Service Advisor Customer Service Skills SERVICE ADVISOR. Technical for Non-technical - Engines INDUCTION

Size: px
Start display at page:

Download "Service Advisor Customer Service Skills SERVICE ADVISOR. Technical for Non-technical - Engines INDUCTION"

Transcription

1 Service Advisor Customer Service Skills SERVICE ADVISOR Technical for Non-technical - Engines INDUCTION

2 Objectives Welcome to the technical for non-technical modules. We will discuss engines, transmissions and drivetrains in the next three sessions. In this session we discuss engines and during this session we will: Explain the basic workings of an engine. Explain how valves work. Explain the four strokes - including injection systems. Discuss fuel and octane ratings. Explain the various types and ratings of oils. Objectives Enjoy the learning experience!

3 Engines Where did it all begin? Engines Nikolaus August Otto (10 June 1832) was the German inventor of the first internal-combustion engine to efficiently burn fuel directly in a piston chamber. Though the concept of four strokes, with the vital compression of the mixture before ignition, had been invented and patented in 1861 by Alphonse Beau de Rochas, Otto was the first to make it practical.

4 Engines A diagram The diagram below is for reference for the technical jargon that we will discuss during this session. It shows an inline-4 cylinder engine with dual overhead cams. Engines

5 Engines Engines How does it work? The most accurate description for how an internal combustion engine works! The basic way all internal combustion engines work is to take a mixture of fuel and air, compress it, ignite it either with a spark plug or by self-ignition (in the case of a diesel engine), allow the explosion of combusting gasses to force the piston back down and then expel the exhaust gas.

6 Engines Engines How does it work? The vertical movement of the piston is converted into rotary motion in the crank via connecting rods. The crank then goes out to the gearbox via a flywheel and clutch, and the gearbox sends the rotary motion to the wheels, driving the vehicle forwards.

7 Engine Layouts Here are some illustrations of the most common types of cylinder layout you'll find in engines today. Singles Singles are typically used in motorbikes, jet-skis, chainsaws etc. V-twins are also found in motorbikes. Engine Layouts

8 Engine Layouts Here are some illustrations of the most common types of cylinder layout you'll find in engines today. Inline-fours Inline-fours are the mainstay of car engines, as well as being found in some motorbikes. Inline fives have made a semblance of a come-back while the V5 is very unusual and is not used as a mainstream layout. Engine Layouts Straight four Flat four

9 Engine Layouts V6 and V8 engines The straight line 6 cylinder and V6 has the benefits of being smoother than an inline-four but without the fuel economy issues of a V8. Boxer engines are found in a number of vehicles. Engine Layouts Straight line 6 V 8

10 Engines Engines Internal combustion engines how do they work? We will discuss the differences between a 2 and 4 stroke engine and then explain how a 2 and 4 stroke engine work. Almost every car sold today has a 4-stroke engine. So does a lot of motorbikes and other mechanical equipment. There are still a lot of 2- stroke engines about in smaller motorbikes, smaller lawnmowers, leafblowers and such. Difference The difference between the two engine types is the number of times the piston moves up and down in the cylinder for a single combustion cycle. A combustion cycle is the entire process of sucking fuel and air into the piston, igniting it and expelling the exhaust.

11 2 Stroke Engines 2 Stroke Engines How does it work? A 2-stroke engine is different from a 4-stroke engine in two basic ways. 1. The combustion cycle is completed within a single piston stroke as oppose to two piston strokes. 2. The lubricating oil for the engine is mixed in with the petrol or fuel. The simplicity of a 2-stroke engine lies in the reed valve and the design of the piston itself. The picture on the left below shows a 4-stroke piston (left) and a 2-stroke piston (right). The 2-stroke piston is generally taller than the 4-stroke version, and it has two slots cut into one side of it. These slots, combined with the reed valve, are what make a 2-stroke engine work the way it does. 4 Stroke Piston 2 Stroke Piston

12 2 Stroke Engines How does it work continuous... As the piston (red) reaches the top of its stroke, the spark plug ignites the fuel-air-oil mixture. The piston begins to retreat. As it does, the slots cut into the piston on the right begin to align with the bypass port in the cylinder wall (the green oblong on the right). The receding piston pressurises the crank case which forces the reed or flapper valve (purple in this animation) to close, and at the same time forces the fuel-air-oil mixture already in the crankcase out through the piston slots and into the bypass port. This effectively routes the mixture up the side of the cylinder and squirts it into the combustion chamber above the piston, forcing the exhaust gas to expel through the green exhaust port on the left. Once the piston begins to advance again, it generates a vacuum in the crank case. The reed or flapper valve is sucked open and a fresh charge of fuel-air-oil mix is sucked into the crank case. When the piston reaches the top of its travel, the spark plug ignites the mixture and the cycle begins again. 2 Stroke Engines

13 4 Stroke Engines The principle behind any reciprocating internal combustion engine; If you put a tiny amount of high-energy fuel (like petrol) in a small, enclosed space and ignite it, an incredible amount of energy is released in the form of expanding gas. You can use that energy to propel a piston. You can also use it for more interesting purposes. For example, if you can create a cycle that allows you to set off explosions like this hundreds of times per minute, and if you can harness that energy in a useful way, what you have is the core of a car engine! 4 Stroke Engines

14 4 Stroke Engines Petrol Engines - How does it work? The piston starts at the top, the intake valve opens, and the piston moves down to let the engine take in a cylinder-full of air and gasoline. This is the intake stroke. Then the piston moves back up to compress this fuel/air mixture. Compression makes the explosion more powerful. When the piston reaches the top of its stroke, the spark plug emits a spark to ignite the petrol. The petrol charge in the cylinder explodes, driving the piston down. Once the piston hits the bottom of its stroke, the exhaust valve opens and the exhaust leaves the cylinder to go out the tailpipe. Now the engine is ready for the next cycle, so it intakes another charge of air and gas. 4 Stroke Engines

15 4 Stroke Engines Diesel Engines - How does it work? Mechanically, 4-stroke diesels engines work identically to four-stroke petrol engines in terms of piston movement and crank rotation. It s in the combustion cycles where the differences come through. First, during the intake cycle, the engine only sucks air into the combustion chamber through the intake valve not a fuel/air mix. Second, there is no spark plug. Diesel engines work on self-ignition, or detonation the one thing you don t want in a petrol engine! 4 Stroke Engines

