Preliminary investigations of trans-esterification process parameters for biodiesel production

Size: px
Start display at page:

Download "Preliminary investigations of trans-esterification process parameters for biodiesel production"

Transcription

1 Preliminary investigations of trans-esterification process parameters for biodiesel production Sunil Dhingra Assistant professor, Mechanical Engineering Department, UIET, Kurukshetra University, Kurukshetra, Haryana ABSTRACT The current work is focused on predicting various trans-esterification process parameters and their ranges by studying various contributions of researchers. The preliminary screening of the predicted input process parameters is also observed using one factor a time approach. It is observed that all the parameters considered are significant for fully conversion of biodiesel. Keywords: Preliminary investigations, One factor at a time approach (OFAT), biodiesel production INTRODUCTION The primary aim is to enhance the biodiesel production from various edible and non-edible oils using various optimization techniques as discussed in previous chapter. The various process parameters that affect the biodiesel production have been identified. These parameters are discussed in detail in this section. (i) Ethanol concentration (EC) Alcohol is one of the required additives used in biodiesel production. Methanol is generally utilized in the production of biodiesel because it is easily available in the market. The production of biodiesel using ethanol is found to be in higher side as reported in the literature [James et al., 1996]. Also ethanol can be easily produced from various natural resources like sugar, starch, cellulose etc. In the present work ethanol was used for the production of biodiesel. The amount of ethanol in reference to oils (edible/non-edible) was observed in the range % (by weight of oil) by as observed by previous research studies [Demirbas, 2005; Azcan and Danisman, 2007; Berchmans and Hirrata, 2008; Domingos et al., 2008; Abdullah et al., 2009; Dhingra et al., 2013a; Dhingra et al., 2013b; Dhingra et al., 2014a; Dhingra et al., 2014b; Dhingra et al., 2014c; Dhingra et al., 2014d; Dhingra et al., 2015; Dhingra et al., 2016]. (ii) Reaction time (Rt) It is the time for mixing of catalyst, oil and ethanol. The production rate can be enhanced by reducing reaction time. The range of reaction time was found to be minutes as observed from previous works [Halim et al., 2009; Jeong and Park, 2009; Jena et al., 2010; Juan et al., 2011; Kilic et al., 2013]. (iii) Reaction temperature (RT) It is the temperature at which trans-esterification process is performed. It is maintained constant to get homogeneous mixture of ethanol, KOH and oil. Its range was found to be C based on the various research works reported [Meng et al., 2008; Pal et al., 2010; Lee et al., 2011; Martinez et al., 2014; Ong et al., 2014]. (iv) Catalyst concentration (CC) The various types of catalyst used are KOH, NaOH, H 2 SO 4, lipase based etc. KOH as a catalyst is preferred because of ability to produce homogeneous mixture of oil and alcohol. Hence KOH is selected in the present research work. To increase the speed of trans-esterification process, suitable amount of catalyst is needed. The amount may vary in different oils. The range of KOH catalyst was found to be % (by weight of oil) as reported by various researchers [Qian et al., 2008; Quintela et al., 2012; Rahman et al., 2013; Patle et al., 2014; Rahimi et al., 2014;]. (v) Mixing speed (MS) The stirrer speed is adjusted by rotating the knob and it is digitally displayed by using digital tachometer. The constant speed is required to get the perfect mixing of ethanol, KOH and oil. The speed range of rpm has 104

2 been suggested by many researchers [Rajendra et al., 2009; Sahoo and Das, 2009; Sathya Selva Bala et al., 2012; Rezaei et al., 2013; Sanjid et al., 2014]. The range of process parameters that have been selected to enhance the biodiesel production using transesterification process are shown in table 1. Table 1: Process parameters selected for production of biodiesel and their ranges S. No. Process parameters Notations Units Range 1. Ethanol concentration EC % by weight of oil Reaction time Rt minutes Reaction temperature RT C Catalyst concentration CC % by weight of oil Mixing speed MS rpm SAMPLE CALCULATION FOR BIODIESEL YIELD The biodiesel yield is defined as the ratio of amount of biodiesel produced to the oil sample taken. The calculation of biodiesel yield is as follows: Quantity of oil taken = 100 gram (Assumed) Amount of ethanol used for 100 gram of oil by considering 25 % of ethanol concentration = 25 % (by weight of oil) = (25 / 100) 100 = 25 gram Catalyst (KOH) taken = 1 % by weight of oil = (1/100) 100 = 1 gram Quantity of biodiesel produced = 90 gram (say). Biodiesel yield = (Quantity of biodiesel produced/quantity of oil taken) 100 = (90/100) 100 = 90 % PRELIMINARY SCREENING OF PROCESS PARAMETERS FOR BIODIESEL PRODUCTION Preliminary screening is carried out to find the significant parameters affecting the response by performing the experiments using one-factor-at-a-time (OFAT) approach. It is applied by incrementing one input parameter while others are kept at central values of their available ranges. This approach is found to be useful for analyzing the effect of each input parameter on the response parameters and is widely used [Tarng et al., 1995; Parameswar Rao and Sarkar, 2010; Rafiqul and Sakinah, 2012; Simonoska Crcarevska et al., 2013; Irfan et al., 2014]. The significant process parameters among ethanol concentration, reaction temperature, reaction time, catalyst concentration and mixing speed affecting biodiesel yield have been found using this approach. The jatropha oil has been taken for preliminary investigations. Also the significant parameters affecting biodiesel yield will be same for all the oils considered. Figure 1 (a) shows the effect of ethanol concentration on jatropha biodiesel yield by keeping remaining parameters at middle values of the selected range as shown in table 1. It is observed from figure 1 (a) that in general biodiesel yield of jatropha oil increases with increase in ethanol concentration. Though the biodiesel yield increases with increase in ethanol concentration the rate of increase of biodiesel yield is observed to be maximum for % of ethanol concentration. The effect of reaction time on jatropha biodiesel yield is depicted in figure 1 (b). Biodiesel yield of jatropha oil increases with increase in reaction time. It is also observed that after 60 minutes of reaction time, the increase in biodiesel yield of jatropha oil is negligible. Figure 1 (c) shows the effect of reaction temperature on jatropha biodiesel yield. The biodiesel yield of jatropha oil increases sharply when reaction temperature is increased from 40 to 60 C. However, after 60 C of reaction temperature, the increase in biodiesel yield is negligible. Figure 1 (d) shows the effect of catalyst concentration on jatropha biodiesel yield. The biodiesel yield of jatropha oil increases with an increase in catalyst concentration from 0.5 to 2.5 in a step of 0.5. However no further enhancement in biodiesel tield is observed beyond 2.5 % of catalyst concentration. Figure 1 (e) shows the effect of mixing speed on jatropha biodiesel yield. The biodiesel yield of jatropha oil is observed to increase with increase in mixing speed. However, increase in speed beyond 550 rpm does not increase biodiesel yield. 105

