiesel (Fig. 1) [14]. Figure (1): Estimated world distribution of biodiesel production and use in 2024 In the current work biodiesel derived from waste vegetable oil used in frying (WFO) is produced as alternative diesel fuel. The main components of waste cooking oils are triglycerides or also known as ester of fatty acid attached to glycerol. The produced biodiesel, which is characterized, was then blended in different ratios with commercial diesel. One of the main driving forces for biodiesel widespread is the greenhouse gas emission (CO 2 being the major one). This work will not only save environment but also cost. added per 100 ml of oil to neutralize the free fatty acids and to coagulate. Biodiesel production: The waste cooking frying oil (WFO) was obtained from local restaurants for fast food and houses in El-Minia City, Egypt. Firstly, the WFO was filtered to separate any food particles. Thereafter, WFO was heated to 110 C to remove water traces. Potassium methoxide solution was prepared by mixing a predetermined amount of methanol (20% by weight of oil) with KOH or NaOH (1.0% by weight of oil) in a container. The reaction was carried out for 3 h under at lower temperatures of 25 C. Stirring was started with the reaction at the moment of adding potassium methoxide solution until the predetermined reaction time, then nitrification with HCl was occurred. The mixture was carefully transferred to a separating funnel and allowed to stand there overnight. The lower layer, glycerol, was drained out, while, the upper layer the biodiesl was then cleaned thoroughly by washing with warm (86ºC) water for 15 minute with stirring and leave to separate for 2-3 hours and repeat this step for three times. The diesel was heated at ( ) until the color become clear. Thereafter, the quality and characteristics were checked. Blending biodiesel (B) with diesel by percentage (10%B, 20%B, 30%B and 50%B) by weight. Fig. 2 summarizes the conversion steps. The magnetic stirrer with hot plate, two necks round bottom flask, beakers, measuring cylinder, separating funnel, burette, funnels, measuring flask and thermometers were used. All the chemicals used were of analytical grade and supplied by Alfa chemicals Ltd. II. MATERIALS AND METHODS Production process: Transesterification- Is the process of chemically reacting a fat or oil with an alcohol in the presence of a catalyst. Alcohol used is usually methanol or ethanol and the catalyst is usually sodium hydroxide or potassium hydroxide. The main product of transesterification is biodiesel and the co-product is glycerin. Separation- After transesterification, the biodiesel phase is separated from the glycerin phase; both undergo purification. Neutralization- The waste vegetable oil contains free fatty acids in nature; it must be freed before taken into actual conversion process. The dehydrated oil is agitated with 4 % HCl solution for 25 minutes and 0.82 gram of NaOH was Figure (2): Flow chart for preparation of laboratory samples of WFO biodiesel Reference Number: JO-P

3 III. Biodiesel analysis Several parameters have been analyzed by specific method to verify whether the products fulfill the specification of standard methods. Kinematic viscosity, v, using Ubbelohde viscometer, density, ρ, using Pycnometer and heating value (heat of combustion which is resealed from the combustion of the unit value of fuel) using Cusson Calorimeter. Bomb calorimeter is used for measuring high calorific value. HHV. In addition, the flash point and spray test are recorded. The flash point temperature of a fuel is the minimum temperature at which the fuel will ignite (flash) on application of an ignition source. Flash point varies inversely with the fuel s volatility. Minimum flash point temperatures are required for proper safety and handling of diesel fuel. However, Viscosity affects the flash point. Pensky Martens Apparatus (closed Cup) is used to monitor the flash point. Moreover, the emission of greenhouses gases, GHG when the fuel is provided to an engine was analyzed using gas analyzer instrument (Ecom -J2KN analyzer). Such emissions are SO 2, CO, O 2, CO 2 and NO x. fixed at 1:6, 60 min and 65 C respectively. As results from Fig. 3, increase of catalyst amount from 0.6 to 1.0% (weight of catslyst / weight of oil) resulted in increase of biodiesel yield. As illustrated in Fig 3a the yield increased in the case of using KOH from to %. However, in the case of using NaOH (Fig. 3b) the yield increased from 85.9 to %. However, the biodiesel yield decreased as the catalyst amount increase above 1.0% (96% yield for 1.2% KOH catalyst amount and 86% for 1.2% NaOH catalyst amount). Optimization of Reaction Time- Fig.4 shows the influence of reaction time on biodiesel yield. Oil to methanol molar ratio, catalyst KOH amount and reaction temperature were fixed at 1:6, 1.0 wt% and 65 C respectively. The optimal conversion for WFO biodiesel was obtained at 3 hr reaction time which gave a maximum yield of 96.30% (Fig. 4). We observed that if the reaction time exceeded 3 hr, the conversion value decreased and for higher reaction time the conversion remained stable. This fact could be explained by possibility of the reverse reaction [15]. IV. Results and discussions: Optimization of catalyst type and amount- Fig. 3 shows the influence of catalyst amount and type on biodiesel yield. Oil to methanol molar ratio, reaction time and temperature were Figure (3): Effect of catalyst amount and type on the biodiesel yield (a) KOH; (b) NaOH Reference Number: JO-P