16 Valves Valves let the air/fuel mixture into the engine and the exhaust out of the engine. The camshaft uses lobes (called cams) that push against the valves to open them as the camshaft rotates and springs on the valves return them to their closed position. This is a critical job and can have a great impact on an engine s performance at different speeds. 4 Stroke Engines Valves

17 Camshaft Basics Camshaft How does it work? The key parts of any camshaft are the lobes. As the camshaft spins, the lobes open and close the intake and exhaust valves in time with the motion of the piston. There is a direct relationship between the shape of the cam lobes and the way the engine performs in different speed ranges. Camshaft Basics

18 Camshaft Basics Camshaft How does it work? To understand why this is the case, imagine that we are running an engine extremely slowly at just 10 or 20 revolutions per minute (RPM) so that it takes the piston a couple of seconds to complete a cycle. It would be impossible to actually run a normal engine this slowly, but let s imagine that we could. Camshaft Basics At this slow speed, we would want cam lobes shaped so that: Just as the piston starts moving downward in the intake stroked (called top dead center, or TDC), the intake valve would open. The intake valve would close right as the piston bottoms out. The exhaust valve would open right as the piston bottoms out (called bottom dead center, or BDC) at the end of the combustion stroke, and would close as the piston completes the exhaust stroke.

19 Camshaft Basics Camshaft How does it work when we increase engine speed? When you increase the RPM, the configuration for the camshaft does not work well. If the engine is running at 4,000 RPM, the valves are opening and closing 2,000 times every minute, or 33 times every second. At these speeds, the piston is moving very quickly, so the air/fuel mixture rushing into the cylinder is moving very quickly as well. Camshaft Basics When the intake valve opens and the piston starts its intake stroke, the air/fuel mixture in the intake runner starts to accelerate into the cylinder. By the time the piston reaches the bottom of its intake stroked, the air/fuel is moving at a pretty high speed. If we were to slam the intake valve shut, all of that air/fuel would come to a stop and not enter the cylinder. By leaving the intake valve open a little longer, the momentum of the fast moving air/fuel continued to force air/fuel into the cylinder as the piston starts its compressions stroke. So the faster the engine goes, the faster the air/fuel moves, and the longer we want the intake valve to stay open wider at higher speeds this parameter, called valve lift is governed by the cam lobe profile.

20 Valve Timing Technology The Jargon Because of the nature of fuel injection, carburetors, the 4-stroke cycle and valves, the internal combustion engine only really works really well at one particular range of speeds. Valve Timing Any higher or lower and you start to affect fuel efficiency, reliability and power. To overcome this issues, and to make engines more useable throughout their revolution (RPM) ranges, manufacturers invented various different types of variable valve timing. The idea is simple alter the timing and/or size of the intake and exhaust ports at different engine RPM s to ensure that the engine is as efficient as possible throughout its range of operating speeds.

21 Suzuki VVT Suzuki VVT How does it work? The VVT system goes a step further and allows a continuously variable engine operating profile, so rather than simply having economy and power modes, there s an infinite number of positions in between that can be selected on-the-fly in fractions of a second. This means that the engine can be kept in its sweet spot for a far broader range of operating conditions and demands. VVT

22 Suzuki VVT Suzuki VVT How does it work continued To keep the engine in its sweet spot, VVT doesn't have two sets of cam lobes, rather it can dynamically adjust the timing of the entire camshaft instead. This means that whilst the actual duration that the valves are open never changes, their timing in relation to all the other engine operations can be adjusted. In a simple engine, the timing belt or chain from the crankshaft loops up and around a camshaft pulley that turns the camshaft. With VVT, the timing belt loops around a pulley that contains hydraulic fluid or oil. The camshaft itself has vanes on the end of it that sit inside the fluid, so in this system, the camshaft is not directly linked to the timing belt pulley. By altering the oil pressure through a series of valves, the position of the camshaft vanes can be altered inside the pulley housing.

23 Fuels Fuels Petrol is a distilled and refined oil product made up of hydrogen and carbons a hydrocarbon. It is designed to be relatively safe to handle, if you are careful. It does not spontaneously combust without extreme provocation. When you have a petrol fire, it is not the petrol itself that is burning, it is the vapour and this is the key to fuelling an engine. The carburetor or fuel injectors spray petrol into an air stream. The tiny particles of petrol evaporate into a vapour extremely quickly, and combined in a cloud with air, it becomes extremely combustible. The smaller the particles from the carburetor jet or fuel injectors, the more efficiently the mixture burns. Only around 25% of the fuel s energy is converted into actual usable power, the rest being lost to heat.

24 Fuel Injection How does it work? Compared to carburetors, fuel injectors themselves are incredibly simple. They are basically electro-mechanically operated needle valves. The image on the right shows a cutaway of a representative fuel injector. When a current is passed through the injector electromagnetic coil, the valve opens and the fuel pressure forces petrol through the spray tip and out of the diffuser nozzle, atomising it as it does so. Fuel Injection

25 Fuel Injection How does it work continued When current is removed, the combination of a spring and fuel back-pressure causes the needle valve to close. Fuel Injection This gives an audible tick noise when it happens which is why even a quiet fuel-injected engine has a soft but rapid tick-tick-tick-tick noise as the injectors fire. This on-off cycle time is known as the pulse width and varying the pulse width determines how much fuel can flow through the injectors.

