Dr Ali Jawarneh Department of Mechanical Engineering

Size: px
Start display at page:

Download "Dr Ali Jawarneh Department of Mechanical Engineering"

Transcription

1

2 Chapter 7: Combustion Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

3 Outline In this lecture we will discuss the combustion process: The characteristics of the process. The different phases of the process. The factors affecting it.

4 COMBUSTION IN SI ENGINES The combustion process of SI engines can be divided into three broad regions: (1) ignitionand flame development, (2) flame propagation, and (3) flame termination. Flame development is generally considered the consumption of the first 5% 10% of the air fuel mixture. During the flame development period, ignition occurs and the combustion process starts, but very little pressure rise is noticeable and little or no useful work is produced. Just about all useful work produced in an engine cycle is the result of the flame propagation period of the combustion process. This is the period when the bulk of the fuel and air mass is burned (i.e., 80 90%). During this time, pressure in the cylinder is greatly increased, and this provides the force to produce work in the expansion stroke. The final 5% 10% of the air fuel mass which burns is classified as flame termination. During this time, pressure quickly decreases and combustion stops. In an SI engine, combustion ideally consists of an exothermic subsonic flame progressing through a premixed homogeneous air fuel mixture. The spread of the flame front is greatly increased dby induced dturbulence and swirl ilwithin ihi the cylinder. The right ih combination of fuel and operating characteristics is such that knock is avoided or almost avoided.

5 Spark: btdc Start End of combustion: 15 btdc atdc Max press.: 5-10 atdc Flame can generally be detected at about 6 of crank rotation after spark plug firing. Burn angle: 25 0

6 (1) Ignition and Flame Development Combustion is initiated by an electrical discharge across the electrodes of a spark plug. This occurs anywhere from 10 to 30 btdc. Combustion starts very slowly because of the high heat losses to the relatively cold spark plug and gas mixture. Flame can generally be detected at about 6 of crank rotation after spark plug firing. Overall spark discharge lasts about second, with an average temperature of about 6000 K. A stoichiometric mixture of hydrocarbon fuel requires about 0.2 mj of energy to ignite self sustaining combustion. This varies to as much as 3 mj for non stoichiometric mixtures. The discharge of a spark plug delivers 30 to 50 mj of energy, most of which, however, is lost by heat transfer.

7 Ignition and Flame Development Power is supplied through an electrical system which operates usually on low voltage (12 volts battery). The low voltage is amplified to generate the required high voltage using a coil or a capacitor. The gap distance between electrodes on a modern spark plug is about t0.7 to 1.7 mm. Normal quasi steady state temperature of spark plug electrodes between firings should be about 650 to 700 C. Some quality spark plugs with platinum tipped electrodes are made to last 160,000 km (100,000 miles) or more.

8 (2) Flame Propagation in SI Engines After the first 5 10% of the air fuel mass has been burned, the combustion process is well established and the flame front moves very quickly through the combustion chamber. Due to induced turbulence, swirl, and squish, flame propagation speed is about 10 times faster than if there were a laminar flame front moving through a stationary gas mixture. The flame at this phase is no longer spherical and is highly distorted. As a result of the fast burn rate, a sharp rise in the temperature and pressure of gases occurs.

9 As the gas mixture burns, the temperature, and consequently the pressure, rises to high values. Burned gases behind the flame front are hotter than the unburned gases before the front, with all gases at about the same pressure. This decreases the density of the burned gases and expands them to occupy a greater percent of the total combustion chamber volume. Figure 7 3 shows that when only 30% of the gas mass is burned the burned gases already occupy almost 60% of the total volume, compressing 70% of the mixture that is not yet burned into 40% of the total volume. Compression of the unburned gases raises their temperature by compressive heating. In addition, radiation heating emitted from the flame reaction zone, which is at a temperature on the order of 3000 K, further heats the gases in the combustion chamber, unburned and burned. A temperature rise from radiation then further raises the pressure. Heat transfer by conduction and convection are minor compared with radiation, due to the very short real time involved in each cycle. Flame Propagation in SI Engines

10 Flame Propagation in SI Engines Fig Fig Flame speed depends on the type of fuel and the air fuel ratio. Lean mixtures have slower flame speeds, as shown in Fig Slightly rich mixtures have the fastest flame speeds, with the maximum for most fuels occurring at an equivalence ratio near 1.2. Exhaust residual and recycled exhaust gas slows the flame speed. Flame speed increases with engine speed due to the higher turbulence, swirl, and squish (Fig. 7 5) 5).