4 Optimization of Reaction Temperature- Fig.6 shows the influence of reaction temperature on biodiesel yield. Oil to methanol molar ratio, catalyst amount and reaction time were fixed at 1:6, 1.0 wt% and 1 hr, respectively. The reaction was carried out at 25, 40, 55, 65 and 70 C to evaluate the influence of reaction temperature. The optimal conversion for WFO biodiesel was obtained at 65 C, which gave a maximum yield of 96.15%. The conversion value decreased if the reaction temperature exceeded 65 C. Figure (4) Effect of conversion time on the biodiesel yield Optimization of Oil: Methanol molar ratio- Theoretically the transesterification reaction requires three moles of methanol and one mole of triglyceride in the presence of catalyst to yield three moles of biodiesel and one mole of glycerol. The transesterification is reversible and higher amounts of methanol to oil molar ratio can shift the equilibrium to the product side. Fig.5 shows the influence of reaction temperature on methyl esters yield. Catalyst amount, reaction temperature and reaction time were fixed at 1.0 wt%, 65 C and 1 hr respectively. The reaction was carried out at 1:3, 1:4, 1:5, 1:6, 1:9 and 1:10 (oil to methanol molar ratio). The conversion increased as the oil to methanol molar ratio increases and reaches 98.16% at 1:9 molar ratio. The conversion did not vary significantly above this molar ratio. Figure (6): Effect of reaction temperature on biodiesel yield Physico-chemical analysis- The physicochemical properties of WFO are given in Table 1 compared to those properties of commercial diesel and ASTM standards. It is clear that the biodiesel obtained from WFOs meets the standards specified by ASTM D6571. The heating value is obtained by the complete combustion of a unit quantity of solid fuel in oxygen bomb calorimeter. The HHVs of biodiesel (37520 KJ/kg) is slightly lower than that of diesel (46221 KJ/kg). The oxygen content of biodiesel improves the combustion process and decreases its oxidation potential. The structural oxygen content of a fuel improves its combustion efficiency due to an increase in the homogeneity of oxygen with the fuel during combustion. Because of this the combustion efficiency of biodiesel is higher than that of petrodiesel. Figure (5): Effect of oil: methanol molar ration on yield Table (1): Physicochemical properties of WFO, commercial diesel and WFO biodiesel Properties Raw WFO ASTM D6571 Commercial diesel WFO Biodiesel (B100) (B50) (B30) (B20) (B10) Kinametic viscosity, v, mm 2 /S@40 C Specific density, Ρ, C Flash point, C HHV, KJ/kg Reference Number: JO-P

5 Greenhouse Gas Emissions, GHG- Table 2 illustrated the greenhouse gases for different biodiesel (WFO) and compared to commercial diesel. Greenhouse gases trap heat from the sun and warm the earth s surface. Greenhouse gas emissions, the majority are related to energy consumption, and most of those are carbon dioxide. Table 2. Biodiesel GHG Emission Emission CO, rpm of engine Commercial diesel WFO Biodiesel (B10) (B20) (B30) (B50) NO, ppm SO 2, % CO 2, % C x H y, % T air, C T gas, C Reference Number: JO-P