3 Figure 4.3 (a): Effect of ethanol concentration (EC) on jatropha biodiesel yield (Rt = 45 minutes, RT = 55 C, CC = 1.75 % by weight of oil, MS = 400 rpm) Figure 4.3 (b): Effect of reaction time on jatropha biodiesel yield (EC = 20 % by weight of oil, RT = 55 C, CC = 1.75 % by weight of oil, MS = 400 rpm) Figure 4.3 (c): Effect of reaction temperature on jatropha biodiesel yield (EC = 20 % by weight of oil, Rt = 45 minutes, CC = 1.75 % by weight of oil, MS = 400 rpm) 106

4 Figure 4.3 (d): Effect of catalyst concentration on jatropha biodiesel yield (EC = 20 % by weight of oil, Rt = 45 minutes, RT = 55 C, MS = 400 rpm) Figure 4.3 (e): Effect of mixing speed on jatropha biodiesel yield (EC = 20 % by weight of oil, Rt = 45 minutes, RT = 55 C, CC = 1.75 % by weight of oil) Hence it is concluded from the above discussion that all the parameters are equally significant for biodiesel production. Thus all these parameters are selected for predicting optimum biodiesel production using CCRD of RSM. Further the range of these significant parameters selected for main experimentation is shown in table 2. Table 2: Range of process parameters selected for main experimentation S. No. Process parameters Notations Units Range 1. Ethanol concentration EC % by weight of oil Reaction time Rt Minutes Reaction temperature RT C Catalyst concentration CC % by weight of oil Mixing speed MS rpm CONCLUSION One factor at a time approach is an effective method for predicting significant input parameters before main experimentation is conducted. 107

5 Five input process parameters (Ethanol concentration, reaction time, reaction temperature, catalyst concentration and mixing speed) are responsible for the conversion of biodiesel as studied by preliminary investigations. The parameters and their significant ranges are shown in table 2 REFERENCES [1] Abdullah, A. Z., Razali, N., & Lee, K. T. (2009). Optimization of mesoporous K/SBA-15 catalyzed transesterification of palm oil using response surface methodology. Fuel Processing Technology, 90(7 8), [2] Azcan, N., & Danisman, A. (2007). Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel, 86(17 18), [3] Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99(6), [4] Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31(5 6), [5] Dhingra, S., Bhushan G., & Dubey, K. K. (2013a). Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm. Frontiers in Energy, 7(5), [6] Dhingra, S., Bhushan G., & Dubey, K. K. (2013b). Performance and emission parameters optimization of mahua (madhuca indica) based biodiesel in direct injection diesel engine using response surface methodology. Journal of Renewable and Sustainable Energy, 5, , DOI: / [7] Dhingra, S., Bhushan G., & Dubey, K. K. (2014a). Understanding the interactions and evaluation of process factors for biodiesel production from waste cooking cottonseed oil by design of experiments through statistical approach. Frontiers in Energy (in press). [8] Dhingra, S., Bhushan G., & Dubey, K. K. (2014b). Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-ii. Frontiers of Mechanical Engineering,9(1), [9] Dhingra, S., Bhushan G., & Dubey, K. K. (2015). Comparative performance analysis of jatropha, karanja, mahua and polanga based biodiesel engine using hubrid genetic algorithm. Journal of Renewable and Sustainable Energy, (in press). [10] Dhingra, S., Bhushan G., & Dubey, K. K. (2016). Validation and enhancement of waste cooking sunflower oil based biodiesel production by the trans-esterification process. Energy Sources, part A, 38(10), [11] Dhingra, S., Dubey, K. K., & Bhushan, G. (2014c). A Polymath Approach for the Prediction of Optimized Transesterification Process Variables of Polanga Biodiesel. Journal of the American oil Chemist s Society, 91(4), [12] Dhingra, S., Dubey, K. K., & Bhushan, G. (2014d). Enhancement in Jatropha-based biodiesel yield by process optimization using design of experiment approach. International Journal of Sustainable Energy, 33 (4), [13] Domingos, A. K., Saad, E. B., Wilhelm, H. M., & Ramos, L. P. (2008). Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology. Bioresource Technology, 99(6), [14] Halim, S. F. A., Kamaruddin, A. H., & Fernando, W. J. N. (2009). Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: Optimization using response surface methodology (RSM) and mass transfer studies. Bioresource Technology, 100(2), [15] Irfan, M., Nadeem, M., & Syed, Q. (2014). One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-ir05 in solid-state fermentation. Journal of Radiation Research and Applied Sciences. DOI: /j.jrras [16] James, G. R., Richards, P. T., Schaefer, W. E., & Wilmes, S. A. (1996). Methanol vs ethanol--`96. Journal Name: Preprints of Papers, American Chemical Society, Division of Fuel Chemistry; Journal Volume: 41; Journal Issue: 3; Conference: 212. national meeting of the American Chemical Society (ACS), Orlando, FL (United States), Aug 1996; Other Information: PBD: 1996, Medium: X; Size: pp [17] Jena, P. C., Raheman, H., Prasanna Kumar, G. V., & Machavaram, R. (2010). Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids. Biomass and Bioenergy, 34(8), [18] Jeong, G.-T., & Park, D.-H. (2009). Optimization of Biodiesel Production from Castor Oil Using Response Surface Methodology. Applied Biochemistry and Biotechnology, 156(1-3), [19] Juan, J. C., Kartika, D. A., Wu, T. Y., & Hin, T.-Y. Y. (2011). Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: An overview. Bioresource Technology, 102(2), [20] Kılıç, M., Uzun, B. B., Pütün, E., & Pütün, A. E. (2013). Optimization of biodiesel production from castor oil using factorial design. Fuel Processing Technology, 111(0), [21] Lee, H. V., Yunus, R., Juan, J. C., & Taufiq-Yap, Y. H. (2011). Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Processing Technology, 92(12), [22] Martínez, S. L., Romero, R., Natividad, R., & González, J. (2014). Optimization of biodiesel production from sunflower oil by transesterification using Na2O/NaX and methanol. Catalysis Today, , [23] Meng, X., Chen, G., & Wang, Y. (2008). Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Processing Technology, 89(9),

