Biodiesel from soybean oil in supercritical methanol with co-solvent

Size: px
Start display at page:

Download "Biodiesel from soybean oil in supercritical methanol with co-solvent"

Transcription

1 Available online at Energy Conversion and Management 49 (28) Biodiesel from soybean oil in supercritical methanol with co-solvent Jian-Zhong Yin *, Min Xiao, Ji-Bin Song School of Chemical Engineering, Dalian University of Technology, Dalian 11612, PR China Received 14 March 27; accepted 3 October 27 Available online 2 February 28 Abstract Biodiesel synthesis from soybean oil using methanol was investigated at supercritical and subcritical conditions of methanol in a high pressure vessel of 25 cm 3 volume. Under the supercritical conditions, the maximum methyl ester yield exceeded 98% when the molar ratio of methanol to oil was 42:1 and the reaction temperature ranged from 26 C to 35 C. In order to decrease the operational temperature and pressures and increase the conversion efficiency of methanol, a novel idea was presented in which a co-solvent (hexane, carbon dioxide, KOH) was added to the reactants. The results indicated that the yield of methyl ester was improved when hexane or CO 2 was added. With CO 2 or hexane as co-solvent in the reaction system at 3 C, there was a significant increase of the methyl esters yield. With the optimal reaction temperature of 16 C and methanol to oil ratio of 24, a 98% yield of methyl esters was observed in 2 min at the subcritical condition with.1 wt% potassium hydroxide (KOH). Ó 27 Elsevier Ltd. All rights reserved. Keywords: Biodiesel; Transesterification; Supercritical; Hexane; Carbon dioxide; Potassium hydroxide 1. Introduction Biodiesel, defined as fatty acid methyl ester (FAME), is derived from triglycerides by transesterification with alcohols. Biodiesel is made from renewable sources and has become attractive because of its environmental benefits [1]. Biodiesel comes from vegetable or animal fat, making it biodegradable and nontoxic. It has been proven that biodiesel fuels have viscosities close to those of diesel fuel and have high cetane numbers and flash points [2]. It is an alternative for fossil fuels. So, biodiesel is becoming an area of high concern [3 5]. There are different ways of producing biodiesel with different kinds of materials, and the popular methods focus on catalyst or non-catalyst methods. As for the catalyst method, traditional chemical reactions use different kinds of catalysts, such as sodium or potassium hydroxides, sulfuric acid, ion exchange resins and lipases [6]. Synthesis of * Corresponding author. Tel.: ; fax: address: jzyin@dlut.edu.cn (J.-Z. Yin). biodiesel by an alkaline catalytic transesterification reaction has several drawbacks: it is energy intensive, recovery of glycerol is difficult, the alkaline wastewater retains fatty acids and water interferes with the reaction. In addition, alkaline transesterification is low in selectivity, leading to undesirable side reactions [7,8]. Lipase has been used as a biocatalyst for synthesis of biodiesel from vegetable oils or animal fats and can overcome the problems of conventional chemical processes. However, due to the high price of the enzyme and the time consuming reaction process, this method is not widely used in large scale production [9,1]. Saka has firstly proposed that biodiesel may be prepared from vegetable oil via a non-catalytic method with supercritical alcohol [11]. Compared with the traditional chemistry method, this novel method requires no catalyst, and nearly complete conversions can be achieved in a very short time. So, it can successfully resolve most problems in the conventional chemical processes. However, the synthesis of biodiesel by supercritical methanol has a drawback with the high cost of apparatus due to the high temperature and pressure, which are not viable in the large scale practice in industry. So, many researches /$ - see front matter Ó 27 Elsevier Ltd. All rights reserved. doi:1.116/j.enconman 转载