6 The GHG reduction when using biodiesel is obtained by comparing GHG emissions related to biofuels missions with conventional diesel or gasoline. As stated in literature, diesel vehicles are % in GHG emissions reduction than using gasoline vehicles, however, using biodiesel can result in further decrease, which could be reached to 60% reduction in GHG emissions [16]. This could be illustrated by that during this process hydrogen replaces other atoms such as sulfur, oxygen and nitrogen and converts the oil s triglyceride molecules into paraffinic hydrocarbons [17]. Biodiesel fuel offers a variety of energy security, economic and environmental benefits. From an environmental perspective, biodiesel can reduce emissions of hydrocarbon, carbon monoxide and particulate matter. VI. CONCLUSION In the current investigation, it has confirmed that waste fryer cooking edible oil is recommended to be an alternative ideal option for non-edible biodiesel production. The experimental result shows that alkaline catalyzed transesterification is a promising area of research for the production of biodiesel. GHG are recorded and confirming the use of biodiesel from waste cooking frying oil. VII. REFERENCES [1] A. Demirbas, Biofuels from Vegetable Oils via Catalytic and Non-Catalytic Supercritical alcohol Transesterifications and Other Methods: A Survey, Energy Conversion and Management, 44, , [2] Y. Zhang, Dube M. A. Mclean D. D. and M. Kates, Biodiesel production from waste cooking oil: Process design and technological as- assessment, Bioresource Technology, 89, 1-16, [3] G. Lean, Oil and gas may run short by The Independent, UK, 2007, ticle ece, (Accessed on 23 July 2007). [4] A. Kurki, A. Hil and M. Morris, Biodiesel: The sustainability dimensions. ATTRA Publication #IP281, 2006, [5] M. I Khan, A. B. Chhetri, M. R. Islam, Analyzing Sustainability of Community Based Energy Technologies, Energy Sources, 2, , [6] M. Canakci, The Potential of Restaurant Waste Lipids as Biodiesel Feedstocks. Bioresource Technology, 98, , [7] H. Blanco-Canqui, and R. Lal, Soil and crop response to harvesting corn residues for biofuel production, Geoderma, 141, , [8] M. M. Gui, K.T. Lee and S. Bhatia, Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock, Energy, 33(11), , [9] A. B. Chhetri, K. Chris Watts and M. Rafiqul Islam, Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production, Energies 2008, 1, 3-18 [10] A. B. M. S. Hossain and A.N. Boyce, Biodiesel production from waste sunflower cooking oil as environmental recycling process and renewable energy, Bulgarian Journal of Agricultural Science, 15 (4), , [11] S. Antony Raja, D. S. Robinson and C. L. Samr, R. Lee, Biodiesel production from jatropha oil and its characterization, Research Journal of Chemical Sciences, 1 (1), [12] H. A. Mahgoub, N. A. Salih and A. A. Mohammed, Suitable Condition of Biodiesel Production from Waste Cooking Oil Al-Baha City KSA, International Journal of Multidisciplinary and Current research, 3, , [13] W. Abdelmoez, A.M. Tayeb, A. Mustafa and M.d Abdelhamid, Green Approach for Biodiesel Production from Jojoba Oil Supported by Process Modeling and Simulation, International Journal of Chemical Reactions and Engineering, 2016; DOI: /ijcre [14] Source: OECD/FAO (2015), OECD-FAO Agricultural Outlook, OECD Agriculture statistics (database), [15] A. Vanoiu, Schmidt, A., Peter, F., Rusanc, L.M. and Ungurean, M., Comparative study on biodiesel synthesis from different vegetable oil, Chemical Bulletin., 56 (70), 94-98, [16] K. Sivaramakrishnan and P. Ravikumar, Determination of higher heating value of biodiesels, International Journal of Engineering Science and Technology (IJEST), 3(11), , [17] J.M. López, A. Gomez, F. Aparicio and F.J. Sánchez, Comparison of GHG emissions from diesel, biodiesel and natural gas refuse trucks of the City of Madrid, Applied Energy, 86, , Reference Number:

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Current World Environment Vol. 11(1), 260-266 (2016) Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Ajinkya Dipak Deshpande*, Pratiksinh Dilipsinh

More information

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL Deepu T 1, Pradeesh A.R. 2, Vishnu Viswanath K 3 1, 2, Asst. Professors, Dept. of Mechanical Engineering, Ammini College of

More information

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

PROJECT REFERENCE NO.: 39S_R_MTECH_1508 DEVELOPMENT OF AGRICULTURAL WASTE BASED HETEROGENEOUS CATALYST FOR PRODUCTION OF BIODIESEL FROM MIXED WASTE COOKING OIL AND ITS PERFORMANCE ON DIESEL ENGINE PROJECT REFERENCE NO.: 39S_R_MTECH_1508 COLLEGE

More information

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Alabadan B.A. Department of Agricultural and Bioresources Engineering, Federal University, Oye Ekiti. Ajayi

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE) International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 2, February 214 PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER

More information

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India. Preparation of Waste Cooking Oil as Alternative Fuel and Experimental Investigation Using Bio-Diesel Setup a Comparative Study with Single Cylinder Diesel Engine Mr.S.Sanyasi Rao Pradesh - 531173, India.