6 [24] Ong, H. C., Masjuki, H. H., Mahlia, T. M. I., Silitonga, A. S., Chong, W. T., & Leong, K. Y. (2014). Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Conversion and Management, 81, [25] Pal, A., Verma, A., Kachhwaha, S. S., & Maji, S. (2010). Biodiesel production through hydrodynamic cavitation and performance testing. Renewable Energy, 35(3), [26] Parameswara Rao, C. V. S., & Sarkar, M. M. M. (2009). Evaluation of optimal parameters for machining brass with wire cut EDM. Journal of Scientific & Industrial Research, 68(1), [27] Patle, D. S., Sharma, S., Ahmad, Z., & Rangaiah, G. P. (2014). Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil. Energy Conversion and Management, 85, [28] Qian, J., Wang, F., Liu, S., & Yun, Z. (2008). In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresource Technology, 99(18), [29] Quintella, S. A., Saboya, R. M. A., Salmin, D. C., Novaes, D. S., Araújo, A. S., Albuquerque, M. C. G., & Cavalcante Jr, C. L. (2012). Transesterificarion of soybean oil using ethanol and mesoporous silica catalyst. Renewable Energy, 38(1), [30] Rafiqul, I. S. M., & Sakinah, A. M. M. (2012). Design of process parameters for the production of xylose from wood sawdust. Chemical Engineering Research and Design, 90(9), [31] Rahimi, M., Aghel, B., Alitabar, M., Sepahvand, A., & Ghasempour, H. R. (2014). Optimization of biodiesel production from soybean oil in a microreactor. Energy Conversion and Management, 79, [32] Rahman, S. M. A., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A., & Sajjad, H. (2013). Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions. Energy Conversion and Management, 76, [33] Rajendra, M., Jena, P. C., & Raheman, H. (2009). Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel, 88(5), [34] Rezaei, R., Mohadesi, M., & Moradi, G. R. (2013). Optimization of biodiesel production using waste mussel shell catalyst. Fuel, 109, [35] Sahoo, P. K., & Das, L. M. (2009). Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel, 88(9), [36] Sanjid, A., Masjuki, H. H., Kalam, M. A., Rahman, S. M. A., Abedin, M. J., & Palash, S. M. (2014). Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. Journal of Cleaner Production, 65, [37] Sathya Selva Bala, V., Thiruvengadaravi, K. V., Senthil Kumar, P., Premkumar, M. P., Vinoth kumar, V., Subash sankar, S., Sivanesan, S. (2012). Removal of free fatty acids in Pongamia Pinnata (Karanja) oil using divinylbenzenestyrene copolymer resins for biodiesel production. Biomass and Bioenergy, 37, [38] Simonoska Crcarevska, M., Geskovski, N., Calis, S., Dimchevska, S., Kuzmanovska, S., Petruševski, G., Goracinova, K. (2013). Definition of formulation design space, in vitro bioactivity and in vivo biodistribution for hydrophilic drug loaded PLGA/PEO PPO PEO nanoparticles using OFAT experiments. European Journal of Pharmaceutical Sciences, 49(1), [39] Tarng, Y. S., Ma, S. C., & Chung, L. K. (1995). Determination of optimal cutting parameters in wire electrical discharge machining. International Journal of Machine Tools and Manufacture, 35(12),

Analysis of Mahua Biodiesel Production with Combined Effects of Input Trans-Esterification Process Parameters

Analysis of Mahua Biodiesel Production with Combined Effects of Input Trans-Esterification Process Parameters INTERNATIONAL JOURNAL OF R&D IN ENGINEERING, SCIENCE AND MANAGEMENT Vol.3, Issue 7, April 2016, p.p.297-301, ISSN 2393-865X Analysis of Mahua Biodiesel Production with Combined Effects of Input Trans-Esterification

More information

Comparison of Karanja, Mahua and Polanga Biodiesel Production through Response Surface Methodology

Comparison of Karanja, Mahua and Polanga Biodiesel Production through Response Surface Methodology INTERNATIONAL JOURNAL OF R&D IN ENGINEERING, SCIENCE AND MANAGEMENT Vol.4, Issue 2, June 2016, p.p.78-84, ISSN 2393-865X Comparison of Karanja, Mahua and Polanga Biodiesel Production through Response Surface

More information

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN: GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN: 2455-5703 Effect of Brake Thermal Efficiency of a Variable Compression Ratio Diesel Engine Operating

More information

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 7 12 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 3 - Civil and Chemical Engineering

More information

Project Reference No.: 40S_B_MTECH_007

Project Reference No.: 40S_B_MTECH_007 PRODUCTION OF BIODIESEL FROM DAIRY WASH WATER SCUM THROUGH HETEROGENEOUS CATALYST AND PERFORMANCE EVALUATION OF TBC DIESEL ENGINE FOR DIFFERENT DIESEL AND METHANOL BLEND RATIOS Project Reference No.: 40S_B_MTECH_007

More information

Methanolysis of Jatropha Oil Using Conventional Heating

Methanolysis of Jatropha Oil Using Conventional Heating Science Journal Publication Science Journal of Chemical Engineering Research Methanolysis of Jatropha Oil Using Conventional Heating Susan A. Roces*, Raymond Tan, Francisco Jose T. Da Cruz, Shuren C. Gong,

More information

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process, Journal of Advanced & Applied Sciences (JAAS) Volume 03, Issue 03, Pages 84-88, 2015 ISSN: 2289-6260 Optimization of Biodiesel production parameters (Pongamia pinnata oil) by transesterification process

