Theoretical Development of a Simplified Electronic Fuel Injection System for Stationary Spark Ignition Engines

Size: px
Start display at page:

Download "Theoretical Development of a Simplified Electronic Fuel Injection System for Stationary Spark Ignition Engines"

Transcription

1 Theoretical Development of a Simplified Electronic Fuel Injection System for Stationary Spark Ignition Engines ADRIA IRIMESCU Mechanical Engineering Faculty Politehnica University of Timisoara Bld Mihai Viteazul 1, 3222 Timisoara ROMAIA iamotors@yahoo.com Abstract: - The problem of emissions control is an important issue only for cogeneration systems over a certain power level. For natural gas or biogas fueled engines that power electric generators and feature exhaust gas heat recovery in micro-cogeneration installations, the quantity of pollutants expelled into the atmosphere is considered to be insignificant. evertheless, a tendency to reduce emissions for small power installations is noticed. Also, given the advantages of distributed power generation compared to centralized systems, small size applications will increase in numbers. Reducing carbon monoxide (CO), unburned hydrocarbons (HC) and nitrous oxide emission ( x ) can be achieved within the same catalyst bed by employing a three way catalytic converter. This emissions control system requires that the engine is operated as close to stoichiometric air-fuel ratio as possible in order to obtain maximum reduction efficiency. While carburetors ensure good engine operational characteristics, an electronic fuel injection system is required for running the engine at stoichiometric air-fuel ratio. Different control strategies are investigated and parameters that have to be monitored are evaluated for different situations such as cold start, idle, part load and full load operation. A simplified electronic fuel injection system is proposed based on these case studies. Key-Words: - spark ignition engines, electronic fuel injection, closed loop, control strategy 1 Introduction Reducing air pollution has become a major issue for most decision makers around the world. Until recently, the efforts of reducing emissions were concentrated on exhaust gas treatment for reducing particulate emissions, carbon monoxide (CO), nitrous oxides ( x ) and unburned hydrocarbons (HC). Even if it is not a toxic gas, carbon dioxide (CO 2 ) contributes to global warming through the green house effect it produces. For this reason, a reduction of CO 2 emissions is sought after as much as possible. To this end, the European Union adopted a plan to reduce green house gas emissions by 2 %, improve energy efficiency by 2 % and increase the share of renewable energy by 2 %, all by the year 22, compared to 199 [1]. Being the result of complete combustion of carbon, CO 2 emissions can only be reduced by increasing energy efficiency or through the use of renewable energy sources [2]. Cogeneration is a good method of increasing overall thermal efficiency, given that the heat produced is obtained by recovering waste heat contained in the flue gas. Even if the overall efficiency of a cogeneration power plant is around 85 %, transport and distribution losses can amount to 1-2 % for electric power and 5 % for heat delivered over long distances. As a comparison, cogeneration units powered by internal combustion engines and featuring waste heat recovery, can reach up to 9 % overall thermal efficiency, and transport losses are only 1 % for electric power and 2 % for heat delivery in a distributed system, resulting in overall thermal efficiency of 87 % [3], [4]. Micro-cogeneration systems powered by spark ignition (SI) engines, usually feature a simple fuelling system that employs a carburetor. In order to reduce CO, HC, and x emissions using a three way catalytic converter (figure 1), running the engine on a stoichiometric air-fuel ratio is required for obtaining high conversion efficiency. Fig. 1. Exhaust system with oxygen sensor and catalytic converter [5] The electronic fuel injection (EFI) system needed for maintaining relative air-fuel ratio as close to unity as possible (λ = 1) requires an array of sensors that monitor ISS: / ISS: ISB:

2 different operating parameters. Therefore, developing a control strategy that ensures appropriate running conditions for the engine as well as the emissions control system, with a minimum set of sensors, can significantly reduce the overall costs of implementing electronically controlled fuelling. 2 System Layout and Control Strategy Basically, all EFI systems rely on measuring air flow to the engine and adjusting fuel flow accordingly. Several adjustments are also performed for different working parameters, such as air temperature, load, coolant temperature and so on. The quantity of air inducted into the engine can be measured using a volumetric or mass air flow (MAF) meter (figure 2). As an alternative, air flow can be calculated be measuring engine speed (), manifold absolute pressure (MAP) and intake air temperature (IAT) (figure 3). Automotive injection systems feature more sensors and actuators, but the simplest architectures are presented in figures 2 and 3. Sensors MAF TPS Coolant temperature Oxygen sensor Adjustment ECU Fuel flow Basic injection time Injection pulses Injector Fig. 2. EFI with MAF sensor After determining the air flow to the engine by measuring it directly with a MAF sensor or through calculations using the signals received from the MAP, IAT and engine speed () sensors, a basic injection time is set by the ECU. This injection time represents the time the injector is kept open during one or two rotations of the crank shaft. Injection pulses are coordinated with the signal received from the engine speed sensor. Other sensors like the coolant temperature, throttle positioning signal (TPS) and especially the oxygen sensor, are used to adjust the basic injection time. The air-fuel mixture is enriched when the engine is cold so that proper running conditions are ensured. TPS is used to evaluate engine load. When the throttle is completely or partially closed, the engine is running at idle or partial load and injection time is adjusted so that λ ~ 1. At wide open throttle, the engine needs to deliver maximum power and therefore the air-fuel mixture is enriched so that λ ~ Load evaluation is also used to adjust the ignition timing, in conjunction with the signal from the engine speed sensor. The most important correction is needed to maintain the air-fuel ratio close to stoichiometric value so that good fuel conversion efficiency is achieved, along with maximum catalytic conversion efficiency (figure 4). To this end, an oxygen sensor is used. As its name suggests, this sensor measures the concentration of oxygen (O 2 ) in the exhaust gas stream. If the air-fuel mixture is rich, very little O 2 is present in the exhaust and the signal delivered is high, with values around ~ 8 mv. On the contrary, if the mixture is lean, more O 2 is found in the exhaust and the signal is low, with a voltage value above ~ 1 mv. An important aspect is that the minimum working temperature of oxygen sensors is ~ C [6]. Sensors MAP IAT TPS Coolant temperature Adjustment ECU Fuel flow Basic injection time Injection pulses Oxygen sensor Injector Fig. 3. EFI with MAP and IAT sensor Fig. 4. Emissions concentrations for spark ignition engines exhaust [7] ISS: / ISS: ISB:

3 Figure 5 shows an example of a control strategy for an engine used in automotive applications, where load and engine speed vary across a wide range. The main parameters evaluated by the ECU are engine speed (), throttle plate angle (TPS), air flow (measured by the MAF sensor or calculated using, manifold pressure MAP and air temperature IAT), coolant temperature (T c ) and oxygen sensor voltage (U O2 ). A basic setting for the injection time (t inj ) is calculated based on the air flow value. Therefore, for this basic setting,, MAP and IAT need to be monitored. If the throttle is fully open, the engine is operated at full load and closed loop control is aborted. During this so called open loop control mode, t inj is calculated based on air flow only. At part load, if the engine is warm (T c is within its nominal range), closed loop control is possible by evaluating the signal given by the oxygen sensor (U O2 ). arrow band oxygen sensors give a voltage of ~ 45 mv when the concentration of O 2 in the exhaust gas stream is at its value for stoichiometric combustion. If the reading is higher than this value, U O2 > 45 mv, the engine is running rich and the injection time needs to be reduced. On the contrary, if the voltage is low, U O2 < 45 mv, more fuel is needed to achieve a stoichiometric mixture and the injection time is increased. In this way, the injection time is constantly adjusted so that stoichiometric air-fuel ratio is achieved. The actual electric pulses controlling the solenoids that open the injectors are generated based on the injection time (t inj ), as the pulse length, and the reading from the crank shaft positioning sensor (CPS) for pulse frequency. The ECU determines top dead centre (TDC) and generates one injection pulse for every crank shaft rotation or once every two rotations of the engine. 3 Simplified Architecture and Proposed Control Strategy Stationary SI engines usually feature a carburetor and a simple electronic ignition system. The starting point of developing a simplified EFI architecture is that these engines operate at constant speed (15 or 3 rev/min for 5 Hz and 18 or 36 rev/min for 6 Hz). Therefore, ensuring optimum ignition is easier and existing ignition systems can be considered as more than appropriate. In the following case study, an engine speed of 3 rev/min will be considered, specific for small size SI engines used with electrical generators supplying power at 5 Hz. Sensors MAP ECU Fuel flow, TPS, MAP, IAT, T c, U O2 Oxygen sensor Adjustment Basic injection time Injection pulses Ignition signal t inj f (, MAP, IAT) Injector TPS Full load T c nominal U O2 > 45 mv 45 mv Open loop Open loop inj t inj t inj t inj Fig. 5. Closed loop control for an automotive EFI Fig. 6. Simplified EFI architecture The proposed simplified architecture relies on the signal generated by the ignition system for evaluating engine speed and injection pulses generation. In this way, there is no need for a dedicated engine speed sensor. Because pressure sensors are less expensive than MAF sensors, a MAP signal is considered for evaluating engine load. Compared to engines for automotive applications, stationary aggregates are run up to ~ 8 % of maximum power so that air-fuel mixture enrichment is not required. For this reason, the TPS signal is not necessary for a simplified EFI architecture. Using the MAP signal for evaluating engine load ensures high enough precision when load changes rapidly, as there is practically no delay between the TPS and MAP signals (figure 7). ISS: / ISS: ISB:

4 The control of air flow to the engine can be achieved by employing a simple speed governor that keeps engine speed at 3 rev/min and controls throttle opening as electrical loads varies. An IAT sensor would be required for calculating air density. However, as stoichiometric operation is required at all times, a basic injection time calculated based only on the MAP signal should be enough, and this basic injection time can be continuously adjusted based on the signal provided by the oxygen sensor. TPS [deg] MAP [mbar] tinj [ms] UO2 [mv] Time [s] Fig. 7. Measured TPS, MAP, injection time and oxygen sensor voltage for an automotive SI engine during sudden acceleration As stationary engines are operated at nominal temperature for extended periods, precise correlation of the injection pulses with crank shaft rotation is not necessary, as is the case for engines using a cam shaft position sensor. Therefore, the only sensors strictly necessary for EFI systems used on stationary SI engines are the MAP and oxygen sensor, resulting in a much simplified architecture (figure 6). Cold start presents a specific challenge for fuel systems. Carburetors feature an additional air control valve (so called choke valve) that is closed when the engine needs to be started in low ambient temperature conditions. In this way, the air-fuel mixture is enriched so that enough fuel vapor enters the combustion chamber. EFI systems increase the injection time during cranking and also during engine warm-up (figure 8). When cranking the engine at ~ 12 rev/min, the injection time (t inj ) is 3 4 times higher compared to normal operation. After the engine is started, the air-fuel mixture is briefly enriched so that stable operation is ensured. When the coolant temperature reaches a certain minimum threshold, the ECU adjusts the injection time so that the engine runs on a stoichiometric air-fuel mixture. [rev/min] MAP [mbar] tinj [ms] UO2 [mv] Ignition Rich Idle operation Stoichiometric Time [s] Fig. 8. Cold start and warm-up parameters for an automotive EFI system The signal provided by the oxygen sensor shows an interesting behavior with the engine stopped. Figure 8 shows engine speed, MAP, injection time and U O2 for an automotive EFI system during cold start and warm-up. Before the engine is started, the oxygen sensor provides a signal specific for lean air-fuel mixtures. This is possible because the sensor is warmed by an electric ISS: / ISS: ISB:

5 heater before cranking the engine. As the exhaust contains only air, U O2 shows low values. After the engine is started, the oxygen sensor gives a much higher reading, specific for rich mixtures. Therefore, relative air-fuel ratio can be evaluated by analyzing U O2 voltage just seconds after the engine is started, if an electrically heated oxygen sensor is employed. Such analysis of the U O2 signal are used in some EFI systems to determine the content of alcohol in ethanol-blends used to fuel SI engines [8]. In a simplified EFI system for stationary SI engines, analyzing U O2 can provide the basis for evaluating engine working temperature. An oxygen sensor that is not electrically heated requires the engine to be operated for a few minutes before reaching minimum working temperature. A cold sensor gives a constant voltage of ~ 45 mv, no matter what the oxygen concentration in the exhaust. Therefore, a software containing an analysis as the one shown in figure 9 could by used to evaluate engine temperature. thus increasing air flow to the engine. As a consequence, the air-fuel mixture is leaned out and the engine speed tends to drop. In response, the ECU increases injection time until the condition > 3 rev/min is reached. If load decreases, the engine will briefly run rich and increases. The ECU responds by decreasing the injected fuel quantity. Of course, such a control strategy would probably be too slow to ensure good engine response when load changes rapidly, but would nonetheless allow the engine to be operated until the fault is remedied. Experimental investigations on this matter will provide an answer to the effectiveness of such a control strategy. Engine cranking < 2 rev/min U O2 ormal operation max(u O2 ) > 6 mv or min(u O2 ) < 3 mv Engine warm closed loop Fig. 1. Control strategy during engine cranking Engine cold open loop Fig. 9. Algorithm for evaluating engine temperature based on the U O2 signal Cold starts are a major challenge for EFI systems, as the engine needs to be easily started even in harsh ambient conditions [9]. Using an analysis of the signal given by the ignition system, engine speed can be evaluated. SI engines need to be cranked at ~ 12 2 rev/min to be started. Therefore, if the frequency of ignition pulses are in the range of 1 2 Hz for a single cylinder four-stroke engine, the ECU would assume that the engine is cranked to be started, and the air-fuel mixture can be enriched accordingly (figure 1). Analyzing this signal could also be used as a mean of setting the basic injection time in extraordinary situations such as the case of MAP sensor failure (figure 11). If the engine slow down < 3 rev/min, the ECU assumes that load is increased and the throttle is opened, 3 rev/min Fig. 11. Control strategy in the case of MAP sensor failure Readings from more than one sensors, even if they are mostly redundant, are used the ECU for selfdiagnosis and to evaluate sensors working parameters. Therefore, using only one sensor to control injection timing is not a practical solution, even if theoretically possible. Also, an important aspect of ECU software is ISS: / ISS: ISB:

6 that injection time is adjusted within certain limits. This is used by the ECU for self-diagnosis. When correction limits are exceeded, a fault code is generated and intervention by qualified personnel is required. As the nature of the simplified EFI system requires a much wider range for injection time adjustment, another procedure for self-diagnosis must be developed. This matter will be undertaken by the author in future work. An advantage of much wider limits for injection time adjustment is that multi-fuel operation is possible. As a result of using special control strategies, a simplified EFI system architecture (figure 6) can be used on stationary SI engines, employing an algorithm such as the one shown in figure 12., MAP, U O2 t inj f (, MAP, IAT) < 2 rev/min Evaluate T c T c nominal MAP failure U O2 > 45 mv 45 mv Open loop based control inj t inj t inj t inj Fig. 12. Control strategy for a simplified EFI architecture 4 Conclusion A control strategy for simplified EFI systems was developed to be used with stationary SI engines. This will ensure high efficiency with reduced emissions by using a three way catalytic converter that requires sotichiometric operation of the engine at all times. Initial theoretical evaluations of the algorithms used to determine injection timing, show that good control characteristics are possible with a small number of sensors. This ensures minimum costs, a very important aspect especially with small size SI engines used in micro-cogeneration installations. 5 Acknowledgment This work was partially supported by the strategic grant POSDRU/89/1.5/S/57649, Project ID (PERFORM-ERA), co-financed by the European Social Fund Investing in People, within the Sectoral Operational Programme Human Resources Development References: [1] S. R. Schill, EU adopts plan, includes emissions trading, Biomass Magazine Online, January 29. [2] A. Irimescu, L. Călin, A. JădăneanŃ, Aspects Concerning the Efficient Use of Biogas Obtained from Sewage Water Discarded by the Beer Industry, Journal of Environmental Protection and Ecology, Vol. 1, o. 4, 29, pp [3] M. Kanoglu, I. Dincer, Performance assessment of cogeneration plants, Energy Conversion and Management, Vol. 5, o. 1, 29, pp [4] A. Irimescu, D. Lelea, Thermodynamic analysis of gas turbine powered cogeneration systems, Journal of Scientific & Industrial Research, Vol. 69, o. 7, 21, pp [5] R. Bosch, Gasoline Engine Management, 2 nd Edition, Bentley Publishers, 26. [6] J. B. Heywood, Internal Combustion Engines Fundamentals, McGraw Hill, [7] R. Bosch, Gasoline Fuel-Injection System K-Jetronic Technical Instructions, Bentley Publishers, 21. [8] C. M. Engler-Pinto, L. de adai, Volumetric Efficiency and Air-Fuel Ratio Analysis For Flex Fuel Engines, Tecnologia da mobilidade 17 th SAE Conference Brasil, September, Sao Paolo. Brasil, 28. [9] C. Hu, X. Song,. Liu, W. Li, Investigation on Cold Starting and Warming up of Gasoline Engines with EFI, Small Engine Technology Conference, 3 October 1 ovember, iigata, Japan, 27. ISS: / ISS: ISB:

Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends

Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends Adrian Irimescu ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XVI, NR. 1, 2009, ISSN 1453-7397 Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends With fossil fuels

More information

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

More information

Fuel control. The fuel injection system tasks. Starting fuel pump (FP)

Fuel control. The fuel injection system tasks. Starting fuel pump (FP) 1 Fuel control The fuel injection system tasks - To provide fuel - To distribute the fuel between the cylinders - To provide the correct quantity of fuel Starting fuel pump (FP) The control module (1)

More information

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES Bulletin of the Transilvania University of Braşov Vol. 3 (52) - 2010 Series I: Engineering Sciences STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES R.

More information

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD CONAT243 THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD KEYWORDS HCCI, EGR, heat release rate Radu Cosgarea *, Corneliu Cofaru, Mihai Aleonte Transilvania

More information

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM Alexandru-Bogdan Muntean *, Anghel,Chiru, Ruxandra-Cristina (Dica) Stanescu, Cristian Soimaru Transilvania

More information

Fuel Metering System Component Description

Fuel Metering System Component Description 1999 Chevrolet/Geo Tahoe - 4WD Fuel Metering System Component Description Purpose The function of the fuel metering system is to deliver the correct amount of fuel to the engine under all operating conditions.

More information

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

Research in use of fuel conversion adapters in automobiles running on bioethanol and gasoline mixtures

Research in use of fuel conversion adapters in automobiles running on bioethanol and gasoline mixtures Agronomy Research 11 (1), 205 214, 2013 Research in use of fuel conversion adapters in automobiles running on bioethanol and gasoline mixtures V. Pirs * and M. Gailis Motor Vehicle Institute, Faculty of

More information

The Effect of Efi to the Carbureted Single Cylinder Four Stroke Engine

The Effect of Efi to the Carbureted Single Cylinder Four Stroke Engine Journal of Mechanical Engineering Vol. 7, No. 2, 53-64, 2010 The Effect of Efi to the Carbureted Single Cylinder Four Stroke Engine Idris Ibrahim Adibah Abdul Jalil Shaharin A. Sulaiman Department of Mechanical

More information

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/101984, October 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study of Performance and Emission Characteristics

More information

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases Article citation info: LEWIŃSKA, J. The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases. Combustion Engines. 2016, 167(4), 53-57. doi:10.19206/ce-2016-405

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines

Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines Er. Kapil Karadia 1, Er. Ashish Nayyar 2 1 Swami Keshvanand Institute of Technology, Management &Gramothan, Jaipur,Rajasthan

More information

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE Haroun A. K. Shahad hakshahad@yahoo.com Department of mechanical

More information

Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings

Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings Yong-Seok Cho Graduate School of Automotive Engineering, Kookmin University, Seoul, Korea

More information

The influence of thermal regime on gasoline direct injection engine performance and emissions

The influence of thermal regime on gasoline direct injection engine performance and emissions IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The influence of thermal regime on gasoline direct injection engine performance and emissions To cite this article: C I Leahu

More information

April 24, Docket No. CPSC

April 24, Docket No. CPSC Written Comments of the Manufacturers of Emission Controls Association on the U.S. Consumer Product Safety Commission s Proposed Rulemaking to Limit CO Emissions from Operating Portable Generators April

More information

Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine

Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine Applied Thermal Engineering 25 (2005) 917 925 www.elsevier.com/locate/apthermeng Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine M.A. Ceviz *,F.Yüksel Department

More information

COMPARISON OF COMBUSTION CHARACTERISTICS AND HEAT LOSS FOR GASOLINE AND METHANE FUELING OF A SPARK IGNITION ENGINE

COMPARISON OF COMBUSTION CHARACTERISTICS AND HEAT LOSS FOR GASOLINE AND METHANE FUELING OF A SPARK IGNITION ENGINE THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 14, Number 2/213, pp. 161 168 COMPARISON OF COMBUSTION CHARACTERISTICS AND HEAT LOSS FOR GASOLINE AND

More information

5. Control System CONTROL SYSTEM FUEL INJECTION (FUEL SYSTEM) A: GENERAL. FU(STi)-27

5. Control System CONTROL SYSTEM FUEL INJECTION (FUEL SYSTEM) A: GENERAL. FU(STi)-27 W1860BE.book Page 27 Tuesday, January 28, 2003 11:01 PM 5. Control System A: GENERAL The ECM receives signals from various sensors, switches, and other control modules. Using these signals, it determines

More information

Experimental investigation on influence of EGR on combustion performance in SI Engine

Experimental investigation on influence of EGR on combustion performance in SI Engine - 1821 - Experimental investigation on influence of EGR on combustion performance in SI Engine Abstract M. Božić 1*, A. Vučetić 1, D. Kozarac 1, Z. Lulić 1 1 University of Zagreb, Faculty of Mechanical

More information

5. Control System CONTROL SYSTEM FUEL INJECTION (FUEL SYSTEM) A: GENERAL FU(H4DOTC)-29

5. Control System CONTROL SYSTEM FUEL INJECTION (FUEL SYSTEM) A: GENERAL FU(H4DOTC)-29 W1860BE.book Page 29 Tuesday, January 28, 2003 11:01 PM 5. Control System A: GENERAL The ECM receives signals from various sensors, switches, and other control modules. Using these signals, it determines

More information

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PROJECT REFERENCE NO. : 37S1036 COLLEGE BRANCH GUIDES : KS INSTITUTE OF TECHNOLOGY, BANGALORE

More information

Lotus Service Notes Section EMR

Lotus Service Notes Section EMR ENGINE MANAGEMENT SECTION EMR Lotus Techcentre Sub-Section Page Diagnostic Trouble Code List EMR.1 3 Component Function EMR.2 7 Component Location EMR.3 9 Diagnostic Guide EMR.4 11 CAN Bus Diagnostics;

More information

EMISSION CONTROL EMISSION CONTROLS

EMISSION CONTROL EMISSION CONTROLS EMISSION CONTROL EMISSION CONTROLS Emissions control systems on Land Rover vehicles work closely with fuel system controls to reduce airborne pollutants. Improper operation of these systems can lead to

More information

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1.