More information

Project Reference No.: 40S_B_MTECH_007

Project Reference No.: 40S_B_MTECH_007 PRODUCTION OF BIODIESEL FROM DAIRY WASH WATER SCUM THROUGH HETEROGENEOUS CATALYST AND PERFORMANCE EVALUATION OF TBC DIESEL ENGINE FOR DIFFERENT DIESEL AND METHANOL BLEND RATIOS Project Reference No.: 40S_B_MTECH_007

More information

SYNTHESIS OF BIODIESEL

SYNTHESIS OF BIODIESEL SYNTHESIS OF BIODIESEL AIM 1. To generate laboratory know-how for the process of production of biodiesel from the given oil feed stock 2. To perform basic mass and energy balance calculations for a large

More information

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004)

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004) Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004) Biodiesel is an ester of fatty acids produced from renewable resources such as virgin vegetable oil, animal fats and used

More information

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel can be used as a fuel in compression ignition engines (i.e. diesels) Can be blended with petroleum

More information

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process, Journal of Advanced & Applied Sciences (JAAS) Volume 03, Issue 03, Pages 84-88, 2015 ISSN: 2289-6260 Optimization of Biodiesel production parameters (Pongamia pinnata oil) by transesterification process

More information

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF 75 CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS Table of Contents Chapter 3: PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS S.

More information

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine ICCBT28 Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine R. Adnan *, Universiti Tenaga Nasional, MALAYSIA I. M. Azree, Universiti Tenaga

More information

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said Omar Said Introduction to myself Name: Omar Said (I am in Petroleum and Petrochemicals Engineering senior student Cairo University). Experience : Schlumberger oil service company trainee (wire line segment).

More information

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Umesh Chandra Pandey 1, Tarun Soota 1 1 Department of Mechanical Engineering,

More information

Biodiesel Making and Experimented Results from Waste Cooking Oil, in Mongolia

Biodiesel Making and Experimented Results from Waste Cooking Oil, in Mongolia International Journal of Emerging Engineering Research and Technology Volume 3, Issue 7, July 2015, PP 48-52 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Biodiesel Making and Experimented Results from

More information

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine Journal of Scientific & Industrial Research Vol. 74, June 2015, pp. 343-347 Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine R Kumar*, A

More information

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP:

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: POPLAR 13 NOVEMBER, 2015 Table of Contents Introduction

More information

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For RESEARCH PROJECT REPORT Trash to Treasure Clean Diesel Technologies for Air Pollution Reduction Submitted to The RET Site For Civil Infrastructure Renewal and Rehabilitation Sponsored by The National Science

More information

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae R.Velappan 1, and S.Sivaprakasam 2 1 Assistant Professor, Department of Mechanical Engineering, Annamalai University. Annamalai

More information

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Journal of KONES Powertrain and Transport, Vol. 15, No. 4 28 PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Dr (Miss) S L Sinha Mr Vinay Kumar Kar 2 Reader, National Institute of Technology

More information

This presentation focuses on Biodiesel, scientifically called FAME (Fatty Acid Methyl Ester); a fuel different in either perspective.

This presentation focuses on Biodiesel, scientifically called FAME (Fatty Acid Methyl Ester); a fuel different in either perspective. Today, we know a huge variety of so-called alternative fuels which are usually regarded as biofuels, even though this is not always true. Alternative fuels can replace fossil fuels in existing combustion

More information

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is Aaron Paternoster CHEM 380 10D Prof. Laurie Grove January 30, 2015 Biodiesel Introduction As fossil fuels become increasingly expensive to extract and produce, bio-diesel is proving to be an economically

More information

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling University of Malaya From the SelectedWorks of Abdul Aziz Abdul Raman 2010 Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network

More information

Impacts of Biodiesel on the Environment

Impacts of Biodiesel on the Environment International Journal of Environmental Engineering and Management ISSN 2231-1319, Volume 4, Number 4 (2013), pp. 345-350 Research India Publications http://www.ripublication.com/ ijeem.htm Impacts of Biodiesel

More information

INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE

INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE Jagannath Hirkude 1, 2*, Atul S. Padalkar 1 and Jisa Randeer 1 1 Padre Canceicao College of Engineering, 403722, Goa, India,

More information

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 2 (2013), pp. 237-241 International Research Publication House http://www.irphouse.com Comparison of Performance

More information

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An experimental

More information

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN: GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN: 2455-5703 Effect of Brake Thermal Efficiency of a Variable Compression Ratio Diesel Engine Operating