More information

Technologies for Biodiesel Production from Non-edible Oils: A Review

Technologies for Biodiesel Production from Non-edible Oils: A Review Indian Journal of Energy, Vol 2(6), 129 133, June 2013 Technologies for Production from Non-edible ils: A Review V. R. Kattimani 1* and B. M. Venkatesha 2 1 Department of Chemistry, Yuvaraja s College,

More information

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 2 (2013), pp. 237-241 International Research Publication House http://www.irphouse.com Comparison of Performance

More information

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine Journal of Scientific & Industrial Research Vol. 74, June 2015, pp. 343-347 Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine R Kumar*, A

More information

Optimization of Biodiesel (MOME) Using Response Surface Methodology (RSM)

Optimization of Biodiesel (MOME) Using Response Surface Methodology (RSM) International Journal of Emerging Trends in Science and Technology Impact Factor: 2.838 DOI: https://dx.doi.org/10.18535/ijetst/v3i11.02 Optimization of Biodiesel (MOME) Using Response Surface Methodology

More information

Inturi Vamsi et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 5, ( Part -4) May 2015, pp.

Inturi Vamsi et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 5, ( Part -4) May 2015, pp. RESEARCH ARTICLE OPEN ACCESS Experimental Investigations on the Engine Performance and Characteristics of Compression Ignition (CI) Engine Using Dual Bio Fuel Methyl Ester As Alternate Fuel With Exhaust

More information

Performance Testing On an Agricultural Diesel Engine Using Waste Cooking Oil Biodiesel

Performance Testing On an Agricultural Diesel Engine Using Waste Cooking Oil Biodiesel International Conference of Advance Research and Innovation (-2014) Performance Testing On an Agricultural Diesel Engine Using Waste Cooking Oil Biodiesel Dhananjay Trivedi a, Amit Pal b a Department of

More information

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India. Preparation of Waste Cooking Oil as Alternative Fuel and Experimental Investigation Using Bio-Diesel Setup a Comparative Study with Single Cylinder Diesel Engine Mr.S.Sanyasi Rao Pradesh - 531173, India.

More information

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Current World Environment Vol. 11(1), 260-266 (2016) Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Ajinkya Dipak Deshpande*, Pratiksinh Dilipsinh

More information

Published in Offshore World, April-May 2006 Archived in

Published in Offshore World, April-May 2006 Archived in Published in Offshore World, April-May 2006 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace Preparation of karanja oil methyl ester. R. K. Singh *, A. Kiran Kumar and S. Sethi Department of

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE) International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 2, February 214 PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER

More information

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Kok Tat Tan*, Keat Teong Lee, Abdul Rahman Mohamed School of Chemical Engineering,

More information

Sunflower biodiesel: efficiency and emissions

Sunflower biodiesel: efficiency and emissions Biomass to Biofuels 179 Sunflower biodiesel: efficiency and emissions J. A. Ali 1 & A. Abuhabaya 2 1 Koya University, Kurdistan 2 University of Huddersfield, UK Abstract With economic development, energy

More information

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL Deepu T 1, Pradeesh A.R. 2, Vishnu Viswanath K 3 1, 2, Asst. Professors, Dept. of Mechanical Engineering, Ammini College of

More information

Sunflower biodiesel: efficiency and emissions

Sunflower biodiesel: efficiency and emissions Petroleum and Mineral Resources 25 Sunflower biodiesel: efficiency and emissions J. A. Ali 1 & A. Abuhabaya 2 1 School of Chemical and Petroleum Engineering, Koya University, Kurdistan 2 School of Computing

More information

Transesterification of Palm Oil with NaOH Catalyst Using Co-solvent Methyl Ester

Transesterification of Palm Oil with NaOH Catalyst Using Co-solvent Methyl Ester International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.12, pp 570-575, 2016 Transesterification of Palm Oil with NaOH Catalyst Using Co-solvent

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 18 CHAPTER 2 LITERATURE REVIEW This chapter presents the literature review on biodiesel production from animal fats, analysis of using different kinds of animal fat biodiesel in a direct injection diesel

More information

INVESTIGATIONS ON THE EFFECT OF MAHUA BIOFUEL BLENDS AND LOAD ON PERFORMANCE AND NOX EMISSIONS OF DIESEL ENGINE USING RESPONSE SURFACE METHODOLOGY

INVESTIGATIONS ON THE EFFECT OF MAHUA BIOFUEL BLENDS AND LOAD ON PERFORMANCE AND NOX EMISSIONS OF DIESEL ENGINE USING RESPONSE SURFACE METHODOLOGY International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 8, August 2017, pp. 1417 1423, Article ID: IJMET_08_08_146 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=8

More information

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) using Dodecane as a Solvent V.Naresh 1,S.Phabhakar 2, K.Annamalai

More information

KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS

KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS Ashraf Amin, S. A. AboEl-Enin, G. El Diwani and S. Hawash Department of Chemical Engineering and Pilot Plant, National Research

More information

Performance of Diesel Engine using Blends of Conventional Diesel and Jatropha Bio-diesel as Alternative Fuel for Clean Environment

Performance of Diesel Engine using Blends of Conventional Diesel and Jatropha Bio-diesel as Alternative Fuel for Clean Environment Performance of Diesel Engine using Blends of Conventional Diesel and Jatropha Bio-diesel as Alternative Fuel for Clean Environment R. K. Yadav 1 and S. L. Sinha 2 1, 2 Department of Mechanical Engineering,

More information

CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY

CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY 57 CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY 2.1 LITERATURE REVIEW Biodiesel have been processed from various plant derived oil sources including both Edible and Non-Edible oils. But,

More information

Keywords: Alternative fuels, Biodiesel, Blends, Diesel engine, Emissions, Karanja and Performance. 1. Introduction

Keywords: Alternative fuels, Biodiesel, Blends, Diesel engine, Emissions, Karanja and Performance. 1. Introduction International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 Performance and Emission Characteristics of a Direct Injection Diesel Engine using Biodiesel Produced from