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1. Introduction: Main three types of automotive vehicle being used 1. Passenger cars powered by four stroke gasoline engines 2. Motor cycles, scooters and auto rickshaws powered mostly by small two stroke

More information

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 23.-24.5.213. INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE Kastytis Laurinaitis, Stasys Slavinskas Aleksandras

More information

Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system

Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system Indian Journal of Engineering & Materials Sciences Vol. 13, April 2006, pp. 95-102 Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system M Loganathan,

More information

There are predominantly two reasons for excessive fuelling: increased fuel pressure and extended injector duration. Figure 1.0

There are predominantly two reasons for excessive fuelling: increased fuel pressure and extended injector duration. Figure 1.0 In this tutorial we look at the actuators and components that affect the vehicles exhaust emissions when the electronically controlled fuel injection system is found to be over fuelling. There are predominantly

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

EMISSION CONTROL VISUAL INSPECTION PROCEDURES

EMISSION CONTROL VISUAL INSPECTION PROCEDURES EMISSION CONTROL VISUAL INSPECTION PROCEDURES 1992 Infiniti G20 1983-98 GENERAL INFORMATION Emission Control Visual Inspection Procedures All Models * PLEASE READ THIS FIRST * This article is provided

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines Available online at www.sciencedirect.com Energy Procedia 29 (2012 ) 455 462 World Hydrogen Energy Conference 2012 Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged,

More information

Effect of Preheating Air in Petrol Engine by Using Exhaust Gas Heat Energy

Effect of Preheating Air in Petrol Engine by Using Exhaust Gas Heat Energy ISSN 2395-1621 Effect of Preheating Air in Petrol Engine by Using Exhaust Gas Heat Energy #1 Ghorpade Sangram D., #2 Lokhande Akshay R., #3 Lagad Pradeep B. #4 Jangam Raviraj S. 1 sangramghorpade1996@gmail.com

More information

Basic Requirements. ICE Fuel Metering. Mixture Quality Requirements. Requirements for Metering & Mixing

Basic Requirements. ICE Fuel Metering. Mixture Quality Requirements. Requirements for Metering & Mixing Basic Requirements ICE Fuel Metering Dr. M. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST Sagar.A.Patil 1, Priyanka.V.Kadam 2, Mangesh.S.Yeolekar 3, Sandip.B.Sonawane 4 1 Student (Final Year), Department

More information

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 2.-27..216. INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL Kastytis Laurinaitis, Stasys Slavinskas

More information

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 295-306 295 AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE by Jianyong ZHANG *, Zhongzhao LI,

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

2012 Chevy Truck Equinox FWD L4-2.4L Vehicle > Locations > Components

2012 Chevy Truck Equinox FWD L4-2.4L Vehicle > Locations > Components 2012 Chevy Truck Equinox FWD L4-2.4L Vehicle > Locations > Components 2012 Chevy Truck Equinox FWD L4-2.4L Vehicle > Powertrain Management > Fuel Delivery and Air Induction > Description and Operation

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION Module 2:Genesis and Mechanism of Formation of Engine Emissions POLLUTANT FORMATION The Lecture Contains: Engine Emissions Typical Exhaust Emission Concentrations Emission Formation in SI Engines Emission

More information

EXHAUST EMISSIONS OF 4 STROKE SPARK IGNITION ENGINE WITH INDIRECT INJECTION SYSTEM USING GASOLINE-ETHANOL FUEL

EXHAUST EMISSIONS OF 4 STROKE SPARK IGNITION ENGINE WITH INDIRECT INJECTION SYSTEM USING GASOLINE-ETHANOL FUEL Vol. 04 No. 01, July 2017, Pages 44-49 EXHAUST EMISSIONS OF 4 STROKE SPARK IGNITION ENGINE WITH INDIRECT INJECTION SYSTEM USING GASOLINE-ETHANOL FUEL Mega Nur Sasongko 1, Widya Wijayanti 1, Fernando Nostra

More information

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS The Lecture Contains: Crankcase Emission Control (PCV System) Evaporative Emission Control Exhaust Gas Recirculation Water Injection file:///c /...%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/engine_combustion/lecture20/20_1.htm[6/15/2012

More information

Study on Performance and Exhaust Gas. Characteristics When Biogas is Used for CNG. Converted Gasoline Passenger Vehicle

Study on Performance and Exhaust Gas. Characteristics When Biogas is Used for CNG. Converted Gasoline Passenger Vehicle Contemporary Engineering Sciences, Vol. 7, 214, no. 23, 1253-1259 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ces.214.49155 Study on Performance and Exhaust Characteristics When Biogas is Used

More information

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger MATEC Web of Conferences 1, 7 (17 ) DOI:1.11/matecconf/1717 ICTTE 17 Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with charger Hilmi Amiruddin

More information

DTC P0420. Circuit Description. Conditions for Running the DTC.