2 J.-Z. Yin et al. / Energy Conversion and Management 49 (28) have focused on how to decrease the severity of the reaction conditions. Co-solvents, such as carbon dioxide, hexane and calcium oxide [12 14], added into the reaction mixture can decrease the operating temperature, pressure and the amount of alcohol. In this study, biodiesel production from soybean oil in supercritical methanol was investigated. Then, hexane and carbon dioxide, as co-solvent, were added into the reactants, aiming to decrease the critical operational parameters. A little amount of potassium hydroxide was also added to the reactants, and a high yield was obtained with subcritical conditions. Potassium hydroxide (KOH) can considerably improve the transesterification reaction of soybean oil in supercritical methanol. 2. Experimental 2.1. Materials Refined edible soybean oil was used for the reactions. Methanol was purchased from Tianjing Chem. Co. Ltd. (analytical grade). Potassium hydroxide (KOH) was supplied by Shenyang Chem. Co. Ltd. (analytical grade). All other chemicals were obtained commercially and were of analytical grade Experimental procedure A 25 ml cylindrical autoclave made of stainless steel, equipped with a magnetic stirrer and internal cooling system was used. The pressure and temperature were monitored in real time up to maximum values of 32 MPa and 52 C, respectively. The reaction vessel was charged with a given amount of soybean oil and liquid methanol with different ratios. Then, the vessel was heated with an external heater, and the liquid solution was stirred at a constant rate of 3 rpm at the same time. When the desired temperature was reached, the process remained for a set time. The temperature of the reaction vessel was measured with a thermocouple. Then, the vessel was transferred to an ice water bath to quench the reaction. After that, the vessel was opened, and the contents of the autoclave were poured into a collecting vessel. The mixture product was decompression evaporated at 5 C for 3 min and then allowed to settle for about 6 min in order to allow the two phases to separate. The upper phase was the methyl ester, and the lower phase was glycerin GC analysis for fatty acid methyl ester The reaction samples were analyzed by gas chromatography (Agilent 689, FID). The GC (gas chromatograph) was equipped with a HP-5 column with dimensions 3 m.32 mm.25 lm. Sample volumes were.5 ll, the carrier gas was nitrogen and the GC sample was separated in a constant flow mode with a flow rate of 9. ml/ min. A split injector was used with a split ratio of 4:1 and a temperature of 29 C. The FID (flame ionization detector) was operated at 29 C. The oven was initially held at 13 C and then elevated to 26 C at 5 C/min, and remained for 4 min. Total run time for this method was 3 min. 3. Results and discussion 3.1. Synthesis of biodiesel with supercritical methanol For synthesis of biodiesel from soybean oil using supercritical methanol, the critical temperature and pressure of methanol is K and 8.1 MPa, respectively. So, all reactions were performed above this condition, As shown in Fig. 1, the reaction was conducted at various temperatures (26 C, 3 C, 35 C) with a constant molar ratio of alcohol to oil of 42 at a fixed rotation speed of 3 rpm. The conversion increased with increase in temperature. The system pressure also increased with increasing temperature, and the maximal pressures were up to 2 MPa. With the reaction temperature of 35 C, a high conversion of soybean oil to methyl esters is obtained with a yield of 95% in 1 min. The optimum molar ratio of methanol to oil was obtained by conducting the reaction with different ratios at 3 C(Fig. 2). In conclusion, the synthesis of biodiesel from soybean oil by supercritical methanol is promising. Because of sufficient mixing among the reactants, a high conversion can be obtained within a short time Synthesis of biodiesel with supercritical methanol and hexane Methanol and soybean oil do not dissolved in each other at room temperature. To form a single phase of the reactants, hexane was added into the mixture. Fig. 3 shows the conversion varied by the amount of hexane. It indicated Methyl ester yield, % Time, min Fig. 1. Synthesis of biodiesel at various temperatures in supercritical methanol. Methanol and soybean oil were taken at a molar ratio of 42:1 with a constant shaking at 3 rpm.

3 91 J.-Z. Yin et al. / Energy Conversion and Management 49 (28) The molar ratio of methanol to oil Fig. 2. Synthesis of biodiesel with different molar ratio of methanol to oil. Methanol and soybean oil were taken at 3 C with a constant shaking at 3 rpm for 2 min. (239 C, 8.9 MPa). Fig. 4 shows the synthesis of biodiesel from soybean oil under supercritical methanol with CO 2 as co-solvent. With a reaction temperature of 3 C, a CO 2 / methanol ratio of.2 and a molar ratio of methanol to oil of 42, a high yield of methyl ester is obtained with 9.6% in 3 min. Furthermore, CO 2 is both easy to add to the system and remove from the system through depressurization Synthesis of biodiesel with subcritical methanol and potassium hydroxide Fig. 5 presents the variations of methyl ester yield with reaction temperature. The synthesis of biodiesel was conducted at various temperatures (12 24 C) at the fixed molar ratio of alcohol to oil of 24:1. The mass ratio of potassium hydroxide (KOH) to oil ranged from to The ratio of co-solvent Fig. 3. Synthesis of biodiesel using supercritical methanol and hexane as co-solvent. Methanol and soybean oil were taken at 3 C with a constant shaking at 2 rpm for 3 min The molar ratio of CO 2 to methanol Fig. 4. Synthesis of biodiesel from soybean oil with supercritical methanol and carbon dioxide. Methanol and soybean oil were taken at 3 C with a constant shaking at 2 rpm for 3 min. the molar ratio of methanol to oil was that a little hexane could improve the conversion. For example, the methyl ester yield was 67.7% without the hexane, while the yield was obtained as 85.5% with 2.5 wt% of hexane. However, when the amount of hexane added was any more, the yield decreased a little, but the maximum yield was still above 67.7%. The main reason for this phenomenon is that the mutual solubility between methanol and soybean oil was improved with the addition of hexane so the reaction speed was increased Synthesis of biodiesel with supercritical methanol and carbon dioxide Methyl ester yield, % Hexane is an excellent solvent for vegetable oil, which shows the use of a co-solvent is feasible. Supercritical CO 2 is a good solvent for small and moderate organic molecules, and it is a low cost and facile material. CO 2 has critical parameters of 31 C and 7.38 MPa, which is easy to achieve under the supercritical methanol condition Temperature, Fig. 5. Synthesis of biodiesel at various temperatures in subcritical methanol. Methanol and soybean oil were taken at a molar ratio of 24:1 with a constant shaking at 3 rpm. The reaction time was 2 min.