26 Fuel Injection How does it work continued When fuel-injection was first introduced, it was fairly simple and used a single injector in the throttle body. As you would expect though, technology marches on and the latest technology is direct injection, also known as GDI (gasoline direct injection). In this instance, the injectors are moved into the combustion chambers themselves rather than the intake manifold. This is nearly identical to the direct injection system used in diesel engines. Essentially, the intake valve only allows air into the combustion chamber and the fuel is sprayed in directly through a high-pressure, heat-resistant injector. The fuel and air mix inside the combustion chamber itself due to the positions of the intake valve, injector tip and top of the piston crown. Fuel Injection

27 Fuel Injection Types of fuel injection Indirect fuel injection: The injector sprays fuel into the intake manifold creating an air/fuel mixture. Fuel Injection Direct injection system: Separates the injector completely away from the intake manifold. Fuel is metered independently to air intake through the manifold. Direct Fuel Injection

28 Fuels Fuels Where does petrol come from? Gasoline is made from crude oil. The crude oil pumped out of the ground is a black liquid called petroleum. This liquid contains hydrocarbons and the carbon atoms in crude oil link together in chains of different lengths. It turns out that hydrocarbon molecules of different lengths have different properties and behaviours. For example, a chain with just one carbon atom in it (CH4) is the lightest chain, known as methane. Methane is a gas so light that it floats like helium. The different chain lengths have progressively higher boiling points, so they can be separated out by distillation. This is what happens in an oil refinery, crude oil is heated and the different chains are pulled out by their vaporization temperatures. Certain chains are blended together and used for gasoline. All of them vaporize at temperatures below the boiling point of water. That s why if you spill gasoline on the ground, it evaporates very quickly. The illustration on the next page explains the concept.

29 Fuels Fuels Where does petrol come from? Following on from the previous page, the chains next in line is kerosene, followed by diesel fuel and heavier fuel oils (like heating oil for houses).

30 Fuels Fuels Where does petrol come from? Next come the lubricating oils. These oils no longer vaporize in any way at normal temperatures. For example, engine oil can run all day at 121 degrees C without vaporizing at all. Oils go from very light (like 3-in-1 oil) through various thicknesses of motor oil through very thick gear oils and then semi-solid greases. Chains above the C20 range form solids, starting with paraffin wax, then tar and finally asphaltic bitumen, which used to make asphalt roads. All of these different substances come from crude oil. The only difference is the length of the carbon chains!

31 Fuels Fuels What is Octane? The octane rating of gasoline tells you how much the fuel can be compressed before it spontaneously ignites. One of the strokes in our 4 stroke engine is the compression stroke, where the engine compresses a cylinder-full of air and gas into a much smaller volume before igniting it with a spark plug. The amount of compression is called the compression ratio of the engine. A typical engine might have a compression ratio of 10-to-1. The compression ratio of your engine determines the octane rating of the gas you must use in the car. One way to increase power of an engine of a given displacement is to increase its compression ratio. So a "high-performance engine" has a higher compression ratio and requires higher-octane fuel.

32 Fuels Fuels What is Octane continued 93-octane petrol is petrol that contains 93-percent octane and 7-percent heptane (or some other combination of fuels that has the same performance of the 93/7 combination of octane/heptane). Heptane handles compression very poorly. Compress it just a little and it ignites spontaneously. Octane handles compression very well you can compress it a lot and nothing happens. It spontaneously ignites at a given compression level, and can only be used in engines that do not exceed that compression ratio.

33 Engine Oils What Does Oil Actually Do? Engine oil performs many functions. It stops all the metal surfaces in the engine from grinding together and tearing themselves apart from friction, and it transfers heat away from the combustion chamber. Engine oil must also be able to hold in suspension, all the nasty byproducts of combustion like silica (silicon oxide), acids and friction material. Engine Oils Finally, engine oil minimises the exposure to oxygen and thus oxidation at higher temperatures. It does all of these things under tremendous heat and pressure. The life of your engine depends in no small part on the quality of the oil you put in it oil is its lifeblood.

34 Engine Oils What Does the Grade of Oil Mean? As oils heat up, they generally get thinner. Single grad oils get too thin when hot for most modern engines which is where multi-grade oil comes in. The idea is simple use science and physics to prevent the base oil from getting too thin when it gets hot. The number before the W is the cold viscosity rating of the oil, and the number after the W is the hot viscosity rating. So a 5W40 oil is one that behaves like a 5-rated single grade oil when cold, but doesn t thin any more than a 40-rated single grade oil when hot. Engine Oils

35 Conclusion During this session we discussed the following; Basic workings of an engine, explained how valves work, how injection systems work, fuel and octane ratings and explained the various types and ratings of oils. Objectives

36 End End This concludes the e-learning module on the Technical for nontechnical engine section Thank you for your participation!

Internal Combustion Engines

Internal Combustion Engines Internal Combustion Engines The internal combustion engine is an engine in which the burning of a fuel occurs in a confined space called a combustion chamber. This exothermic reaction of a fuel with an

More information

Inside a typical car engine. Almost all cars today use a reciprocating internal combustion engine because this engine is:

Inside a typical car engine. Almost all cars today use a reciprocating internal combustion engine because this engine is: Tech Torque HOW PETROL ENGINES WORK The Basics The purpose of a gasoline car engine is to convert gasoline into motion so that your car can move. Currently the easiest way to create motion from gasoline

More information

Two Cycle and Four Cycle Engines

Two Cycle and Four Cycle Engines Ch. 5 Two Cycle and Four Cycle Engines Feb 20 7:43 AM 1 Stroke of the piston is its movement in the cylinder from one end of its travel to the other Feb 20 7:44 AM 2 Four stroke cycle engine 4 strokes

More information

ENGINES ENGINE OPERATION

ENGINES ENGINE OPERATION ENGINES ENGINE OPERATION Because the most widely used piston engine is the four-stroke cycle type, it will be used as the example for this section, Engine Operation and as the basis for comparison in the

More information

Handout Activity: HA170

Handout Activity: HA170 Basic diesel engine components Handout Activity: HA170 HA170-2 Basic diesel engine components Diesel engine parts are usually heavier or more rugged than those of similar output gasoline engines. Their

More information

Internal Combustion Engines.