DTC P0420. Circuit Description. Conditions for Running the DTC. Page 1 of 5 DTC P0420 2003 Buick LeSabre LeSabre (VIN H) Service Manual Document ID: 792202 Circuit Description In order to control emissions of hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen

More information

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes A Kowalewicz Technical University of Radom, al. Chrobrego 45, Radom, 26-600, Poland. email: andrzej.kowalewicz@pr.radom.pl

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Engine Conversion to CRDI Technology & Its Application Strategy

Engine Conversion to CRDI Technology & Its Application Strategy Engine Conversion to CRDI Technology & Its Application Strategy S Karthik 1, K Sairahul 1, N Logesh 1, K.Guru Prasad 1, D.Gopinath 2 U.G Student, Velammal Engineering College, Chennai, Tamilnadu, India

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

Experimental Researches of Fuelling Systems and Alcohol Blends on Combustion and Emissions in a Two Stroke Si Engine

Experimental Researches of Fuelling Systems and Alcohol Blends on Combustion and Emissions in a Two Stroke Si Engine Experimental Researches of Fuelling Systems and Alcohol Blends on Combustion and Emissions in a Two Stroke Si Engine MIHAI ALEONTE, CORNELIU COFARU, RADU COSGAREA, MARIA LUMINITA SCUTARU, LIVIU JELENSCHI,

More information

State of the Art (SOTA) Manual for Internal Combustion Engines

State of the Art (SOTA) Manual for Internal Combustion Engines State of the Art (SOTA) Manual for Internal Combustion Engines July 1997 State of New Jersey Department of Environmental Protection Air Quality Permitting Program State of the Art (SOTA) Manual for Internal

More information

Auto Diagnosis Test #7 Review

Auto Diagnosis Test #7 Review Auto Diagnosis Test #7 Review Your own hand written notes may be used for the 1 st 10 minutes of the test Based on Chapters 25, 26, 32, 33, 34 and Lab Demonstrations Auto Diagnosis Test #7 Review Your

More information

MULTIPOINT FUEL INJECTION (MPI) <4G63-Non-Turbo>

MULTIPOINT FUEL INJECTION (MPI) <4G63-Non-Turbo> 13A-1 GROUP 13A MULTIPOINT FUEL INJECTI (MPI) CTENTS GENERAL INFORMATI........ 13A-2 FUEL INJECTI CTROL...... 13A-6 IDLE SPEED CTROL (ISC)..... 13A-7 IGNITI TIMING AND DISTRIBUTI CTROL........

More information

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 1897-1906 1897 EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane by Jianyong

More information

EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE

EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE M.Sc. Karagoz Y. 1, M.Sc. Orak E. 1, Assist. Prof. Dr. Sandalci T. 1, B.Sc. Uluturk M. 1 Department of Mechanical Engineering,

More information

ACTUAL CYCLE. Actual engine cycle

ACTUAL CYCLE. Actual engine cycle 1 ACTUAL CYCLE Actual engine cycle Introduction 2 Ideal Gas Cycle (Air Standard Cycle) Idealized processes Idealize working Fluid Fuel-Air Cycle Idealized Processes Accurate Working Fluid Model Actual

More information

DTC P0171, P0172, P0174, or P0175

DTC P0171, P0172, P0174, or P0175 Page 1 of 6 2009 Pontiac G8 G8 Service Manual Document ID: 2076050 DTC P0171, P0172, P0174, or P0175 Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic

More information

3. At sea level, the atmosphere exerts psi of pressure on everything.

3. At sea level, the atmosphere exerts psi of pressure on everything. 41 Chapter Gasoline Injection Fundamentals Name Instructor Date Score Objective: After studying this chapter, you will be able to explain the construction, operation, and classifications of modern gasoline

More information

Design of Piston Ring Surface Treatment for Reducing Lubricating Oil Consumption

Design of Piston Ring Surface Treatment for Reducing Lubricating Oil Consumption The 3rd International Conference on Design Engineering and Science, ICDES 2014 Pilsen, Czech Republic, August 31 September 3, 2014 Design of Piston Ring Surface Treatment for Reducing Lubricating Consumption

More information

MULTIPOINT FUEL INJECTION (MPI) <4G63-Turbo>

MULTIPOINT FUEL INJECTION (MPI) <4G63-Turbo> 13B-1 GROUP 13B MULTIPOINT FUEL INJECTI (MPI) CTENTS GENERAL INFORMATI........ 13B-2 SENSOR....................... 13B-8 THROTTLE VALVE OPENING ANGLE CTROL.............. 13B-9 FUEL INJECTI

More information

AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER

AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER E.Saravanapprabhu 1, M.Mahendran 2 1E.Saravanapprabhu, PG Student, Thermal Engineering, Department of Mechanical Engineering,

More information

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 4, Issue 3 (October 2012), PP. 23-27 Analysis of Emission characteristics on Compression

More information

DEUTZ Corporation 914 Gas. Customer / Event DEUTZ Corporation Presentation DATE, 2010

DEUTZ Corporation 914 Gas. Customer / Event DEUTZ Corporation Presentation DATE, 2010 DEUTZ Corporation 914 Gas Customer / Event DEUTZ Corporation Presentation DATE, 2010 914 Gas Content Target Market General Product Features Performance Data Dimensions and Weight Emissions Gas Train and

More information

Hot-film Air-mass Meter HFM 6

Hot-film Air-mass Meter HFM 6 Service Training Self-study Programme 358 Hot-film Air-mass Meter HFM 6 Design and Function Due to the further development of standards and laws for exhaust emissions in vehicles, components with improved

More information

ENGINE AND EMISSION CONTROL

ENGINE AND EMISSION CONTROL 17-1 GROUP 17 ENGINE AND EMISSION CONTROL CONTENTS ENGINE CONTROL 17-2 GENERAL INFORMATION 17-2 AUTO-CRUISE CONTROL SYSTEM 17-3 GENERAL INFORMATION 17-3 CONSTRUCTION AND OPERATION 17-5 17-7 GENERAL INFORMATION

More information

Lotus Service Notes Section EMD

Lotus Service Notes Section EMD ENGINE MANAGEMENT SECTION EMD Lotus Techcentre Sub-Section Page Diagnostic Trouble Code List EMD.1 3 Component Function EMD.2 8 Component Location EMD.3 10 Diagnostic Guide EMD.4 11 CAN Bus Diagnostics;

More information

Which are the four important control loops of an spark ignition (SI) engine?