More information

Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process

Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process Biomass and Bioenergy 31 (2007) 569 575 www.elsevier.com/locate/biombioe Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process Alok Kumar Tiwari, Akhilesh

More information

Biodiesel from soybean oil in supercritical methanol with co-solvent

Biodiesel from soybean oil in supercritical methanol with co-solvent Available online at www.sciencedirect.com Energy Conversion and Management 49 (28) 98 912 www.elsevier.com/locate/enconman Biodiesel from soybean oil in supercritical methanol with co-solvent Jian-Zhong

More information

Effect of Tangential Groove Piston on Diesel Engine with Jatropha Methyl Ester

Effect of Tangential Groove Piston on Diesel Engine with Jatropha Methyl Ester Effect of Tangential Groove Piston on Diesel Engine with Jatropha Methyl Ester Ravindra R. Dhanfule 1, Prof. H. S. Farkade 2, Jitendra S. Pahbhai 3 1,3 M. Tech. Student, 2 Assistant Professor, Dept. of

More information

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL Jagadeesh A 1, Rakesh A. Patil 2, Pavankumar C. Bhovi 3 1, 2, 3 Mechanical Engineering, Hirasugar

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at   ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 15 (215 ) 638 645 6th BSME International Conference on Thermal Engineering (ICTE 214) Production of Biodiesel Using Alkaline

More information

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE Surendra R. Kalbande and Subhash D. Vikhe College of Agricultural Engineering and Technology, Marathwada Agriculture University, Parbhani

More information

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL Ramaraju A. and Ashok Kumar T. V. Department of Mechanical Engineering, National Institute of Technology, Calicut, Kerala, India E-Mail: ashokkumarcec@gmail.com

More information

KINETICS OF TRANSESTERIFICATION OF ESTERIFIED CRUDE COTTON (Gossypium hirsutum) SEED OIL

KINETICS OF TRANSESTERIFICATION OF ESTERIFIED CRUDE COTTON (Gossypium hirsutum) SEED OIL KINETICS OF TRANSESTERIFICATION OF ESTERIFIED CRUDE COTTON (Gossypium hirsutum) SEED OIL 1* Lebnebiso, J. S., 2 Aberuagba, F., 1 Kareem, S. A. and 1 Cornelius, J. 1 Department of Chemical Engineering,

More information

Automotive Technology

Automotive Technology International Conference on Automotive Technology An Experimental Study on the Performance and Emission Characteristics of a Single Cylinder Diesel Engine Using CME- Diesel Blends. Hari Vasudevan a*,sandip

More information

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 16-20 www.iosrjournals.org Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine Sumedh Ingle 1,Vilas

More information

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst M.O. Daramola, D. Nkazi, K. Mtshali School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built

More information

AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES

AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES *Vincent.H.Wilson, **V.Yalini * Dean, Department of Mechanical

More information

Enhancement of Pretreatment Process for Biodiesel Production from Jatropha Oil Having High Content of Free Fatty Acids

Enhancement of Pretreatment Process for Biodiesel Production from Jatropha Oil Having High Content of Free Fatty Acids Enhancement of Pretreatment Process for Biodiesel Production from Jatropha Oil Having High Content of Free Fatty Acids Thumesha Kaushalya Jayasinghe *1, Paweetida Sungwornpatansakul 2, Kunio Yoshikawa

More information

Investigation of Hevea Brasiliensis Blends with an Aid of Rancimat Apparatus and FTIR Spectroscopy

Investigation of Hevea Brasiliensis Blends with an Aid of Rancimat Apparatus and FTIR Spectroscopy Investigation of Hevea Brasiliensis Blends with an Aid of Rancimat Apparatus and FTIR Spectroscopy Muhammad Irfan A A #1, Periyasamy S #2 # Department of Mechanical Engineering, Government College of Technology,

More information

The Use of Microalgae Biodiesel in Diesel Engine : Production, Extraction and Engine Performance Assoc. Professor Dr. T. F. Yusaf Saddam H Al-lwayzy

The Use of Microalgae Biodiesel in Diesel Engine : Production, Extraction and Engine Performance Assoc. Professor Dr. T. F. Yusaf Saddam H Al-lwayzy The Use of Microalgae Biodiesel in Diesel Engine : Production, Extraction and Engine Performance Assoc. Professor Dr. T. F. Yusaf Saddam H Al-lwayzy USQ Combustion Meeting 21 Nov 2012 Outline 1. Introduction

More information

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004)

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004) Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004) Biodiesel is an ester of fatty acids produced from renewable resources such as virgin vegetable oil, animal fats and used

More information

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Umesh Chandra Pandey 1, Tarun Soota 1 1 Department of Mechanical Engineering,

More information

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS M.M. Zamberi 1,2 a, F.N.Ani 1,b and S. N. H. Hassan 2,c 1 Department of Thermodynamics and Fluid

More information

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine ICCBT28 Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine R. Adnan *, Universiti Tenaga Nasional, MALAYSIA I. M. Azree, Universiti Tenaga

More information

COMBUSTION AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE FUELLED WITH JATROPHA AND DIESEL OIL BLENDS

COMBUSTION AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE FUELLED WITH JATROPHA AND DIESEL OIL BLENDS THERMAL SCIENCE, Year 2011, Vol. 15, No. 4, pp. 1205-1214 1205 COMBUSTION AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE FUELLED WITH JATROPHA AND DIESEL OIL BLENDS by Thangavelu ELANGO a* and Thamilkolundhu

More information

EMISSION AND PERFORMANCE CHARACTERISTICS OF KARANJA BIODIESEL AND ITS BLENDS IN A C.I. ENGINE AND IT S ECONOMICS

EMISSION AND PERFORMANCE CHARACTERISTICS OF KARANJA BIODIESEL AND ITS BLENDS IN A C.I. ENGINE AND IT S ECONOMICS EMISSION AND PERFORMANCE CHARACTERISTICS OF KARANJA BIODIESEL AND ITS BLENDS IN A C.I. ENGINE AND IT S ECONOMICS Nagarhalli M. V. 1, Nandedkar V. M. 2 and Mohite K.C. 3 1 Department of Mechanical Engineering,