4 J.-Z. Yin et al. / Energy Conversion and Management 49 (28) wt%. It is noticed that very low yield (<5%) was obtained in the subcritical conditions without any catalyst. With the addition of the catalyst KOH into the reaction mixture, even a very little amount, the methyl ester yield remarkably increased. When the mass ratio of KOH to oil was.1% and the reaction temperature was 16 C, a 98% methyl ester yield was obtained. It should be pointed out that the system pressure was only 1 MPa at this temperature, which should be in the subcritical range. Comparing with the supercritical methanol method, the reaction temperature was decreased from 35 C to 16 C to obtain the same yield. On the other hand, comparing with the alkali catalysis method (ACM), the catalyst amount used in our subcritical methanol was only 1% of that used in the ACM. Therefore, by coupling catalysis with subcritical conditions, the catalyst amount can be largely decreased while the operation conditions became less severe. Fig. 6 shows the changes in percentage of methyl esters formed with different molar ratios of methanol to oil. In order to determine the optimal molar ratio of methanol to oil, the reactions were conducted at a fixed potassium hydroxide (KOH) mass of.1 wt% and fixed reaction time of 3 min at the stirring speed of 3 rpm. It can be seen that increasing the molar ratio of methanol to oil from 6:1 to 24:1 at a reaction temperature of 16 C increased the methyl ester yield from 38% to 1%. Clearly, the methanol utilization can be significantly improved when comparing with the case without any catalyst. One of the advantages of operation in supercritical conditions is that the reaction time is very short. By coupling catalysis with subcritical conditions, such an advantage also exists. As shown in Fig. 7, after a reaction time of 1 min, the methyl ester yield almost attained its maximum value. On the other hand, when the reaction time was longer than 1 min, the variation in the reaction temperature did not result in a marked difference in the methyl ester The mole ratio of methanol to oil Fig. 6. Effect of molar ratio for biodiesel synthesis with methanol. Potassium hydroxide (KOH) was fixed with quality ratio to oil of.1 wt% and a constant shaking at 3 rpm. The reaction time was 3 min yield. However, at a shorter reaction time (e.g. 5 min), increasing the reaction temperature from 16 C to 24 C led to an increase of methyl ester yield from 6% to 98%. This result indicates that under our condition, the transesterification reaction is essentially complete after the 1 min run. Therefore, comparing with the catalysis method, the reaction time could be shortened from about 12 min to 1 min. This is in favor of decreasing the biodiesel production cost and enhancing the production efficiency for large scale industry practice. 4. Conclusions Synthesis of biodiesel from soybean oil with supercritical methanol is superior to the conventional chemical method. Compared with the conventional method, a less purified process is required. The supercritical methanol method with a co-solvent can improve the product yield. Hexane and condensed CO 2 are excellent solvents for the vegetable oil. So, the methyl ester yield is increased with the co-solvent. Furthermore, the CO 2 is good for the environment, is easy to obtain and has good properties in the supercritical conditions. The supercritical methanol method with potassium hydroxide can largely decrease the reaction parameters, such as decreasing temperature and pressure. References Reaction time (min) Fig. 7. Effect of time for biodiesel synthesis with methanol. Methanol and soybean oil were taken at a molar ratio of 24:1 with a constant shaking at 3 rpm. Quality ratio of potassium hydroxide (KOH) to oil was fixed at.1 wt%. [1] Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Process Energy Combus Sci 25;31: [2] Kalam MA, Masjuki HH. Biodiesel from palm oil-an analysis of its properties and potential. Biomass Bioenergy 22;23:471 9.

5 912 J.-Z. Yin et al. / Energy Conversion and Management 49 (28) [3] Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renew Sust Energy Rev 27;11: [4] Royon D, Daz M, Ellenrieder G, Locatelli S. Biodiesel production using a membrane reactor. Biores Technol 27;98: [5] Canakci M. The potentical of restaurant waste lipids as biodiesel feedstocks. Biores Technol 27;98: [6] Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification-a review. Renew Sust Energy Rev 26;1: [7] Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Biores Technol 25;96: [8] Nie KL, Xie F, Wang F, Tan TW. Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B: Enzym 26;43: [9] Mamoru I, Chen BX, Masashi E, Takashi K, Surekha S. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B: Enzym 21;16:53 8. [1] Orcaire O, Buisson P, Pierre AC. Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J Mol Catal B: Enzym 26;42: [11] Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 21;8: [12] Han HW, Cao WL, Zhang JC. Preparation of biodiesel from soybean oil using supercritical methanol and CO 2 as co-solvent. Process Biochem 25;4: [13] Cao WL, Han HW, Zhang JC. Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 25;84: [14] Demirbas A. Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Enery Conv Manage 27;48:

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Kok Tat Tan*, Keat Teong Lee, Abdul Rahman Mohamed School of Chemical Engineering,

More information

SYNTHESIS OF BIODIESEL

SYNTHESIS OF BIODIESEL SYNTHESIS OF BIODIESEL AIM 1. To generate laboratory know-how for the process of production of biodiesel from the given oil feed stock 2. To perform basic mass and energy balance calculations for a large

More information

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals. PRODUCTION OF FATTY ACID METHYL ESTERS FROM SIMAROUBA OIL VIA ULTRASONIC IRRADIATION PROCESS, EFFECTIVE UTILIZATION OF BYPRODUCTS. TESTING AND EXTRACTION OF PHYTOCHEMICALS FROM SIMAROUBA OIL AND CAKE COLLEGE

More information

CHAPTER 4 PRODUCTION OF BIODIESEL

CHAPTER 4 PRODUCTION OF BIODIESEL 56 CHAPTER 4 PRODUCTION OF BIODIESEL 4.1 INTRODUCTION Biodiesel has been produced on a large scale in the European Union (EU) since 1992 (European Biodiesel Board 2008) and in the United States of America

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.4, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.4, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.4, pp 2112-2116, 2014-2015 Production of Biodiesel by Transesterification of Algae Oil with an assistance of Nano-CaO

More information

Development of a Laboratory Scale Reactor with Controlled High Pressure Sampling for Subcritical Methanolysis of Biodiesel