Which are the four important control loops of an spark ignition (SI) engine? 151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

More information

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends International Journal of Current Engineering and Technology E-ISSN 77 416, P-ISSN 47 5161 16 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Study of the

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN ISSN 2229-5518 2417 Experimental Investigation of a Two Stroke SI Engine Operated with LPG Induction, Gasoline Manifold Injection and Carburetion V. Gopalakrishnan and M.Loganathan Abstract In this experimental

More information

Problem 1 (ECU Priority)

Problem 1 (ECU Priority) 151-0567-00 Engine Systems (HS 2016) Exercise 6 Topic: Optional Exercises Raffi Hedinger (hraffael@ethz.ch), Norbert Zsiga (nzsiga@ethz.ch); November 28, 2016 Problem 1 (ECU Priority) Use the information

More information

ANALYSIS OF THE ENGINE FUELS IMPACT ON CARBON DIOXIDE EMISSIONS

ANALYSIS OF THE ENGINE FUELS IMPACT ON CARBON DIOXIDE EMISSIONS Journal of KONES Powertrain and Transport, Vol. 18, No. 4 2011 ANALYSIS OF THE ENGINE FUELS IMPACT ON CARBON DIOXIDE EMISSIONS Barbara Worsztynowicz AGH University of Science and Technology Faculty of

More information

Particular bi-fuel application of spark ignition engines

Particular bi-fuel application of spark ignition engines IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Particular bi-fuel application of spark ignition engines Related content - Bi-fuel System - Gasoline/LPG in A Used 4-Stroke Motorcycle

More information

Automobili Lamborghini s.p.a. OBDII MY 07 Section 5 Page 1 SECONDARY AIR SYSTEM (SAIR) MONITORING

Automobili Lamborghini s.p.a. OBDII MY 07 Section 5 Page 1 SECONDARY AIR SYSTEM (SAIR) MONITORING Automobili Lamborghini s.p.a. OBDII MY 07 Section 5 Page 1 SECONDARY AIR SYSTEM (SAIR) MONITORING Automobili Lamborghini s.p.a. OBDII MY 07 Section 5 Page 2 5.1. Basic theory and algorithm Automobili Lamborghini

More information

Kubota Engine Training: WG1605, spark ignited

Kubota Engine Training: WG1605, spark ignited Kubota Engine Training: WG1605, spark ignited WG1605 Engine Training: System Overviews Mechanical Components Electronic Components and Sensors Operation Service Tool Fuel System Overview: Fuel System Overview:

More information

MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5

MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5 MIXTURE FORMATION IN SPARK IGNITION ENGINES Chapter 5 Mixture formation in SI engine Engine induction and fuel system must prepare a fuel-air mixture that satisfiesthe requirements of the engine over its

More information

Error codes Diagnostic plug Read-out Reset Signal Error codes

Error codes Diagnostic plug Read-out Reset Signal Error codes Error codes Diagnostic plug Diagnostic plug: 1 = Datalink LED tester (FEN) 3 = activation error codes (TEN) 4 = positive battery terminal (+B) 5 = ground Read-out -Connect LED tester to positive battery

More information

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System P.Muni Raja Chandra 1, Ayaz Ahmed 2,

More information

Development of In-Line Coldstart Emission Adsorber System (CSEAS) for Reducing Cold Start Emissions in 2 Stroke SI Engine

Development of In-Line Coldstart Emission Adsorber System (CSEAS) for Reducing Cold Start Emissions in 2 Stroke SI Engine Development of In-Line Coldstart Emission Adsorber System (CSEAS) for Reducing Cold Start Emissions in 2 Stroke SI Engine Wing Commander M. Sekaran M.E. Professor, Department of Aeronautical Engineering,

More information

Lambda Control Fuel Adaptation and Fuel Trim

Lambda Control Fuel Adaptation and Fuel Trim Lambda Control Fuel Adaptation and Fuel Trim Q: What is Lambda and Lambda Control? A: In the case of a gasoline engine, the optimal mixture of air to fuel for complete combustion is a ratio of 14.7 parts

More information

Lotus Service Notes Section EMQ

Lotus Service Notes Section EMQ ENGINE MANAGEMENT SECTION EMQ Lotus Techcentre Sub-Section Page Component Function EMQ.1 3 Component Location EMQ.2 5 Diagnostic Trouble Code List EMQ.3 7 Diagnostic Guide EMQ.4 11 CAN Bus Diagnostics;

More information

ELECTRONIC ENGINE CONTROLS

ELECTRONIC ENGINE CONTROLS 2005 Jaguar S-Type (X200) V8-4.2L Vehicle > Powertrain Management > Computers and Control Systems > Description and Operation > Components ELECTRONIC ENGINE CONTROLS Electronic Engine Controls Vehicles

More information

POLLUTION CONTROL IN GASOLINE ENGINE USING METAL CATALYTIC CONVERTER

POLLUTION CONTROL IN GASOLINE ENGINE USING METAL CATALYTIC CONVERTER Volume 119 No. 7 2018, 1235-1242 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu POLLUTION CONTROL IN GASOLINE ENGINE USING METAL CATALYTIC CONVERTER