More information

address: (K. A. Younis), (J. L. Ismail Agha), (K. S.

address: (K. A. Younis), (J. L. Ismail Agha), (K. S. American Journal of Applied Chemistry 2014; 2(6): 105-111 Published online November 28, 2014 (http://www.sciencepublishinggroup.com/j/ajac) doi: 10.11648/j.ajac.20140206.12 ISSN: 2330-8753 (Print); ISSN:

More information

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) using Dodecane as a Solvent V.Naresh 1,S.Phabhakar 2, K.Annamalai

More information

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL D.Sravani 1, R.Jyothu Naik 2, P. Srinivasa Rao 3 1 M.Tech Student, Mechanical Engineering, Narasaraopet Engineering

More information

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW Scientific Journal of Impact Factor (SJIF): 5.71 e-issn (O): 2348-4470 p-issn (P): 2348-6406 International Journal of Advance Engineering and Research Development International Conference on Momentous

More information

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-08, pp-202-207 www.ajer.org Research Paper Open Access Performance and Emission Characteristics of

More information

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection Experimental investigation on constant-speed diesel engine fueled with biofuel mixtures under the effect of fuel injection 1 I. Vinoth kanna *, 2 K. Subramani, 3 A. Devaraj 1 2 3 Department of Mechanical

More information

Material Science Research India Vol. 7(1), (2010)

Material Science Research India Vol. 7(1), (2010) Material Science Research India Vol. 7(1), 201-207 (2010) Influence of injection timing on the performance, emissions, combustion analysis and sound characteristics of Nerium biodiesel operated single

More information

Ester (KOME)-Diesel blends as a Fuel

Ester (KOME)-Diesel blends as a Fuel International Research Journal of Environment Sciences E-ISSN 2319 1414 Injection Pressure effect in C I Engine Performance with Karanja Oil Methyl Ester (KOME)-Diesel blends as a Fuel Abstract Venkateswara

More information

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 7 12 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 3 - Civil and Chemical Engineering

More information

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel can be used as a fuel in compression ignition engines (i.e. diesels) Can be blended with petroleum

More information

Biodiesel and SmartWay Grow and Go Go. EPA-MMTA Fuel-Saving Seminar June 15, 2007

Biodiesel and SmartWay Grow and Go Go. EPA-MMTA Fuel-Saving Seminar June 15, 2007 Biodiesel and SmartWay Grow and Go Go EPA-MMTA Fuel-Saving Seminar June 15, 2007 SmartWay Grow and Go Focus: Biodiesel and E85 Goal: By 2012, 25% of SmartWay Partners commit to use renewable fuels; by

More information

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine Volume 119 No. 16 218, 4947-4961 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ Comparative Analysis of Jatropha-Methanol Mixture and on Direct Injection

More information

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Kok Tat Tan*, Keat Teong Lee, Abdul Rahman Mohamed School of Chemical Engineering,

More information

Automotive Technology

Automotive Technology International Conference on Automotive Technology An Experimental Study on the Performance and Emission Characteristics of a Single Cylinder Diesel Engine Using CME- Diesel Blends. Hari Vasudevan a*,sandip

More information

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST J. Curr. Chem. Pharm. Sc.: 2(1), 2012, 12-16 ISSN 2277-2871 BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST SHARDA D. NAGE *, K. S. KULKARNI, A. D. KULKARNI and NIRAJ S. TOPARE

More information

Published in Offshore World, April-May 2006 Archived in

Published in Offshore World, April-May 2006 Archived in Published in Offshore World, April-May 2006 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace Preparation of karanja oil methyl ester. R. K. Singh *, A. Kiran Kumar and S. Sethi Department of

More information

Biodiesel Production and Analysis

Biodiesel Production and Analysis Biodiesel Production and Analysis Introduction A key current focus in science and engineering is the development of technologies for generating and utilizing new sources of energy. Climate change, geopolitics,

More information

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER Maša Knez Hrnčič, Mojca Škerget, Ljiljana Ilić, Ţeljko Knez*, University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory

More information

Processing of Biodiesel from Algae and Experimental Investigation on Single Cylinder Diesel Engine

Processing of Biodiesel from Algae and Experimental Investigation on Single Cylinder Diesel Engine Processing of Biodiesel from Algae and Experimental Investigation on Single Cylinder Diesel Engine Azeem Anzar 1, Azeem Hafiz P A 2 N R M Ashiq 3, Mohamed Shaheer S 4, Midhun M 5 1 Assitant Professor,