Development of a Laboratory Scale Reactor with Controlled High Pressure Sampling for Subcritical Methanolysis of Biodiesel Australian Journal of Basic and Applied Sciences, 5(5): 214-220, 2011 ISSN 1991-8178 Development of a Laboratory Scale Reactor with Controlled High Pressure Sampling for Subcritical Methanolysis of Biodiesel

More information

Effect of Co-solvents on Transesterification of Refined Palm Oil in Supercritical Methanol

Effect of Co-solvents on Transesterification of Refined Palm Oil in Supercritical Methanol Effect of Co-solvents on Transesterification of Refined Palm Oil in Supercritical Methanol Narupon Jomtib 1, Chattip Prommuak 1, Motonobu Goto 2, Mitsuru Sasaki 2, and Artiwan Shotipruk 1, * 1 Department

More information

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling University of Malaya From the SelectedWorks of Abdul Aziz Abdul Raman 2010 Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network

More information

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY BIODIESEL PRODUCTION IN A BATCH REACTOR Date: September-November, 2017. Biodiesel is obtained through transesterification reaction of soybean oil by methanol, using sodium hydroxide as a catalyst. The

More information

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is Aaron Paternoster CHEM 380 10D Prof. Laurie Grove January 30, 2015 Biodiesel Introduction As fossil fuels become increasingly expensive to extract and produce, bio-diesel is proving to be an economically

More information

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

PROJECT REFERENCE NO.: 39S_R_MTECH_1508 DEVELOPMENT OF AGRICULTURAL WASTE BASED HETEROGENEOUS CATALYST FOR PRODUCTION OF BIODIESEL FROM MIXED WASTE COOKING OIL AND ITS PERFORMANCE ON DIESEL ENGINE PROJECT REFERENCE NO.: 39S_R_MTECH_1508 COLLEGE

More information

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP:

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: POPLAR 13 NOVEMBER, 2015 Table of Contents Introduction

More information

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process, Journal of Advanced & Applied Sciences (JAAS) Volume 03, Issue 03, Pages 84-88, 2015 ISSN: 2289-6260 Optimization of Biodiesel production parameters (Pongamia pinnata oil) by transesterification process

More information

Conventional Homogeneous Catalytic Process with Continuous-typed Microwave and Mechanical Stirrer for Biodiesel Production from Palm Stearin

Conventional Homogeneous Catalytic Process with Continuous-typed Microwave and Mechanical Stirrer for Biodiesel Production from Palm Stearin 2012 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. V43. 2 Conventional Homogeneous Catalytic

More information

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D.

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D. COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL S. Glisic 1, 2*, D. Skala 1, 2 1 Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva

More information

Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies.

Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies. Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies. G Ahmad and R Patel University of Bradford Bradford UK Water and Energy Workshop 15 17 February

More information

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 2 (2013), pp. 237-241 International Research Publication House http://www.irphouse.com Comparison of Performance

More information

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article 4. Synthesis of Biodiesel from Palm Fatty Acid Distillate Research Article Abstract Tarun Kataria Third Year Bachelor of Technology Department of Oils, Oleochemicals & Surfactant Technology Palm fatty

More information

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) using Dodecane as a Solvent V.Naresh 1,S.Phabhakar 2, K.Annamalai

More information

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine ICCBT28 Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine R. Adnan *, Universiti Tenaga Nasional, MALAYSIA I. M. Azree, Universiti Tenaga

More information

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST J. Curr. Chem. Pharm. Sc.: 2(1), 2012, 12-16 ISSN 2277-2871 BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST SHARDA D. NAGE *, K. S. KULKARNI, A. D. KULKARNI and NIRAJ S. TOPARE

More information

A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project

A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project Shiro Saka * and Eiji Minami Graduate School of Energy Science, Kyoto University,

More information

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Alabadan B.A. Department of Agricultural and Bioresources Engineering, Federal University, Oye Ekiti. Ajayi

More information

Biodiesel Production from Jatropha Curcas, Waste Cooking Oil and Animal Fats under Supercritical Methanol Conditions

Biodiesel Production from Jatropha Curcas, Waste Cooking Oil and Animal Fats under Supercritical Methanol Conditions 3 2nd International Conference on Environment, Energy and Biotechnology IPCBEE vol.51 (3) (3) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 3. V51. 7 Biodiesel Production from Jatropha Curcas, Waste Cooking

More information

Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst

Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst Thembi Sithole 1, a, Kalala Jalama 1,b and Reinout Meijboom 2,c 1 Department of Chemical Engineering, University of Johannesburg,

More information

Treatment of BDF Wastewater with Hydrothermal Electrolysis

Treatment of BDF Wastewater with Hydrothermal Electrolysis Treatment of BDF Wastewater with Hydrothermal Electrolysis Asli YUKSEL 1, Hiromichi KOGA 1, Mitsuru SASAKI 1 * and Motonobu GOTO 2 1 Graduate School of Science and Technology, Kumamoto University, JAPAN

More information

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Current World Environment Vol. 11(1), 260-266 (2016) Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Ajinkya Dipak Deshpande*, Pratiksinh Dilipsinh

More information

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF 75 CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS Table of Contents Chapter 3: PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS S.

More information

Enzymatic Alholysis For Biodiesel Production From Waste Cooking Oil

Enzymatic Alholysis For Biodiesel Production From Waste Cooking Oil Enzymatic Alholysis For Biodiesel Production From Waste Cooking Oil R. Maceiras 1, A. Cancela*,1, M. Vega 2, M.C. Márquez 2 1 Chemical Engineering Department. University of Vigo. Campus Lagoas-Marcosende.