More information

Ester (KOME)-Diesel blends as a Fuel

Ester (KOME)-Diesel blends as a Fuel International Research Journal of Environment Sciences E-ISSN 2319 1414 Injection Pressure effect in C I Engine Performance with Karanja Oil Methyl Ester (KOME)-Diesel blends as a Fuel Abstract Venkateswara

More information

Complete Utilisation of Pongamia Pinnata: Preparation of Activated Carbon, Biodiesel and its purification

Complete Utilisation of Pongamia Pinnata: Preparation of Activated Carbon, Biodiesel and its purification International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.7, pp 3672-3676, Sept-Oct 2014 Complete Utilisation of Pongamia Pinnata: Preparation of Activated Carbon, Biodiesel

More information

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification Research Journal of Chemical Sciences ISSN 2231-606X Use of Sunflower and Oil to prepare Biodiesel by catalyst assisted Transesterification Abstract *Patni Neha, Bhomia Chintan, Dasgupta Pallavi and Tripathi

More information

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Alabadan B.A. Department of Agricultural and Bioresources Engineering, Federal University, Oye Ekiti. Ajayi

More information

THE NOVEL CONTINUES BIODIESEL USING ULTRASOUND CLAMP TUBULAR REACTOR PROJECT LEADER PROF. DR. SULAIMAN BIN HAJI HASAN

THE NOVEL CONTINUES BIODIESEL USING ULTRASOUND CLAMP TUBULAR REACTOR PROJECT LEADER PROF. DR. SULAIMAN BIN HAJI HASAN THE NOVEL CONTINUES BIODIESEL USING ULTRASOUND CLAMP TUBULAR REACTOR PROJECT LEADER PROF. DR. SULAIMAN BIN HAJI HASAN GROUP MEMBER PROF. ING DARWIN SEBAYANG DR. IR. PUDJI UNTORO ASSOC. PROF. DR. ANIKA

More information

Investigation on the performance and Emission characteristics Of a diesel engine fuelled with vegetable oil methyl Ester blends and diesel blends

Investigation on the performance and Emission characteristics Of a diesel engine fuelled with vegetable oil methyl Ester blends and diesel blends International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.120-126 Investigation on the performance and Emission

More information

Assistant Professor, Dept. of Mechanical Engg., Shri Ram College of Engineering & Management, Banmore, Gwalior (M.P) 2

Assistant Professor, Dept. of Mechanical Engg., Shri Ram College of Engineering & Management, Banmore, Gwalior (M.P) 2 EXPERIMENTAL INVESTIGATION OF 4 STROKE COMPRESSION IGNITION ENGINE BY USING DIESEL AND PROCESSED WASTE COOKING OIL BLEND Neelesh Soni 1, Om Prakash Chaurasia 2 1 Assistant Professor, Dept. of Mechanical

More information

Comparative Study of Performance and Emission Characteristics of a Diesel Engine Fueled by Castor and Jatropha Methyl Ester with the Help of T Test

Comparative Study of Performance and Emission Characteristics of a Diesel Engine Fueled by Castor and Jatropha Methyl Ester with the Help of T Test 61 Comparative Study of Performance and Emission Characteristics of a Diesel Engine Fueled by Castor and Jatropha Methyl Ester with the Help of T Test D. Vashist 1,* and M. Ahmad 2 1 Associate professor,

More information

A PRODUCTION OF BIODIESEL FROM WASTE COTTON SEED OIL AND TESTING ON SMALL CAPACITY DIESEL ENGINE

A PRODUCTION OF BIODIESEL FROM WASTE COTTON SEED OIL AND TESTING ON SMALL CAPACITY DIESEL ENGINE A PRODUCTION OF BIODIESEL FROM WASTE COTTON SEED OIL AND TESTING ON SMALL CAPACITY DIESEL ENGINE Sandeep Singh 1, Sumeet Sharma 2 & S.K. Mohapatra 3 1 Department of Mechanical Engineering, BBSBEC, Fatehgarh

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management COMPARISON OF ALMOND OIL, UNDI OIL AND SESAME OIL FOR BIODIESEL: A REVIEW S S Ragit*, Bhoopendra Pandey 1, Nitin Kumar 2 * Assistant Professor, Department of Mechanical Engineering, Thapar University,

More information

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October 2010 34 EFFECT OF COMPRESSION RATIO, INJECTION TIMING AND INJECTION PRESSURE ON A DIESEL ENGINE FOR BETTER PERFORMANCE

More information

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD SINTEI EBITEI AND TRUST PROSPER GBORIENEMI Department of Chemical Engineering, Federal Polytechnic, Ekowe Bayelsa State, Nigeria. ABSTRACT

More information

BATCH TYPE SYNTHESIS OF HIGH FREE FATTY ACID JATROPHA CURCUS OIL BIODIESEL- INDIA AS SUPPLYING COUNTRY

BATCH TYPE SYNTHESIS OF HIGH FREE FATTY ACID JATROPHA CURCUS OIL BIODIESEL- INDIA AS SUPPLYING COUNTRY BATCH TYPE SYNTHESIS OF HIGH FREE FATTY ACID JATROPHA CURCUS OIL BIODIESEL- INDIA AS SUPPLYING COUNTRY Sanjay Gandhi Bojan 1, Sam Chelladurai 1 and Senthil Kumaran Durairaj 2 1 Department of Mechanical

More information

INFLUENCE OF PYROGALLOL ANTIOXIDANT ON PERFORMANCE AND EMISSIONS OF A CI FUELLED WITH NEEM OIL BIODIESEL

INFLUENCE OF PYROGALLOL ANTIOXIDANT ON PERFORMANCE AND EMISSIONS OF A CI FUELLED WITH NEEM OIL BIODIESEL International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 8, August 2017, pp. 981 987, Article ID: IJMET_08_08_106 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=8

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences icbst 2014 International Conference on Business, Science and Technology which will be held at Hatyai, Thailand on the 25th and 26th of April 2014. AENSI Journals Australian Journal of Basic and Applied

More information

SYNTHESIS OF BIODIESEL

SYNTHESIS OF BIODIESEL SYNTHESIS OF BIODIESEL AIM 1. To generate laboratory know-how for the process of production of biodiesel from the given oil feed stock 2. To perform basic mass and energy balance calculations for a large