More information

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD SINTEI EBITEI AND TRUST PROSPER GBORIENEMI Department of Chemical Engineering, Federal Polytechnic, Ekowe Bayelsa State, Nigeria. ABSTRACT

More information

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel International Journal of Manufacturing and Mechanical Engineering Volume 1, Number 1 (2015), pp. 25-31 International Research Publication House http://www.irphouse.com Experimental Investigations on a

More information

Biodiesel from soybean oil in supercritical methanol with co-solvent

Biodiesel from soybean oil in supercritical methanol with co-solvent Available online at www.sciencedirect.com Energy Conversion and Management 49 (28) 98 912 www.elsevier.com/locate/enconman Biodiesel from soybean oil in supercritical methanol with co-solvent Jian-Zhong

More information

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article 4. Synthesis of Biodiesel from Palm Fatty Acid Distillate Research Article Abstract Tarun Kataria Third Year Bachelor of Technology Department of Oils, Oleochemicals & Surfactant Technology Palm fatty

More information

Performance Analysis of Single Cylinder 4- Stroke Diesel Engine Using Diesel and Waste Cooking Oil Blend

Performance Analysis of Single Cylinder 4- Stroke Diesel Engine Using Diesel and Waste Cooking Oil Blend Performance Analysis of Single Cylinder 4- Stroke Diesel Engine Using Diesel and Waste Cooking Oil Blend Kishore Kumar Shakya 1, Prof. C. S. Koli 2, Prof. Amit Agrawal 3 1 Dept of Mech. Engg 2, 3 Asst.

More information

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends e t International Journal on Emerging Technologies (Special Issue on RTIESTM-216) 7(1): 151-157(216) ISSN No. (Print) : 975-8364 ISSN No. (Online) : 2249-3255 Emission Characteristics of Rice Bran Oil

More information

Biodiesel Production and Analysis

Biodiesel Production and Analysis Biodiesel Production and Analysis Introduction A key current focus in science and engineering is the development of technologies for generating and utilizing new sources of energy. Climate change, geopolitics,

More information

Q1. The table shows how much carbon dioxide is produced when you transfer the same amount of energy by burning coal, gas and oil.

Q1. The table shows how much carbon dioxide is produced when you transfer the same amount of energy by burning coal, gas and oil. Q1. The table shows how much carbon dioxide is produced when you transfer the same amount of energy by burning coal, gas and oil. (a) (b) Use the information from the table to complete the bar-chart. The

More information

Biodiesel Production from waste Oil with Micro-Scale Biodiesel System Under Laboratory Condition

Biodiesel Production from waste Oil with Micro-Scale Biodiesel System Under Laboratory Condition International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 1 (January 2017), PP.11-18 Biodiesel Production from waste Oil with Micro-Scale

More information

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine CMU.J.Nat.Sci.Special Issue on Agricultural & Natural Resources (2012) Vol.11 (1) 157 Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine Adisorn Settapong * and Chaiyawan

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at   ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 15 (215 ) 638 645 6th BSME International Conference on Thermal Engineering (ICTE 214) Production of Biodiesel Using Alkaline

More information

Fuels are materials that are used to create energy. They may be

Fuels are materials that are used to create energy. They may be 4 THINK GREEN: Alternative Fuels Alternative Fuels: An Introduction Fuels are materials that are used to create energy. They may be burned or used up in other ways. For example, car engines burn gasoline

More information

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL Vishwanath V K 1, Pradhan Aiyappa M R 2, Aravind S Desai 3 1 Graduate student, Dept. of Mechanical Engineering, Nitte Meenakshi Institute

More information

Production of Biodiesel Fuel From Cooking Oil Waste

Production of Biodiesel Fuel From Cooking Oil Waste Production of Biodiesel Fuel From Cooking Oil Waste B. G. Mohammed, A. M. Badiea *, S. Q. Moad Department of Industrial and Manufacturing System Engineering, Faculty of Engineering and Information Technology,

More information

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals. PRODUCTION OF FATTY ACID METHYL ESTERS FROM SIMAROUBA OIL VIA ULTRASONIC IRRADIATION PROCESS, EFFECTIVE UTILIZATION OF BYPRODUCTS. TESTING AND EXTRACTION OF PHYTOCHEMICALS FROM SIMAROUBA OIL AND CAKE COLLEGE