More information

Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste Cooking Oil

Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste Cooking Oil Journal of Scientific & Industrial Research Vol. 75, March 2016, pp. 188-193 Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste

More information

NEDO Biodiesel Production Process by Supercritical Methanol Technologies. Shiro Saka

NEDO Biodiesel Production Process by Supercritical Methanol Technologies. Shiro Saka November 22, 2006 (9:30-9:45) The 2nd Joint International Conference on Sustainable Energy and Development (SEE2006) Bangkok, Thailand NEDO Biodiesel Production Process by Supercritical Methanol Technologies

More information

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 7 12 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 3 - Civil and Chemical Engineering

More information

Conversion of Glycerol as By-Product from Biodiesel Production to Value-Added Glycerol Carbonate

Conversion of Glycerol as By-Product from Biodiesel Production to Value-Added Glycerol Carbonate Conversion of as By-Product from Biodiesel Production to Value-Added Zul Ilham and Shiro Saka Abstract Current environmental issues, fluctuating fossil fuel price and energy security have led to an increase

More information

Technologies for Biodiesel Production from Non-edible Oils: A Review

Technologies for Biodiesel Production from Non-edible Oils: A Review Indian Journal of Energy, Vol 2(6), 129 133, June 2013 Technologies for Production from Non-edible ils: A Review V. R. Kattimani 1* and B. M. Venkatesha 2 1 Department of Chemistry, Yuvaraja s College,

More information

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process Journal of Materials Science and Engineering A 5 (5-6) (2015) 238-244 doi: 10.17265/2161-6213/2015.5-6.008 D DAVID PUBLISHING Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step

More information

Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil

Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil Debarpita Ghosal 1, Ranjan R. Pradhan 2 1 Assistant Professor, 2 Associate Professor, Department

More information

Proposal to Determine Various Properties of Biodiesel Fuels Based on Methyl Ester. Composition. Jason Freischlag. Dr. Porter Chem /25/2013

Proposal to Determine Various Properties of Biodiesel Fuels Based on Methyl Ester. Composition. Jason Freischlag. Dr. Porter Chem /25/2013 1 Proposal to Determine Various Properties of Biodiesel Fuels Based on Methyl Ester Composition Jason Freischlag Dr. Porter Chem 402 11/25/2013 2 Specific Aims Biodiesel is an alternative fuel source that

More information

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL Deepu T 1, Pradeesh A.R. 2, Vishnu Viswanath K 3 1, 2, Asst. Professors, Dept. of Mechanical Engineering, Ammini College of

More information

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils.

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Otu, F.I 1,a ; Otoikhian, S.K. 2,b and Ohiro, E. 3,c 1 Department of Mechanical Engineering, Federal University

More information

Lipase-Catalyzed Biodiesel Production with Methyl Acetate as Acyl Acceptor

Lipase-Catalyzed Biodiesel Production with Methyl Acetate as Acyl Acceptor Lipase-Catalyzed Biodiesel Production with Methyl Acetate as Acyl Acceptor Ying Huang and Yunjun Yan* School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan 430074, P.

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at   ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 15 (215 ) 638 645 6th BSME International Conference on Thermal Engineering (ICTE 214) Production of Biodiesel Using Alkaline

More information

ScienceDirect. Biodiesel production in supercritical methanol using a novel spiral reactor

ScienceDirect. Biodiesel production in supercritical methanol using a novel spiral reactor Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 28 (215 ) 24 213 The 5th Sustainable Future for Human Security (SustaiN 214) Biodiesel production in supercritical

More information

Determination of phase diagram of reaction system of biodiesel

Determination of phase diagram of reaction system of biodiesel 324 FEED AND INDUSTRIAL RAW MATERIAL: Industrial Materials and Biofuel Determination of phase diagram of reaction system of biodiesel LIU Ye, YANG Hao, SHE Zhuhua, LIU Dachuan Wuhan Polytechnic University,

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE) International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 2, February 214 PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER

More information

Biodiesel Production from Unrefined Krating (Calophyllum Inophyllum) Seed Oil Using Supercritical Methanol

Biodiesel Production from Unrefined Krating (Calophyllum Inophyllum) Seed Oil Using Supercritical Methanol CMU J. Nat. Sci. (2017) Vol. 16(4) 283 Biodiesel Production from Unrefined Krating (Calophyllum Inophyllum) Seed Oil Using Supercritical Methanol Chuenkhwan Tipachan 1, Tanawan Pinnarat 2 and Somjai Kajorncheappunngam

More information

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For RESEARCH PROJECT REPORT Trash to Treasure Clean Diesel Technologies for Air Pollution Reduction Submitted to The RET Site For Civil Infrastructure Renewal and Rehabilitation Sponsored by The National Science

More information

Optimization of the Temperature and Reaction Duration of One Step Transesterification

Optimization of the Temperature and Reaction Duration of One Step Transesterification Optimization of the Temperature and Reaction Duration of One Step Transesterification Ding.Z 1 and Das.P 2 Department of Environmental Science and Engineering, School of Engineering, National university

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.4, pp 1695-1700, 2015 Microwave Assisted to Biodiesel Production From Palm Oil In Time And Material Feeding Frequency

More information

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel can be used as a fuel in compression ignition engines (i.e. diesels) Can be blended with petroleum