Internal Combustion Engines. Internal Combustion Engines. Here's a quick description of a typical internal combustion engine, along with basic vocabularies that describe the components and their functions. This stuffs serve as a quick

More information

Engine Systems. Basic Engine Operation. Firing Order. Four Stroke Cycle. Overhead Valves - OHV. Engine Design. AUMT Engine Systems 4/4/11

Engine Systems. Basic Engine Operation. Firing Order. Four Stroke Cycle. Overhead Valves - OHV. Engine Design. AUMT Engine Systems 4/4/11 Advanced Introduction Brake to Automotive Systems Diagnosis Service and Service Basic Engine Operation Engine Systems Donald Jones Brookhaven College The internal combustion process consists of: admitting

More information

UNIT IV INTERNAL COMBUSTION ENGINES

UNIT IV INTERNAL COMBUSTION ENGINES UNIT IV INTERNAL COMBUSTION ENGINES Objectives After the completion of this chapter, Students 1. To know the different parts of IC engines and their functions. 2. To understand the working principle of

More information

OBJECTIVE: GENERAL ASPECTS ABOUT ENGINES MECHANISM:

OBJECTIVE: GENERAL ASPECTS ABOUT ENGINES MECHANISM: LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE 3 COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING Course code: MCE 211 Course title: Introduction to Mechanical Engineering Credit

More information

ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY

ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY 1 INTERNAL COMBUSTION ENGINES ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT DIVISON OF THERMAL AND ENERGY CONVERSION IC Engine Fundamentals 2 Engine Systems An engine

More information

Chapter 14 Small Gas Engines

Chapter 14 Small Gas Engines Chapter 14 Small Gas Engines Use the Textbook Pages 321 349 to help answer the questions Why You Learn So Well in Tech & Engineering Classes 1. Internal combustion make heat by burning a fuel & air mixture

More information

TKP3501 Farm Mechanization

TKP3501 Farm Mechanization TKP3501 Farm Mechanization Topic 2: Internal Combustion Engines Ahmad Suhaizi, Mat Su Email: asuhaizi@upm.edu.my Outlines Internal vs external combustion engines Engine structure Combustion cycle 4 stroke

More information

Air Cooled Engine Technology. Roth 9 th Ch 5 2 & 4 Cycle Engines Pages 81 94

Air Cooled Engine Technology. Roth 9 th Ch 5 2 & 4 Cycle Engines Pages 81 94 Roth 9 th Ch 5 2 & 4 Cycle Engines Pages 81 94 1. The of the piston is its movement in the cylinder from one end of its travel to another. Either TDC to BDC (downstroke) or BDC to TDC (upstroke). Identified

More information

Howstuffworks "How Gasoline Works"

Howstuffworks How Gasoline Works Page 1 of 5 Search HowStuffWorks and the Auto Stuff Science Stuff Health Stuff Entertainment Stuff People St Computer Stuff Electronics Stuff Home Stuff Money Stuff Travel Stuff S Main > Science > Earth

More information

CHAPTER 3 ENGINE TYPES

CHAPTER 3 ENGINE TYPES CHAPTER 3 CHAPTER 3 ENGINE TYPES CONTENTS PAGE Multi-Cylinders 02 Firing orders 06 2 Stroke Cycle 08 Diesel Cycle 10 Wankel Engine 12 Radial/Rotary 14 Engine Types Multi Cylinders Below are illustrated

More information

FUNDAMENTAL OF AUTOMOBILE SYSTEMS

FUNDAMENTAL OF AUTOMOBILE SYSTEMS Prof. Kunalsinh Mechanical Engineering Dept. FUNDAMENTAL OF AUTOMOBILE SYSTEMS Prof. Kunalsinh kathia [MECHANICAL DEPT.] UNIT-2 [ENGINES] PART-1 Prof. Kunalsinh kathia [MECHANICAL DEPT.] Internal combustion

More information

Engine Construction and Principles of Operation

Engine Construction and Principles of Operation Ch. 4 Engine Construction and Principles of Operation Gasoline Engine A gasoline fueled engine is a mechanism designed to transform chemical energy into mechanical energy It is an internal combustion engine.

More information

Distillation process of Crude oil

Distillation process of Crude oil Distillation process of Crude oil Abdullah Al Ashraf; Abdullah Al Aftab 2012 Crude oil is a fossil fuel, it was made naturally from decaying plants and animals living in ancient seas millions of years

More information

Bronze Level Training

Bronze Level Training Bronze Level Training Engine Principles of Operation While not everyone at the dealership needs to be a top rated service technician, it is good for all the employees to have a basic understanding of engine

More information

Fundamentals of Small Gas Engines

Fundamentals of Small Gas Engines Fundamentals of Small Gas Engines Objectives: Describe the four-stroke cycle engine operation and explain the purpose of each stroke Explain the concept of valve timing Describe two-stroke engine operation

More information

ENGINE & WORKING PRINCIPLES

ENGINE & WORKING PRINCIPLES ENGINE & WORKING PRINCIPLES A heat engine is a machine, which converts heat energy into mechanical energy. The combustion of fuel such as coal, petrol, diesel generates heat. This heat is supplied to a

More information

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction UNIT 2 POWER PLANTS Power Plants Structure 2.1 Introduction Objectives 2.2 Classification of IC Engines 2.3 Four Stroke Engines versus Two Stroke Engines 2.4 Working of Four Stroke Petrol Engine 2.5 Working

More information

Internal Combustion Engine. Prepared by- Md Ferdous Alam Lecturer, MEE, SUST

Internal Combustion Engine. Prepared by- Md Ferdous Alam Lecturer, MEE, SUST Internal Combustion Engine Prepared by- Md Ferdous Alam Lecturer, MEE, SUST What is an Engine? -a machine designed to convert one form of energy into mechanical energy Two types of engines : 1. Internal

More information

unit 10 lubricating systems

unit 10 lubricating systems FUEL TANK unit 10 lubricating systems An engine needs oil between its moving parts. The oil keeps the parts from rubbing on each other. When the parts do not rub on each other they do not wear out as quickly.

More information

The Basics of Four-Stroke Engines

The Basics of Four-Stroke Engines Youth Explore Trades Skills Description Students will be introduced to basic engine parts, theory and terminology. Understanding how an engine works and knowing some key related parts and terminology is

More information

Introduction to I.C Engines CH. 1. Prepared by: Dr. Assim Adaraje

Introduction to I.C Engines CH. 1. Prepared by: Dr. Assim Adaraje Introduction to I.C Engines CH. 1 Prepared by: Dr. Assim Adaraje 1 An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion

More information

INTERNAL COMBUSTION ENGINE (SKMM 4413)

INTERNAL COMBUSTION ENGINE (SKMM 4413) INTERNAL COMBUSTION ENGINE (SKMM 4413) Dr. Mohd Farid bin Muhamad Said Room : Block P21, Level 1, Automotive Development Centre (ADC) Tel : 07-5535449 Email: mfarid@fkm.utm.my HISTORY OF ICE History of

More information

Modern Auto Tech Study Guide Chapter 11 Pages Engine Fundamentals 62 Points

Modern Auto Tech Study Guide Chapter 11 Pages Engine Fundamentals 62 Points Modern Auto Tech Study Guide Chapter 11 Pages 145-161 Engine Fundamentals 62 Points 1. The is the area between the top of the piston & the cylinder head. Combustion Chamber Cylinder Chamber Chamber of

More information

Comparative Study Of Four Stroke Diesel And Petrol Engine.