More information

WASTE TO ENERGY. Commercial Enzymatic Production of Biodiesel

WASTE TO ENERGY. Commercial Enzymatic Production of Biodiesel June 2018 Commercial Enzymatic Production of Biodiesel WASTE TO ENERGY UTILIZING TRANSBIODIESEL'S ENZYMATIC GAME-CHANGING TECHNOLOGY TO YOUR PROFIT OUR ENZYMATIC TECHNOLOGY IS SETTING THE BIODIESEL FUEL

More information

New Leaf Biofuel, LLC

New Leaf Biofuel, LLC New Leaf Biofuel, LLC Fuel to Grow on Jennifer Case 619.236.8500 Overview New Leaf Biofuel is a woman-owned biodiesel manufacturer Since 2006, New Leaf has been collecting used cooking oil from San Diego

More information

Biodiesel Oil Derived from Biomass Solid Waste

Biodiesel Oil Derived from Biomass Solid Waste , July 6-8, 2011, London, U.K. Biodiesel Oil Derived from Biomass Solid Waste Mohamed Y. E. Selim, Y. Haik, S.-A. B. Al-Omari and H. Abdulrahman Abstract - Oils of a significant value both as fuels as

More information

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS M.M. Zamberi 1,2 a, F.N.Ani 1,b and S. N. H. Hassan 2,c 1 Department of Thermodynamics and Fluid

More information

Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies.

Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies. Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies. G Ahmad and R Patel University of Bradford Bradford UK Water and Energy Workshop 15 17 February

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences icbst 2014 International Conference on Business, Science and Technology which will be held at Hatyai, Thailand on the 25th and 26th of April 2014. AENSI Journals Australian Journal of Basic and Applied

More information

Emission Analysis of Biodiesel from Chicken Bone Powder

Emission Analysis of Biodiesel from Chicken Bone Powder Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis of Biodiesel from Chicken Paper ID IJIFR/ V2/ E7/ 058 Page

More information

Biodiesel Production from Waste Cooking Oil A Renewable Blend for Diesel Engines

Biodiesel Production from Waste Cooking Oil A Renewable Blend for Diesel Engines Biodiesel Production from Waste Cooking Oil A Renewable Blend for Diesel Engines Alternatives to Fossil Fuels 80% of our energy comes from oil, coal, and natural gas. Five alternative energy sources are

More information

Excessive Waste. Some of the grease is used to supplement feed farms but majority of it ends up in landfills

Excessive Waste. Some of the grease is used to supplement feed farms but majority of it ends up in landfills Excessive Waste According to the Environmental Protection Agency (EPA), hotels and restaurants in the U.S. generate at least 3 billion gallons of waste vegetable oil annually * Note: this figure excludes

More information

CHEMISTRY 135. Biodiesel Production and Analysis

CHEMISTRY 135. Biodiesel Production and Analysis CHEMISTRY 135 General Chemistry II Biodiesel Production and Analysis The energy content of biodiesel can be roughly estimated with a simple laboratory apparatus. What features of biodiesel make it an attractive

More information

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils.

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Otu, F.I 1,a ; Otoikhian, S.K. 2,b and Ohiro, E. 3,c 1 Department of Mechanical Engineering, Federal University

More information

International Engineering Research Journal (IERJ) Special Issue Page , June 2016, ISSN

International Engineering Research Journal (IERJ) Special Issue Page , June 2016, ISSN Experimental investigation of VCR engine by using fuel waste cooking oil/diesel blends and development model to predicating emission using semi-empirical approach #1 Swati V. Patil, #2 Dr Abhay A. Pawar

More information

Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor Journal of Physics: Conference Series OPEN ACCESS Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor To cite this article: S Hagiwara et al 2015 J. Phys.:

More information

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE Surendra R. Kalbande and Subhash D. Vikhe College of Agricultural Engineering and Technology, Marathwada Agriculture University, Parbhani

More information

Study of Transesterification Reaction Using Batch Reactor

Study of Transesterification Reaction Using Batch Reactor Study of Transesterification Reaction Using Batch Reactor 1 Mehul M. Marvania, 2 Prof. Milap G. Nayak 1 PG. Student, 2 Assistant professor Chemical engineering department Vishwakarma Government engineering

More information

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL Jagadeesh A 1, Rakesh A. Patil 2, Pavankumar C. Bhovi 3 1, 2, 3 Mechanical Engineering, Hirasugar

More information

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst M.O. Daramola, D. Nkazi, K. Mtshali School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built

More information

An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil

An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil Lakshmi T. R. 1, Shamnamol G. K. 2 P. G. Student, Department of Biotechnology and Biochemical Engineering, Sree Buddha College