More information

KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS

KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS Ashraf Amin, S. A. AboEl-Enin, G. El Diwani and S. Hawash Department of Chemical Engineering and Pilot Plant, National Research

More information

A Novel Membrane Reactor for Production of High-Purity Biodiesel

A Novel Membrane Reactor for Production of High-Purity Biodiesel European Online Journal of Natural and Social Sciences 2014; www.european-science.com Vol.3, No.3 Special Issue on Environmental, Agricultural, and Energy Science ISSN 1805-3602 A Novel Membrane Reactor

More information

Biodiesel production by esterification of palm fatty acid distillate

Biodiesel production by esterification of palm fatty acid distillate ARTICLE IN PRESS Biomass and Bioenergy ] (]]]]) ]]] ]]] www.elsevier.com/locate/biombioe Biodiesel production by esterification of palm fatty acid distillate S. Chongkhong, C. Tongurai, P. Chetpattananondh,

More information

Study of Transesterification Reaction Using Batch Reactor

Study of Transesterification Reaction Using Batch Reactor Study of Transesterification Reaction Using Batch Reactor 1 Mehul M. Marvania, 2 Prof. Milap G. Nayak 1 PG. Student, 2 Assistant professor Chemical engineering department Vishwakarma Government engineering

More information

Project Reference No.: 40S_B_MTECH_007

Project Reference No.: 40S_B_MTECH_007 PRODUCTION OF BIODIESEL FROM DAIRY WASH WATER SCUM THROUGH HETEROGENEOUS CATALYST AND PERFORMANCE EVALUATION OF TBC DIESEL ENGINE FOR DIFFERENT DIESEL AND METHANOL BLEND RATIOS Project Reference No.: 40S_B_MTECH_007

More information

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India. Preparation of Waste Cooking Oil as Alternative Fuel and Experimental Investigation Using Bio-Diesel Setup a Comparative Study with Single Cylinder Diesel Engine Mr.S.Sanyasi Rao Pradesh - 531173, India.

More information

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD SINTEI EBITEI AND TRUST PROSPER GBORIENEMI Department of Chemical Engineering, Federal Polytechnic, Ekowe Bayelsa State, Nigeria. ABSTRACT

More information

Emission Analysis of Biodiesel from Chicken Bone Powder

Emission Analysis of Biodiesel from Chicken Bone Powder Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis of Biodiesel from Chicken Paper ID IJIFR/ V2/ E7/ 058 Page

More information

NEDO Biodiesel Production Process by Supercritical Methanol Technologies

NEDO Biodiesel Production Process by Supercritical Methanol Technologies NEDO Biodiesel Production Process by Supercritical Methanol Technologies Shiro Saka * Graduate School of Energy Science, Kyoto University, Kyoto, Japan Abstract: Biodiesel fuel is expected to contribute

More information

GC Analysis of Total Fatty Acid Methyl Esters (FAME) and Methyl Linolenate in Biodiesel Using the Revised EN14103:2011 Method

GC Analysis of Total Fatty Acid Methyl Esters (FAME) and Methyl Linolenate in Biodiesel Using the Revised EN14103:2011 Method GC Analysis of Total Fatty Acid Methyl Esters (FAME) and Methyl Linolenate in Biodiesel Using the Revised EN1413:211 Method Application Note Author James D. McCurry, Ph.D. Agilent Technologies Abstract

More information

Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process

Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process 1207 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 52, 2016 Guest Editors: Petar Sabev Varbanov, Peng-Yen Liew, Jun-Yow Yong, Jiří Jaromír Klemeš, Hon Loong Lam Copyright 2016, AIDIC Servizi

More information

address: (K. A. Younis), (J. L. Ismail Agha), (K. S.

address: (K. A. Younis), (J. L. Ismail Agha), (K. S. American Journal of Applied Chemistry 2014; 2(6): 105-111 Published online November 28, 2014 (http://www.sciencepublishinggroup.com/j/ajac) doi: 10.11648/j.ajac.20140206.12 ISSN: 2330-8753 (Print); ISSN:

More information

Free and Total Glycerol in B100 Biodiesel by Gas Chromatography According to Methods EN and ASTM D6584

Free and Total Glycerol in B100 Biodiesel by Gas Chromatography According to Methods EN and ASTM D6584 Free and Total Glycerol in B100 Biodiesel by Gas Chromatography According to Methods EN 14105 and ASTM D6584 Introduction With today s increasing concern for the environment and the depletion of fossil

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences icbst 2014 International Conference on Business, Science and Technology which will be held at Hatyai, Thailand on the 25th and 26th of April 2014. AENSI Journals Australian Journal of Basic and Applied

More information

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis Of The Biodiesel From Paper ID IJIFR/ V2/ E7/ 059 Page No.