Comparative Study Of Four Stroke Diesel And Petrol Engine. Comparative Study Of Four Stroke Diesel And Petrol Engine. Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion

More information

The Four Stroke Cycle

The Four Stroke Cycle 1 Induction As the piston travels down the cylinder it draws filtered air at atmospheric pressure and ambient temperature through an air filter and inlet valves into the cylinder. 2 Compression When the

More information

Automobile section, showing different parts in detail. and miscellaneous devices.

Automobile section, showing different parts in detail. and miscellaneous devices. SECTION VII Nos. 97 112 Automobile section, showing different parts in detail. and miscellaneous devices. Hydraulic jack MECHANICAL MODELS 43 Section VII 97. Automobile engine starter. This device known

More information

Air-Cooled Engine Technology

Air-Cooled Engine Technology Air-Cooled Engine Technology Air-Cooled Engine Technology Test #1 Review 80 Questions Covers Chapters 1, 2, 4, 5, 22 Careers & Professionalism Tools & Safety Engine Basic Theory &Operation 2 Stroke & 4

More information

A. Aluminum alloy Aluminum that has other metals mixed with it.

A. Aluminum alloy Aluminum that has other metals mixed with it. ENGINE REPAIR UNIT 1: ENGINE DESIGN LESSON 1: PRINCIPLES OF ENGINE DESIGN I. Terms and definitions A. Aluminum alloy Aluminum that has other metals mixed with it. B. Bearing A device that allows movement

More information

California State University, Bakersfield. Signals and Systems. Kristin Koehler. California State University, Bakersfield Lecture 6 July 23 rd, 2013

California State University, Bakersfield. Signals and Systems. Kristin Koehler. California State University, Bakersfield Lecture 6 July 23 rd, 2013 Kristin Koehler California State University, Bakersfield Lecture 6 July 23 rd, 2013 1 Outline Review (2 and 4 stroke engines) Diesel Engines 2 stroke 4 stroke Benefits of diesel Uses of diesel engines

More information

THE NEW MULTI-BILLION DOLLAR ENGINE: WHY THE EXPERTS

THE NEW MULTI-BILLION DOLLAR ENGINE: WHY THE EXPERTS THE NEW MULTI-BILLION DOLLAR ENGINE: WHY THE EXPERTS ARE SO EXCITED! The Counterpoise Bi-Radial Engine Will Cause A Revolution In Engine Building. An explanation from the Chief Science Officer. ebook The

More information

T erm STI2D. The process by which a car works is a lot simpler than you may think. When a driver turns a key in the ignition:

T erm STI2D. The process by which a car works is a lot simpler than you may think. When a driver turns a key in the ignition: 1. How a car engine Works The process by which a car works is a lot simpler than you may think. When a driver turns a key in the ignition: The car battery powers up sending Power to the starter motor,

More information

IC ENGINE(4 STROKE) G.H.R.I.E&M JALGAON. Sec.(Mech) Sec.(Mech) Sec.(Mech) Sec.(Mech) Mehta chirag Shah sagar Patel jainish talele amit

IC ENGINE(4 STROKE) G.H.R.I.E&M JALGAON. Sec.(Mech) Sec.(Mech) Sec.(Mech) Sec.(Mech) Mehta chirag Shah sagar Patel jainish talele amit IC ENGINE(4 STROKE) G.H.R.I.E&M JALGAON Mehta chirag Shah sagar Patel jainish talele amit Sec.(Mech) Sec.(Mech) Sec.(Mech) Sec.(Mech) 9096297071 9028248697 9028913994 8087260063 1 Abstract The four stroke,

More information

Engine Project. These engines are typically used in lawn mowers, snow blowers, go-carts, etc

Engine Project. These engines are typically used in lawn mowers, snow blowers, go-carts, etc Engine Project Your team is going to dissect and assemble a 3.5 HP single cylinder, 4 cycle engine, made by Briggs and Stratton in Milwaukee, Wisconsin These engines are typically used in lawn mowers,

More information

Practical Exercise for Instruction Pack 2. Ed Abdo

Practical Exercise for Instruction Pack 2. Ed Abdo Practical Exercise for Instruction Pack 2 By Ed Abdo About the Author Edward Abdo has been actively involved in the motorcycle and ATV industry for over 25 years. He received factory training from Honda,

More information

KEIHIN CARBURATORS FOR 4-CYLINDER HONDA MOTORCYCLES

KEIHIN CARBURATORS FOR 4-CYLINDER HONDA MOTORCYCLES KEIHIN CARBURATORS FOR 4-CYLINDER HONDA MOTORCYCLES Set of 4 Keihin carburetors marked 089A and used on 1976 CB550K GENERAL NOTES: All carburetors perform the same function: mixing air and fuel for supply

More information

Air Management System Components

Air Management System Components AIR M anagement Sys tem Air Management System Components Air Management System Features Series Sequential The series sequential turbocharger is a low pressure/high pressure design working in series with

More information

Thermodynamics cycles can be classified into different categories depending on fluid used or the different processes:

Thermodynamics cycles can be classified into different categories depending on fluid used or the different processes: Classification of thermodynamics cycles Thermodynamics cycles can be classified into different categories depending on fluid used or the different processes: Gas and vapor cycles - Gas cycle: the working

More information

Figure 1. b) 1 mark for mm (+/ mm)

Figure 1. b) 1 mark for mm (+/ mm) Qualification title: Level 3 Advanced Technical Extended Diploma in Land-Based Engineering Test title: 0171-515/015 Level 3 Land-based Engineering theory exam Version: June 2017 Exam date: 22/06/2017 Exam