More information

L (LK9, LQ8) when use in: Saab 9-3

L (LK9, LQ8) when use in: Saab 9-3 NOTE: Printing this file may require 8.5" x 14" (legal size) paper, depending on your printer setup. Catalytic Converter Monitoring P0420 Time for Rear O2 sensor signal Time for rear O2 to go low. Value

More information

2.61 Internal Combustion Engines

2.61 Internal Combustion Engines Due: Thursday, February 19, 2004 2.61 Internal Combustion Engines Problem Set 2 Tuesday, February 10, 2004 1. Several velocities, time, and length scales are useful in understanding what goes on inside

More information

Diagnostic Trouble Codes (continued) SAE Defined Codes

Diagnostic Trouble Codes (continued) SAE Defined Codes 78 SAE Defined Codes P01XX Fuel and Air Metering P0100 Mass or Volume Airflow Circuit Problem P0101 Mass or Volume Airflow Circuit Range or Performance Problem P0102 Mass or Volume Airflow Circuit Low

More information

Development and Optimization System of Vehicle Electronic Fuel Injection

Development and Optimization System of Vehicle Electronic Fuel Injection Applied Mechanics and Materials Submitted: 2014-06-05 ISSN: 1662-7482, Vols. 602-605, pp 1512-1517 Accepted: 2014-06-11 doi:10.4028/www.scientific.net/amm.602-605.1512 Online: 2014-08-11 2014 Trans Tech

More information

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger M. Karthik Ganesh, B. Arun kumar Simpson co ltd., Chennai, India ABSTRACT: The small power

More information

EMISSIONS CHARACTERIZATION OF AN AMMONIA-GASOLINE SI ENGINE

EMISSIONS CHARACTERIZATION OF AN AMMONIA-GASOLINE SI ENGINE EMISSIONS CHARACTERIZATION OF AN AMMONIA-GASOLINE SI ENGINE By Shawn Grannell Dennis Assanis Don Gillespie Stanislav Bohac University of Michigan Mechanical Engineering Dept. & Applied Physics Program

More information

Effect of The Use of Fuel LPG Gas and Pertamax on Exhaust Gas Emissions of Matic Motorcycle

Effect of The Use of Fuel LPG Gas and Pertamax on Exhaust Gas Emissions of Matic Motorcycle Effect of The Use of Fuel LPG Gas and Pertamax on Exhaust Gas Emissions of Matic Motorcycle Khairul Muhajir Mechanical Engineering, Faculty of Industrial Technology Institute of Science and Technology,

More information

Further systems and diagnosis 5

Further systems and diagnosis 5 5.2 Lambda probes Lambda probes measure the oxygen content in the exhaust mixture. They are part of a control loop that continuously ensures that the composition of the fuel/air mix is correct. The mix

More information

CONVERSION OF A GASOLINE ENGINE INTO AN LPG-FUELLED ENGINE

CONVERSION OF A GASOLINE ENGINE INTO AN LPG-FUELLED ENGINE CONVERSION OF A GASOLINE ENGINE INTO AN LPG-FUELLED ENGINE Norrizal Mustaffa 1, Mohd Mustaqim Tukiman 1, Mas Fawzi 2 and Shahrul Azmir Osman 2 1 Faculty of Engineering Technology, a Automotive Research

More information

COMPARISON OF INDICATOR AND HEAT RELEASE GRAPHS FOR VW 1.9 TDI ENGINE SUPPLIED DIESEL FUEL AND RAPESEED METHYL ESTERS (RME)

COMPARISON OF INDICATOR AND HEAT RELEASE GRAPHS FOR VW 1.9 TDI ENGINE SUPPLIED DIESEL FUEL AND RAPESEED METHYL ESTERS (RME) Journal of KES Powertrain and Transport, Vol. 2, No. 213 COMPARIS OF INDICATOR AND HEAT RELEASE GRAPHS FOR VW 1.9 TDI ENGINE SUPPLIED DIESEL FUEL AND RAPESEED METHYL ESTERS () Jerzy Cisek Cracow University

More information

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization (SAE Paper- 2009-01-0306) Craig D. Marriott PE, Matthew A. Wiles PE,

More information

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION LECTURE NOTES on INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION Integrated Master Course on Mechanical Engineering Mechanical Engineering Department November 2015 Approach SI _ indirect injection

More information

1,9 ltr-tdi-industrial Engine

1,9 ltr-tdi-industrial Engine 1,9 ltr-tdi-industrial Engine Technical Status: 4/1999 Contents Combustion process................3 Injectors.........................4 Needle Lift Sender.................5 Air-mass Flow Meter...............6

More information

L (LU4, LJ3, L88) used in Saab 9-5 ENGINE DIAGNOSTIC PARAMETERS

L (LU4, LJ3, L88) used in Saab 9-5 ENGINE DIAGNOSTIC PARAMETERS Catalytic Converter Monitoring P0420 Front vs. Rear O2 sensor signal Evaluated data 1,75 times FTP std 80 (unitless) Coolant temp Throttle Delta load, positive Delta load, negative Engine speed, man. trans

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 7, January 2015

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 7, January 2015 Effect of Auxiliary Injection Ratio on the Characteristic of Lean Limit in Early Direct Injection Natural Gas Engine Tran Dang Quoc Department of Internal Combustion Engine School of Transportation Engineering,

More information

Powertrain DTC Summaries EOBD

Powertrain DTC Summaries EOBD Powertrain DTC Summaries Quick Reference Diagnostic Guide Jaguar X-TYPE 2.0 L 2002.25 Model Year Refer to page 2 for important information regarding the use of Powertrain DTC Summaries. Jaguar X-TYPE 2.0

More information