More information

OPTIMIZATION AND PRODUCTION OF BIODIESEL USING CALCIUM OXIDE AS A HETEROGENEOUS CATALYST

OPTIMIZATION AND PRODUCTION OF BIODIESEL USING CALCIUM OXIDE AS A HETEROGENEOUS CATALYST Int. J. Chem. Sci.: 13(3), 2015, 1357-1364 ISSN 0972-768X www.sadgurupublications.com OPTIMIZATION AND PRODUCTION OF BIODIESEL USING CALCIUM OXIDE AS A HETEROGENEOUS CATALYST K. MUTHU * and T. VIRUTHAGIRI

More information

Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor Journal of Physics: Conference Series OPEN ACCESS Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor To cite this article: S Hagiwara et al 2015 J. Phys.:

More information

Kinetics in Hydrolysis of Oils/Fats and Subsequent Methyl Esterification in Two-step Supercritical Methanol Method for Biodiesel Production

Kinetics in Hydrolysis of Oils/Fats and Subsequent Methyl Esterification in Two-step Supercritical Methanol Method for Biodiesel Production Kinetics in Hydrolysis of ils/fats and Subsequent Methyl Esterification in Two-step Supercritical Methanol Method for Biodiesel Production Eiji Minami and Shiro Saka * Graduate School of Energy Science,

More information

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol 11 2nd International Conference on Chemical Engineering and Applications IPCBEE vol. 23 (11) (11) IACSIT Press, Singapore Experimental Investigation and Modeling of Liquid-Liquid Equilibria in + + Methanol

More information

Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed Raghunath D POKHARKAR, Prasad E FUNDE, Shripad S JOSHI Shirish S PINGALE Jain irrigation

More information

C. Syed Aalam 1, C.G. Saravanan 2 Department of Mechanical Engineering, Annamalai University, Tamilnadu, India

C. Syed Aalam 1, C.G. Saravanan 2 Department of Mechanical Engineering, Annamalai University, Tamilnadu, India Biodiesel Production Techniques: A Review C. Syed Aalam 1, C.G. Saravanan 2 Department of Mechanical Engineering, Annamalai University, Tamilnadu, India Abstract Increasing energy demand and environmental

More information

INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE

INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE Jagannath Hirkude 1, 2*, Atul S. Padalkar 1 and Jisa Randeer 1 1 Padre Canceicao College of Engineering, 403722, Goa, India,

More information

Transesterification of Palm Oil to Biodiesel and Optimization of Production Conditions i.e. Methanol, Sodium Hydroxide and Temperature

Transesterification of Palm Oil to Biodiesel and Optimization of Production Conditions i.e. Methanol, Sodium Hydroxide and Temperature Journal of Energy and Natural Resources 2015; 4(3): 45-51 Published online June 18, 2015 (http://www.sciencepublishinggroup.com/j/jenr) doi: 10.11648/j.jenr.20150403.12 ISSN: 2330-7366 (Print); ISSN: 2330-7404

More information

What s s in your Tank?

What s s in your Tank? What s s in your Tank? Biodiesel Could Be The Answer! Matthew Brown Lakewood High School Tom Hersh Golden West Community College Overview What is biodiesel? Chemistry of biodiesel Safety Making Biodiesel

More information

Author: Vincenzo Piemonte, Associate Professor, University UCBM Rome (Italy)

Author: Vincenzo Piemonte, Associate Professor, University UCBM Rome (Italy) Green Diesel Author: Vincenzo Piemonte, Associate Professor, University UCBM Rome (Italy) 1. Theme description Around 50% of the produced crude petroleum in the world is refined into transportation fuels

More information

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae R.Velappan 1, and S.Sivaprakasam 2 1 Assistant Professor, Department of Mechanical Engineering, Annamalai University. Annamalai

More information

4001 Transesterification of castor oil to ricinoleic acid methyl ester

4001 Transesterification of castor oil to ricinoleic acid methyl ester 4001 Transesterification of castor oil to ricinoleic acid methyl ester castor oil + MeH Na-methylate H Me CH 4 (32.0) C 19 H 36 3 (312.5) Classification Reaction types and substance classes reaction of

More information

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER Maša Knez Hrnčič, Mojca Škerget, Ljiljana Ilić, Ţeljko Knez*, University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory

More information

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification Research Journal of Chemical Sciences ISSN 2231-606X Use of Sunflower and Oil to prepare Biodiesel by catalyst assisted Transesterification Abstract *Patni Neha, Bhomia Chintan, Dasgupta Pallavi and Tripathi

More information

Published in Offshore World, April-May 2006 Archived in

Published in Offshore World, April-May 2006 Archived in Published in Offshore World, April-May 2006 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace Preparation of karanja oil methyl ester. R. K. Singh *, A. Kiran Kumar and S. Sethi Department of

More information

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An experimental

More information

Towards Green Environment and Renewable Energy: Waste Vegetable Frying Oil for Biodiesel Synthesis

Towards Green Environment and Renewable Energy: Waste Vegetable Frying Oil for Biodiesel Synthesis Towards Green Environment and Renewable Energy: Waste Vegetable Frying Oil for Biodiesel Synthesis Eman A. Ashour 1, Maha A. Tony 2 1 Chemical Engineering Department, Faculty of Engineering, Minia University,

More information

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER Prof. Hitesh Muthiyan 1, Prof. Sagar Rohanakar 2, Bidgar Sandip 3, Saurabh Biradar 4 1,2,3,4 Department of Mechanical Engineering, PGMCOE,

More information

Research Article. Synthesis of biodiesel from waste cooking oil by two steps process transesterification and ozonation

Research Article. Synthesis of biodiesel from waste cooking oil by two steps process transesterification and ozonation Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(9S):17-21 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Synthesis of biodiesel from waste cooking oil by

More information

Biodiesel from Jatropha as alternative source of fuel

Biodiesel from Jatropha as alternative source of fuel Biodiesel from Jatropha as alternative source of fuel Ms.Jyoti Patil Baburaoji Gholap collegenew Sangvi, Pune7 India Dr.Sharmila Chaudhari, Baburaoji Gholap college New Sangvi,Pune7 India Abstract: The