More information

Internal Combustion Engine

Internal Combustion Engine Internal Combustion Engine The development of the internal combustion engine was made possible by the earlier development of the STEAM ENGINE. Both types of engines burn fuel, releasing energy from it

More information

Vacuum Readings for Tuning and Diagnosis

Vacuum Readings for Tuning and Diagnosis Vacuum Readings for Tuning and Diagnosis -Henry P. Olsen Once you learn to properly interpret its readings, a vacuum gauge can be one of the most useful tools in your toolbox. 22 FEATURE Some people consider

More information

Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition

Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition Chapter 1 Introduction 1-3 ENGINE CLASSIFICATIONS Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition 1 (a) Spark Ignition (SI). An SI engine starts the combustion

More information

Hydrocarbons 1 of 29 Boardworks Ltd 2016

Hydrocarbons 1 of 29 Boardworks Ltd 2016 Hydrocarbons 1 of 29 Boardworks Ltd 2016 Hydrocarbons 2 of 29 Boardworks Ltd 2016 What are hydrocarbons? 3 of 29 Boardworks Ltd 2016 Some compounds only contain the elements carbon and hydrogen. They are

More information

THE STUDY of mechanical power

THE STUDY of mechanical power The Internal Combustion Engine and Its Importance to Agriculture THE STUDY of mechanical power covers a broad area of learning. A basic understanding of engines is important if you are to keep pace with

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 11 Internal Combustion

More information

Combustion engines. Combustion

Combustion engines. Combustion Combustion engines Chemical energy in fuel converted to thermal energy by combustion or oxidation Heat engine converts chemical energy into mechanical energy Thermal energy raises temperature and pressure

More information

I.C ENGINES. CLASSIFICATION I.C Engines are classified according to:

I.C ENGINES. CLASSIFICATION I.C Engines are classified according to: I.C ENGINES An internal combustion engine is most popularly known as I.C. engine, is a heat engine which converts the heat energy released by the combustion of the fuel taking place inside the engine cylinder

More information

California State University, Bakersfield. Signals and Systems. Kristin Koehler. California State University, Bakersfield Lecture 4 July 18 th, 2013

California State University, Bakersfield. Signals and Systems. Kristin Koehler. California State University, Bakersfield Lecture 4 July 18 th, 2013 Kristin Koehler California State University, Bakersfield Lecture 4 July 18 th, 2013 1 Outline Internal combustion engines 2 stroke combustion engines 4 stroke combustion engines Diesel engines 2 Consists

More information

Edexcel GCSE Chemistry. Topic 8: Fuels and Earth science. Fuels. Notes.

Edexcel GCSE Chemistry. Topic 8: Fuels and Earth science. Fuels. Notes. Edexcel GCSE Chemistry Topic 8: Fuels and Earth science Fuels Notes 8.1 Recall that Hydrocarbons are compounds that contain carbon and hydrogen only 8.2 Describe crude oil as: A complex mixture of hydrocarbons

More information

The 4 Stroke Diesel Cycle

The 4 Stroke Diesel Cycle The 4 Stroke Diesel Cycle Nickolaus Otto invented the 4 stroke cycle in 1862. More details of how the four stroke spark ignition cycle works, together with pictures of Otto's first engines can be found

More information

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4DOTC

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4DOTC EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4DOTC SYSTEM OVERVIEW 1. System Overview There are three emission control systems, which are as follows: Crankcase emission control system Exhaust emission

More information

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

More information

IC ENGINES. Differences between SI and CI engines: Petrol is fuel, which has a high self ignition temperature

IC ENGINES. Differences between SI and CI engines: Petrol is fuel, which has a high self ignition temperature IC ENGINES SI Engines work at constant volume. They have a compression ratio of around 6-10. But CI engines work at constant pressure and has a compression ratio of 16-20. In four stroke engines, one power

More information

Motorcycle Carburetor Theory 101

Motorcycle Carburetor Theory 101 Motorcycle Carburetor Theory 101 Motorcycle carburetors look very complex, but with a little theory, you can tune your bike for maximum performance. All carburetors work under the basic principle of atmospheric

More information

Timing is everything with internal combustion engines By: Bernie Thompson

Timing is everything with internal combustion engines By: Bernie Thompson Timing is everything with internal combustion engines By: Bernie Thompson As one goes through life, it is said that timing is everything. In the case of the internal combustion engine, this could not be

More information

Material Optimization of a Four-wheeler Cam Shaft

Material Optimization of a Four-wheeler Cam Shaft Material Optimization of a Four-wheeler Cam Shaft Dr. Kareem Dakhil Jasym Assistant Professor, Mechanical Engineering, Al-Qaidissiya University College of Engineering. Abstract: The cam shaft and its associated

More information

Lab #5 4-Cylinder Single Overhead Cam Engine Dissection

Lab #5 4-Cylinder Single Overhead Cam Engine Dissection Engr 3 Mission College Faculty: Kate Disney TA: Andrew Dina Lab #5 4-Cylinder Single Overhead Cam Engine Dissection Equipment: 4-Cylinder Mazda 16 Valve SOHC 92 (Manual Transmission) Ratchet with 2 and

More information

INTRODUCTION OF FOUR STROKE ENGINE

INTRODUCTION OF FOUR STROKE ENGINE INTRODUCTION OF FOUR STROKE ENGINE Engine: An engine is motor which converts chemical energy into mechanical energy Fuel/petrol engine: A petrol engine (known as a gasoline engine in North America) is

More information

Introduction. Internal Combustion Engines

Introduction. Internal Combustion Engines Introduction Internal Combustion Engines Internal Combustion Engines A heat engine that converts chemical energy in a fuel into mechanical energy. Chemical energy first converted into thermal energy (Combustion)

More information

Ignition control. The ignition system tasks. How is the ignition coil charge time and the ignition setting regulated?

Ignition control. The ignition system tasks. How is the ignition coil charge time and the ignition setting regulated? 1 Ignition control The ignition system tasks To transform the system voltage (approximately 14 V) to a sufficiently high ignition voltage. In electronic systems this is normally above 30 kv (30 000 V).