More information

OPTIMIZATION OF MAHUA OIL METHYL ESTER BY USING TAGUCHI EXPERIMENTAL DESIGN

OPTIMIZATION OF MAHUA OIL METHYL ESTER BY USING TAGUCHI EXPERIMENTAL DESIGN OPTIMIZATION OF MAHUA OIL METHYL ESTER BY USING TAGUCHI EXPERIMENTAL DESIGN Priya S. Dhote 1, Vinod N. Ganvir 1, Yadavalli C. Bhattacharyulu 2 1 Department of Petroleum Refining & Petrochemical Technology,

More information

Performance Analysis of a Diesel Engine with the Help of Blends of Linseed Oil Biodiesel

Performance Analysis of a Diesel Engine with the Help of Blends of Linseed Oil Biodiesel Performance Analysis of a Diesel Engine with the Help of Blends of Linseed Oil Biodiesel Madhuri Shrivas M.E. Student, SSTC- SSGI (Faculty of Engineering & Technology), Bhilai Shashank S. Mishra Asst.

More information

Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel

Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel International Journal of Research in Advent Technology, Vol.6, No.8, August 218 Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel D.Satyanarayana 1, Dr. Jasti

More information

Transesterification of Palm Oil to Biodiesel and Optimization of Production Conditions i.e. Methanol, Sodium Hydroxide and Temperature

Transesterification of Palm Oil to Biodiesel and Optimization of Production Conditions i.e. Methanol, Sodium Hydroxide and Temperature Journal of Energy and Natural Resources 2015; 4(3): 45-51 Published online June 18, 2015 (http://www.sciencepublishinggroup.com/j/jenr) doi: 10.11648/j.jenr.20150403.12 ISSN: 2330-7366 (Print); ISSN: 2330-7404

More information

Keywords: - Biodiesel Production, Power ultrasound, Hydrodynamic Cavitation, Transesterification.

Keywords: - Biodiesel Production, Power ultrasound, Hydrodynamic Cavitation, Transesterification. Modern Developments in Biodiesel Production Technology Amit Pal, S. S. Kachhwaha and S. Maji Dept. of Mechanical Engineering, Delhi College of Engineering (Now DTU) Delhi-1042, India Email: amitpal1@yahoo.com,

More information

Biodiesel Production from Unrefined Krating (Calophyllum Inophyllum) Seed Oil Using Supercritical Methanol

Biodiesel Production from Unrefined Krating (Calophyllum Inophyllum) Seed Oil Using Supercritical Methanol CMU J. Nat. Sci. (2017) Vol. 16(4) 283 Biodiesel Production from Unrefined Krating (Calophyllum Inophyllum) Seed Oil Using Supercritical Methanol Chuenkhwan Tipachan 1, Tanawan Pinnarat 2 and Somjai Kajorncheappunngam

More information

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY EVALUATION ON INFLUENCE OF FUEL INJECTION PRESSURE ON EMISSION CHARACTERISTICS OF CIDI ENGINE USING JATROPHA OIL METHYL ESTER

More information

Indian Journal of Engineering

Indian Journal of Engineering RESEARCH MECHANICAL ENGINEERING Indian Journal of Engineering, Volume 9, Number 20, March 5, 2014 ISSN 2319 7757 EISSN 2319 7765 Indian Journal of Engineering Performance and emission characteristics of

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN ISSN 0976-6480 (Print) ISSN 0976-6499

More information

BIODIESEL PRODUCTION USING SUPERCRITICAL ALCOHOLS AND DIFFERENT VEGETABLE OILS IN BATCH AND CONTINUOUS REACTORS

BIODIESEL PRODUCTION USING SUPERCRITICAL ALCOHOLS AND DIFFERENT VEGETABLE OILS IN BATCH AND CONTINUOUS REACTORS BIODIESEL PRODUCTION USING SUPERCRITICAL ALCOHOLS AND DIFFERENT VEGETABLE OILS IN BATCH AND CONTINUOUS REACTORS P. Valle 1, A. Velez 2, P. Hegel 2, E.A. Brignole 2 * 1 LEC-ICEx DQ, Universidade Federal

More information

Investigation of Factors Affect Biodiesel Production in Microreactor with T-Mixer

Investigation of Factors Affect Biodiesel Production in Microreactor with T-Mixer International Proceedings of Chemical, Biological and Environmental Engineering, Vol. 88 (2015) DOI: 10.7763/IPCBEE. 2015. V88. 3 Investigation of Factors Affect Biodiesel Production in Microreactor with

More information

Utilization of Karanja (Pongamia pinnata) as a Major Raw Material for the Production of Biodiesel

Utilization of Karanja (Pongamia pinnata) as a Major Raw Material for the Production of Biodiesel Dhaka Univ. J. Sci. 60(2): 203-207, 2012 (July) Utilization of Karanja (Pongamia pinnata) as a Major Raw Material for the Production of Biodiesel Hossain Mohammad Imran 1, Arafat H.Khan 1, M.Shahinul Islam

More information

A Review on Performance & Emission Characteristics of Diesel Engine Using Different Types of Biodiesel Blends as Alternate Fuel

A Review on Performance & Emission Characteristics of Diesel Engine Using Different Types of Biodiesel Blends as Alternate Fuel A Review on Performance & Emission Characteristics of Diesel Engine Using Different Types of Biodiesel Blends as Alternate Fuel Niraj N. Raja 1 and Sheikh Yasin 2 1 M.Tech. IV Sem. (Heat Power Engineering),

More information

International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME)

International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME) Studies on Performance and Emission Characteristics of Waste Cooking Oil and Jatropha Biodiesels in a DI Diesel Engine Test Rig for Varying Injection Pressures 1 Udaya Ravi M, 2 Bharath G, 3 Prabhakar

More information

INVESTIGATION OF BLENDED PALM BIODIESEL-DIESEL FUEL PROPERTIES WITH OXYGENATED ADDITIVE

INVESTIGATION OF BLENDED PALM BIODIESEL-DIESEL FUEL PROPERTIES WITH OXYGENATED ADDITIVE INVESTIGATION OF BLENDED PALM BIODIESEL-DIESEL FUEL PROPERTIES WITH OXYGENATED ADDITIVE Obed Majeed Ali 1, Rizalman Mamat 1, Nik R. Abdullah 2 and Abdul Adam Abdullah 1 1 Faculty of Mechanical Engineering,