More information

***

*** International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 EXPERIMENTAL STUDY ON PREPARATION AND CHARACTERIZATION OF BIODIESEL PRODUCTION (ETHYL ESTER) FROM NON-EDIBLE VEGETABLE

More information

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL MR.N.BALASUBRAMANI 1, M.THANASEGAR 2, R.SRIDHAR RAJ 2, K.PRASANTH 2, A.RAJESH KUMAR 2. 1Asst. Professor, Dept. of Mechanical Engineering,

More information

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis Of The Biodiesel From Paper ID IJIFR/ V2/ E7/ 059 Page No.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL With a rapid increase in the demand of fossil fuel, decrease in the availability of crude oil supplies and greater environmental stringent norms on pollution has created

More information

Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines

Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines Dishika Jagga 1, S.K. Mahla 2 1 M.Tech student at Thapar University, Patiala 2 Thapar University,

More information

Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine American Journal of Applied Sciences 8 (11): 1154-1158, 2011 ISSN 1546-9239 2011 Science Publications Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine 1 B. Deepanraj, 1 C. Dhanesh,

More information

PERP Program New Report Alert

PERP Program New Report Alert PERP Program New Report Alert January 2004 Nexant s hemsystems Process Evaluation/Research Planning program has published a new report, Biodiesel (02/03S2). Introduction The term biodiesel typically refers

More information

PRODUCTION OF BIODIESEL FROM FISH WASTE

PRODUCTION OF BIODIESEL FROM FISH WASTE MOHAN Y.V et al. PRODUCTION OF BIODIESEL FROM FISH WASTE MOHAN Y.V, PRAJWAL C.R, NITHIN N CHANDAVAR, PRAVEEN H.T 8 th semester, Department of Mechanical, Adichunchanagiri Institute of Technology, Chikmagaluru-577102

More information

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel #1 Kadam S. S., #2 Dr. Dambhare S. G. 1 M.E.(Heat Power)

More information

Biodiesel Business Environment

Biodiesel Business Environment Biodiesel Business Environment By Patum Vegetable Oil co., ltd. February 12, 2008 Innovation on Biofuel in Thailand, Century Park Hotel Agenda Company Profile Biodiesel Technology Country Policy & Regulation

More information

The Purification Feasibilityof GlycerinProduced During

The Purification Feasibilityof GlycerinProduced During The Purification Feasibilityof GlycerinProduced During BiodieselProduction S. Soulayman, F. Mustafa, and A. Hadbah Higher Institute for Applied Sciences and technology, Damascus, P.O. Box 31983, Syria,

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL Rajesh S Gurani 1, B. R. Hosamani 2 1PG Student, Thermal Power Engineering, Department

More information

Renewable Diesel & Biodiesel

Renewable Diesel & Biodiesel Renewable Diesel & Biodiesel Considerations for Sustainable Fleets Fueled By Convenience! REG can make it easier to manage all your fuel needs!!! REG-9000 biodiesel REG-9000/Renewable Diesel #2 ULSD Heating

More information

Louis Dreyfus Claypool Holdings, LLC. Biodiesel Production Plant Claypool, Indiana

Louis Dreyfus Claypool Holdings, LLC. Biodiesel Production Plant Claypool, Indiana Louis Dreyfus Claypool Holdings, LLC Biodiesel Production Plant Claypool, Indiana Soybeans 163,000 Bu. = 48 Railcars = 172 Trucks Electricity 156,695 Kwh Natural Gas 3,049 Dth Claypool Inputs/Outputs Per

More information

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER Prof. Hitesh Muthiyan 1, Prof. Sagar Rohanakar 2, Bidgar Sandip 3, Saurabh Biradar 4 1,2,3,4 Department of Mechanical Engineering, PGMCOE,

More information

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines American Journal of Engineering Research (AJER) 214 American Journal of Engineering Research (AJER) e-issn : 232-847 p-issn : 232-936 Volume-3, Issue-3, pp-144-149 www.ajer.org Research Paper Open Access

More information

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D.

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D. COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL S. Glisic 1, 2*, D. Skala 1, 2 1 Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva

More information

Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel

Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel International Journal of Research in Advent Technology, Vol.6, No.8, August 218 Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel D.Satyanarayana 1, Dr. Jasti

More information

Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil

Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil G.DURGA DEVI*, MAHESH.C** * Department of Mechanical Engineering V.R.SIDDHRATHA ENGG COLLEGE, J.N.T.U (KAKINADA) E-mail

More information