More information

SUPERCHARGER AND TURBOCHARGER

SUPERCHARGER AND TURBOCHARGER SUPERCHARGER AND TURBOCHARGER 1 Turbocharger and supercharger 2 To increase the output of any engine more fuel can be burned and make bigger explosion in every cycle. i. One way to add power is to build

More information

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H6DO

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H6DO EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H6DO SYSTEM OVERVIEW 1. System Overview There are three emission control systems, which are as follows: Crankcase emission control system Exhaust emission

More information

Automobiles. Introductory Question. 6 Questions about Automobiles. Observations about Automobiles. Question 1. Heat Engines

Automobiles. Introductory Question. 6 Questions about Automobiles. Observations about Automobiles. Question 1. Heat Engines Automobiles 1 Automobiles 2 Introductory Question Automobiles A car burns gasoline to obtain energy but allows some heat to escape into the air. Could a mechanically perfect car avoid releasing heat altogether?

More information

UNDERSTANDING 5 GAS DIAGNOSIS

UNDERSTANDING 5 GAS DIAGNOSIS UNDERSTANDING 5 GAS DIAGNOSIS AND EMISSIONS Gas Diagnostic Steps This procedure will help in your efforts to figure out what the five-gas reading are telling you. In order for five gas analyses to be conclusive

More information

Simple Carburettor Fuel System for a Piston Engine. And how it works

Simple Carburettor Fuel System for a Piston Engine. And how it works Simple Carburettor Fuel System for a Piston Engine And how it works Inlet Exhaust Tank PISTON ENGINE Carburettor Fuel System Filler Cap COCKPIT FUEL GAUGE E FUEL 1/2 F Filler Neck Tank Cavity FUEL LEVEL

More information

A. Perform a vacuum gauge test to determine engine condition and performance.

A. Perform a vacuum gauge test to determine engine condition and performance. ENGINE REPAIR UNIT 2: ENGINE DIAGNOSIS, REMOVAL, AND INSTALLATION LESSON 2: ENGINE DIAGNOSTIC TESTS NOTE: Testing the engine s mechanical condition is required when the cause of a problem is not located

More information

Powertrain Efficiency Technologies. Turbochargers

Powertrain Efficiency Technologies. Turbochargers Powertrain Efficiency Technologies Turbochargers Turbochargers increasingly are being used by automakers to make it possible to use downsized gasoline engines that consume less fuel but still deliver the

More information

Unit D: Agricultural Equipment Systems. Lesson 1: Understanding Applications of Fluids and Lubricants in Agricultural Equipment

Unit D: Agricultural Equipment Systems. Lesson 1: Understanding Applications of Fluids and Lubricants in Agricultural Equipment Unit D: Agricultural Equipment Systems Lesson 1: Understanding Applications of Fluids and Lubricants in Agricultural Equipment 1 Terms Ash content bottom dead center cloud point compression ratio coolant

More information

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1.

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1. Introduction: Main three types of automotive vehicle being used 1. Passenger cars powered by four stroke gasoline engines 2. Motor cycles, scooters and auto rickshaws powered mostly by small two stroke

More information

CHAPTER 6 IGNITION SYSTEM

CHAPTER 6 IGNITION SYSTEM CHAPTER 6 CHAPTER 6 IGNITION SYSTEM CONTENTS PAGE Faraday s Law 02 The magneto System 04 Dynamo/Alternator System 06 Distributor 08 Electronic System 10 Spark Plugs 12 IGNITION SYSTEM Faraday s Law The

More information

THE FOUR STROKE CYCLE BUT HOW DOES IT WORK EXACTLY? LET S LOOK IN MORE DETAIL 1. INDUCTION SUCK 2. COMPRESSION 3. COMBUSTION 4.

THE FOUR STROKE CYCLE BUT HOW DOES IT WORK EXACTLY? LET S LOOK IN MORE DETAIL 1. INDUCTION SUCK 2. COMPRESSION 3. COMBUSTION 4. THE FOUR STROKE CYCLE BUT HOW DOES IT WORK EXACTLY? WE KNOW ABOUT:- WHICH WE KNOW AS:- LET S LOOK IN MORE DETAIL 1. INDUCTION SUCK 2. COMPRESSION 3. COMBUSTION 4. EXHAUST SQUEEZE BANG BLOW Inlet valve

More information

This engine is certified to operate on regular 87 octane unleaded fuel (R+M)/2 Idle Speed (in gear): 650 RPM. Timing: Idle: 4-8 ATDC WOT:28 BTDC

This engine is certified to operate on regular 87 octane unleaded fuel (R+M)/2 Idle Speed (in gear): 650 RPM. Timing: Idle: 4-8 ATDC WOT:28 BTDC FUEL SYSTEMS 3 E Emission Control Information This engine conforms to 1998 Model Year U.S. EPA regulations for marine SI engines. Refer to Owners Manual for required maintenance. Exhaust Emission Control

More information

Technical for Non-technical - Transmissions

Technical for Non-technical - Transmissions Service SERVICE Advisor ADVISOR Customer Service Skills Technical for Non-technical - Transmissions INDUCTION Objectives of this session This section aims to deal with the whole idea of getting the power

More information

Focus on Training Section: Unit 2

Focus on Training Section: Unit 2 All Pump Types Page 1 1. Title Page Learning objectives Become familiar with the 4 stroke cycle Become familiar with diesel combustion process To understand how timing affects emissions To understand the

More information

THE CARBURETOR: THE ADDITIONAL SYSTEMS

THE CARBURETOR: THE ADDITIONAL SYSTEMS THE CARBURETOR: THE ADDITIONAL SYSTEMS From the acceleration pump to the power jet: the special configuration of circuits that apply to some carburetor models As stated in the previous article, a carburetor

More information

Rotary Internal Combustion Engine: Inventor: Gary Allen Schwartz

Rotary Internal Combustion Engine: Inventor: Gary Allen Schwartz Rotary Internal Combustion Engine: Inventor: Gary Allen Schwartz 1 The following is a design for a circular engine that can run on multiple fuels. It is much more efficient than traditional reciprocating

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd.