More information

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL Prakash T 1 Suraj S 2, Mayilsamy E 3,Vasanth Kumar R 4, Vinoth S V 5 1 Assistant Professor, Mechanical Engineering,

More information

Environment-Congenial Biodiesel Production from Non-Edible Neem Oil

Environment-Congenial Biodiesel Production from Non-Edible Neem Oil Environ. Eng. Res. 2012 December,17(S1) : S27-S32 Research Paper pissn 1226-1025 eissn 2005-968X Environment-Congenial Biodiesel Production from Non-Edible Neem Oil Anindita Karmakar 1, Prasanta Kumar

More information

CHAPTER 4 PRODUCTION OF BIODIESEL

CHAPTER 4 PRODUCTION OF BIODIESEL 56 CHAPTER 4 PRODUCTION OF BIODIESEL 4.1 INTRODUCTION Biodiesel has been produced on a large scale in the European Union (EU) since 1992 (European Biodiesel Board 2008) and in the United States of America

More information

Experimental Investigation of Performance and Emission Characteristics of Cebia petandra Biodiesel in CI Engine

Experimental Investigation of Performance and Emission Characteristics of Cebia petandra Biodiesel in CI Engine International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.04 pp 230-238, 2016 Experimental Investigation of Performance and Emission Characteristics of Cebia petandra Biodiesel

More information

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.11 pp 63-70, 2016 Impact of Various Compression Ratio on the Compression Ignition Engine

More information

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester Sharanappa Godiganur Department of Mechanical Engineering, Reva Institute of Technology and

More information

International Journal of Technology (2017) 3: ISSN IJTech 2017

International Journal of Technology (2017) 3: ISSN IJTech 2017 International Journal of Technology (2017) 3: 418-427 ISSN 2086-9614 IJTech 2017 SYNTHESIS AND EXPERIMENTAL INVESTIGATION OF TRIBOLOGICAL PERFORMANCE OF A BLENDED (PALM AND MAHUA) BIO-LUBRICANT USING THE

More information

EXPERIMENTAL INVESTIGATIONN OF 4- STROKE SINGLE CYLINDER DIESEL ALTERNATIVE FUELS

EXPERIMENTAL INVESTIGATIONN OF 4- STROKE SINGLE CYLINDER DIESEL ALTERNATIVE FUELS International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 409 419, Article ID: IJMET_08_05_044 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtyp

More information

Tamanu (Calophyllum Inophyllum) Biodieselasan Alternative Fuelfor CI Engine: Review

Tamanu (Calophyllum Inophyllum) Biodieselasan Alternative Fuelfor CI Engine: Review Tamanu (Calophyllum Inophyllum) Biodieselasan Alternative Fuelfor CI Engine: Review Mansukh Pushparaj Suresh 1, Jadhav Vishal Rakhama 2, Praveen A. Harari 3 1, 2 B.E. Final Year Students, Dept. of Mechanical

More information

Carbon Science and Technology

Carbon Science and Technology ASI ARTICLE Received : 11/09/2014, Accepted:10/10/2014 ----------------------------------------------------------------------------------------------------------------------------- Process parameters optimization

More information

Optimization of Injection Parameters of Ci Engine Using Cotton Seed and Pongamia Pinnata Bio Diesel as Fuel

Optimization of Injection Parameters of Ci Engine Using Cotton Seed and Pongamia Pinnata Bio Diesel as Fuel 2015 IJSRSET Volume 1 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Optimization of Injection Parameters of Ci Engine Using Cotton Seed and Pongamia

More information

A Review Paper on Biodiesel as AlterNet Fuel

A Review Paper on Biodiesel as AlterNet Fuel IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 A Review Paper on Biodiesel as AlterNet Fuel Ghanashyam Patel 1 Prof. Nirav Joshi 2 Dr.

More information

OPTIMIZATION OF IN-SITU TRANSESTERIFICATION PROCESS OF BIODIESEL FROM NYAMPLUNG (Calophyllum inophyllum L.) SEED USING MICROWAVE

OPTIMIZATION OF IN-SITU TRANSESTERIFICATION PROCESS OF BIODIESEL FROM NYAMPLUNG (Calophyllum inophyllum L.) SEED USING MICROWAVE Rasayan J. Chem., 10(3), 952-958(2017) http://dx.doi.org/10.7324/rjc.2017.1031803 Vol. 10 No. 3 952-958 July - September 2017 ISSN: 0974-1496 e-issn: 0976-0083 CODEN: RJCABP http://www.rasayanjournal.com

More information

International Journal of Engineering Science Invention Research & Development; Vol. II Issue II August e-issn:

International Journal of Engineering Science Invention Research & Development; Vol. II Issue II August e-issn: Experimental Investigation to Evaluate the Performance, Emission and Combustion Characteristics of Diesel Engine with Castor Oil Biodiesel Pankaj Singh Jasrotia 1, Farman Khan 2, Radhey Sham 3 1 ME Student,

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS Journal of Engineering Science and Technology Vol. 6, No. 2 (211) 24-25 School of Engineering, Taylor s University PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE

More information

Waste cooking oil as an alternative fuel in compression ignition engine

Waste cooking oil as an alternative fuel in compression ignition engine Waste cooking oil as an alternative fuel in compression ignition engine 1 Kashinath Swami, 2 Ramanagauda C. Biradar, 3 Rahul Patil Research Scholars Department of Mechanical Engineering, W.I.T. Solapur,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL With a rapid increase in the demand of fossil fuel, decrease in the availability of crude oil supplies and greater environmental stringent norms on pollution has created

More information

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL MR.N.BALASUBRAMANI 1, M.THANASEGAR 2, R.SRIDHAR RAJ 2, K.PRASANTH 2, A.RAJESH KUMAR 2. 1Asst. Professor, Dept. of Mechanical Engineering,

More information

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D.

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D. COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL S. Glisic 1, 2*, D. Skala 1, 2 1 Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva

More information