More information

Automotive Technology

Automotive Technology International Conference on Automotive Technology An Experimental Study on the Performance and Emission Characteristics of a Single Cylinder Diesel Engine Using CME- Diesel Blends. Hari Vasudevan a*,sandip

More information

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive Experimental Investigation On Performance And Emission Characteristics Of A Engine Fuelled With Karanja Oil Methyl Ester Using Additive Swarup Kumar Nayak 1,*, Sibakanta Sahu 1, Saipad Sahu 1, Pallavi

More information

Non-Catalytic Production of Ethyl Esters Using Supercritical Ethanol in Continuous Mode

Non-Catalytic Production of Ethyl Esters Using Supercritical Ethanol in Continuous Mode Chapter 9 Non-Catalytic Production of Ethyl Esters Using Supercritical Ethanol in Continuous Mode Camila da Silva, Ignácio Vieitez, Ivan Jachmanián, Fernanda de Castilhos, Lúcio Cardozo Filho and José

More information

Determination of Free and Total Glycerin in B100 Biodiesel

Determination of Free and Total Glycerin in B100 Biodiesel Page 1 of 5 Page 1 of 5 Return to Web Version Determination of Free and Total Glycerin in B100 Biodiesel By: Michael D. Buchanan, Katherine K. Stenerson, and Vicki Yearick, Reporter US Vol 27.1 techservice@sial.com

More information

Study of viscosity - temperature characteristics of rapeseed oil biodiesel and its blends

Study of viscosity - temperature characteristics of rapeseed oil biodiesel and its blends Study of viscosity - temperature characteristics of rapeseed oil biodiesel and its blends Li Kong 1, Xiu Chen 1, a, Xiaoling Chen 1, Lei Zhong 1, Yongbin Lai 2 and Guang Wu 2 1 School of Chemical Engineering,

More information

FISH WASTE OIL CONVERSION FOR BIODIESEL PRODUCTION USING TWO STAGES REACTION

FISH WASTE OIL CONVERSION FOR BIODIESEL PRODUCTION USING TWO STAGES REACTION FISH WASTE OIL CONVERSION FOR BIODIESEL PRODUCTION USING TWO STAGES REACTION Kusmiyati Pusat Studi Energi Alternatif (PSEA), Department of Chemical Engineering, Faculty of Engineering, Muhammadiyah University

More information

Biodiesel Business Environment

Biodiesel Business Environment Biodiesel Business Environment By Patum Vegetable Oil co., ltd. February 12, 2008 Innovation on Biofuel in Thailand, Century Park Hotel Agenda Company Profile Biodiesel Technology Country Policy & Regulation

More information

Production of Biodiesel from Palm Oil by Extractive Reaction

Production of Biodiesel from Palm Oil by Extractive Reaction CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021206 1231

More information

Transesterification of Vegetables oil using Sub-and Supercritical Methanol

Transesterification of Vegetables oil using Sub-and Supercritical Methanol BRE.09-1 Transesterification of Vegetables oil using Sub-and Supercritical Methanol Nyoman Puspa Asri a,d, Siti Machmudah a,b, Wahyudiono c, Suprapto a, Kusno Budikarjono a, Achmad Roesyadi a, Mitsuru

More information

Investigation of Factors Affect Biodiesel Production in Microreactor with T-Mixer

Investigation of Factors Affect Biodiesel Production in Microreactor with T-Mixer International Proceedings of Chemical, Biological and Environmental Engineering, Vol. 88 (2015) DOI: 10.7763/IPCBEE. 2015. V88. 3 Investigation of Factors Affect Biodiesel Production in Microreactor with

More information

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 22 No. 1 Dec. 2017, pp. 44-53 2017 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Transesterification

More information

Simulation Approach to Biodiesel Production from Palm Oil by Conventional and Reactive Distillation Processes

Simulation Approach to Biodiesel Production from Palm Oil by Conventional and Reactive Distillation Processes Kasetsart J. (Nat. Sci.) 48 : 139-149 (2014) Simulation Approach to Biodiesel Production from Palm Oil by Conventional and Reactive Distillation Processes Bundit Kottititum, Kantarod Chakton and Thongchai

More information

Biodiesel Production from waste Oil with Micro-Scale Biodiesel System Under Laboratory Condition

Biodiesel Production from waste Oil with Micro-Scale Biodiesel System Under Laboratory Condition International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 1 (January 2017), PP.11-18 Biodiesel Production from waste Oil with Micro-Scale

More information

Kinetic study of free fatty acid in Palm Fatty Acid Distillate (PFAD) over sugarcane bagasse catalyst

Kinetic study of free fatty acid in Palm Fatty Acid Distillate (PFAD) over sugarcane bagasse catalyst IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Kinetic study of free fatty acid in Palm Fatty Acid Distillate (PFAD) over sugarcane bagasse catalyst To cite this article: V A

More information

KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production

KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production Electronic Supplementary Information (ESI) KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production Guiju Tao, a Zile Hua,* a Zhe Gao, b Yan Zhu,

More information

Towards a Biodiesel-based Biorefinery: Chemical and Physical Properties of Reactively Extracted Rapeseed (Canola)

Towards a Biodiesel-based Biorefinery: Chemical and Physical Properties of Reactively Extracted Rapeseed (Canola) Towards a Biodiesel-based Biorefinery: Chemical and Physical Properties of Reactively Extracted Rapeseed (Canola) Yilong Ren, Adam Harvey and Rabitah Zakaria School of Chemical Engineering and Advanced

More information