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd. Mechanisms of HC Formation in SI Engines... contd. The Lecture Contains: HC from Lubricating Oil Film Combustion Chamber Deposits HC Mixture Quality and In-Cylinder Liquid Fuel HC from Misfired Combustion

More information

Handout Activity: HA185

Handout Activity: HA185 Cylinder heads Handout Activity: HA185 HA185-2 Cylinder head The cylinder head bolts onto the top of the cylinder block where it forms the top of the combustion chamber. It carries the valves and, in many

More information

Introducing the Sea-Doo 4-TEC SUPERCHARGED

Introducing the Sea-Doo 4-TEC SUPERCHARGED Introducing the Sea-Doo 4-TEC SUPERCHARGED 185HP & MASSIVE TORQUE iame41-1.doc 29Mar03 Page 1 of 2 Another Sea-Doo watercraft first and only. Introducing the 185hp, GTX 4-TEC SUPERCHARGED PWC. The 4-TEC

More information

Oil & Gas. From exploration to distribution. Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir. W3V19 - Refining Processes1 p.

Oil & Gas. From exploration to distribution. Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir. W3V19 - Refining Processes1 p. Oil & Gas From exploration to distribution Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir W3V19 - Refining Processes1 p. 1 Crude Oil Origins and Composition The objective of refining, petrochemical

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL IC Engine - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Internal Combustion Engine GATE, IES & PSUs IC Engine - ME GATE, IES, PSU 2 C O N T E N T 1.

More information

Study of cooling, lubrication and ignition system in diesel and petrol engines.

Study of cooling, lubrication and ignition system in diesel and petrol engines. Study of cooling, lubrication and ignition system in diesel and petrol engines. Aim: - To study the conventional battery ignition system Construction: The function of battery ignition system is to produce

More information

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 3 EO M EXPLAIN THE CYCLES OF A FOUR-STROKE PISTON-POWERED ENGINE

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 3 EO M EXPLAIN THE CYCLES OF A FOUR-STROKE PISTON-POWERED ENGINE ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 3 EO M232.03 EXPLAIN THE CYCLES OF A FOUR-STROKE PISTON-POWERED ENGINE Total Time: 60 min PREPARATION PRE-LESSON INSTRUCTIONS

More information

MITSIBUSHI FTO NUT,BOLT AND TORQUE GUIDE

MITSIBUSHI FTO NUT,BOLT AND TORQUE GUIDE MITSIBUSHI FTO NUT,BOLT AND TORQUE GUIDE All information below has been obtained from the official Mitsubishi fto workshop manual, and I hold no liability for any incorrect information. Heads marked 4

More information

X4v2 Testing Update 19 th November 2007

X4v2 Testing Update 19 th November 2007 X4v2 Testing Update 19 th November 2007 Copyright 2007 Revetec Holdings Limited Contents Forward 2 Economy and Driving 2 Advances in Engine Technology to Increase/Widen Torque Bands 3 Variable Length Intake

More information

SIDEWINDER COURSE PREREQUISITE MANUAL

SIDEWINDER COURSE PREREQUISITE MANUAL SIDEWINDER COURSE PREREQUISITE MANUAL The S&S engine class is designed for the seasoned tech or shop owner. A certain level of knowledge and understanding is required for your success. We will be covering

More information

2) Rich mixture: A mixture which contains less air than the stoichiometric requirement is called a rich mixture (ex. A/F ratio: 12:1, 10:1 etc.

2) Rich mixture: A mixture which contains less air than the stoichiometric requirement is called a rich mixture (ex. A/F ratio: 12:1, 10:1 etc. Unit 3. Carburettor University Questions: 1. Describe with suitable sketches : Main metering system and Idling system 2. Draw the neat sketch of a simple carburettor and explain its working. What are the

More information

Guidance to Instructors on Subject Delivery PISTON ENGINE PROPULSION. This is a suggested programme for the delivery of this subject.

Guidance to Instructors on Subject Delivery PISTON ENGINE PROPULSION. This is a suggested programme for the delivery of this subject. Programme of learning: Guidance to Instructors on Subject Delivery This is a suggested programme for the delivery of this subject. The main headings are the Learning Outcomes (LO1, LO2, etc), with sub

More information

Template for the Storyboard stage

Template for the Storyboard stage Template for the Storyboard stage Animation can be done in JAVA 2-D. Mention what will be your animation medium: 2D or 3D Mention the software to be used for animation development: JAVA, Flash, Blender,

More information

Everything Leading Up to Nuclear Cars. next 150 years is to have a car that runs on the splitting of atoms. This will be a clean and

Everything Leading Up to Nuclear Cars. next 150 years is to have a car that runs on the splitting of atoms. This will be a clean and Ethan Brunet-Bailey Everything Leading Up to Nuclear Cars Engineering is why we have cars, electronics, and everything around us. The car that we have in 2016-2017 runs off of fossil fuels and some are

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

Combustion. T Alrayyes

Combustion. T Alrayyes Combustion T Alrayyes Fluid motion with combustion chamber Turbulence Swirl SQUISH AND TUMBLE Combustion in SI Engines Introduction The combustion in SI engines inside the engine can be divided into three

More information

Applied Thermodynamics Internal Combustion Engines

Applied Thermodynamics Internal Combustion Engines Applied Thermodynamics Internal Combustion Engines Assoc. Prof. Dr. Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia www.fkm.utm.my/~mazlan 1 Coverage Introduction Operation

More information

CHAPTER 1 MECHANICAL ARRANGEMENT

CHAPTER 1 MECHANICAL ARRANGEMENT CHAPTER 1 CHAPTER 1 MECHANICAL ARRANGEMENT CONTENTS PAGE Basic Principals 02 The Crankshaft 06 Piston Attachment 08 Major Assemblies 10 Valve Gear 12 Cam Drive 18 Mechanical Arrangement - Basic Principals

More information

By Paul Dawson, BRP Australia Pty Ltd.

By Paul Dawson, BRP Australia Pty Ltd. By Paul Dawson, BRP Australia Pty Ltd. It seems we re always complaining about fuels. For as long as many of us can remember there's always some application that's not happy with current fuels. While today

More information

By Bob Markiewicz. Figure 1. Figure 2

By Bob Markiewicz. Figure 1. Figure 2 can greatly help you develop horsepower and better understand ignition timing. By understanding the mixture burns at a slow rate, compared to an explosion, and knowing that by increasing this burn rate

More information