11 Flame Propagation in SI Engines

12 Flame Propagation in SI Engines Burn angle: The angle through which the crankshaft turns during combustion, is about 25 for most engines. Figure 7 6 The increase in the angle of the ignition and flame development period (5% burn) is mainly due to the almost constant real time of the spark ignition process. During flame propagation (5% burn to 95% burn) both combustion speed and engine speed increase, resulting in a fairly constant burn angle of about 25 for the main part of combustion. If combustion is to be completed at 15 atdc, then ignition should occur at about 20 btdc. If ignition iti is too early, the cylinder pressure will increase to undesirable levels btdc, and work will be wasted in the compression stroke. If ignition is late, peak pressure will not occur early enough, and work will be lost at the start of the power stroke due to lower pressure. Actual ignition timing is typically anywhere from 10 to 30 btdc, depending on the fuel used, engine geometry, and engine speed.

13 Flame Propagation in SI Engines Spark Timing For any given engine, combustion occurs faster at higher engine speed. Real time for the combustion process is therefore less and the real time for the engine cycle is also less, and the burn angle is only slightly changed. This slight change is corrected by advancing the spark[the spark to occur sooner (relative to crankshaft degrees) as RPM increase.] as the engine speed is increased. This initiates combustionslightlyearlier slightly inthe cycle, with peak temperature and pressure remaining at about 5 to 10 atdc. At part throttle, ignition timing is advanced to compensate for the resulting slower flame speed. These not only use engine speed to set timing but also sense and make fine adjustment for knock and incorrect exhaust emissions. Engine at WOT, constant engine speed and A/F Modern engines that are controlled by an engine control unit to control the timing throughout the engine's RPM range. Older engines that use mechanical spark distributors rely on inertia (by using rotating weights and springs) and manifold vacuum in order to set the ignition timing throughout the engine's RPM range.

14 (3) Flame Termination The last 5% or 10% of the mass has been compressed into a few percent of the combustion chamber volume by the expanding burned gases behind the flame front. Although at this point the piston has already moved away from TDC, the combustion chamber volume has only increased on the order of 10 20% from the very small clearance volume. This means that the last mass of air and fuel will react in a very small volume in the corners of the combustion chamber and along the chamber walls. Due to the closeness of the combustion chamber walls, the last end gas that reacts does so at a very reduced rate. Near the walls, turbulence and mass motion of the gas mixture have been dampened dout, and there is a stagnant tboundary layer. The large mass of the metal walls also acts as a heat sink and conducts away much of the energy being released in the reaction flame. Both of these mechanisms reduce the rate of reaction and flame speed, and combustion ends by slowly dying away. Although very little additional work is delivered by the piston during this flame termination period due to the slow reaction rate, it is still a desirable occurrence.

15 Cyclic variations in Combustion Figure 7 9 Pressure as a function of time for 10 consecutive cycles in a single cylinder of an SIengine, showing variation that occurs due to inconsistency of combustion. 1-cycle-to-cycle 2-cylinder-to-cylinder Cyclic variations are mainly caused by Variation in mixture motion within the cylinder at the time of spark, Variation in the amounts of air and fuel fed to the cylinder each cycle, Variation in the mixing of fresh mixture and residual gases within cylinder each cycle.

16 ENGINE OPERATING CHARACTERISTICS Power Operation Cruising Operation Idle and Low Engine Speed ClosingThrottle at HighEngineSpeed Starting a Cold Engine Power Operation: For maximum power at WOT (fast startup, accelerating up a hill, an airplane taking off), fuel injectors and carburetors are adjusted to give a rich mixture, and ignition systems are set with retarded spark (spark later in cycle). This gives maximum power at a sacrifice of fuel economy. The rich mixture burns faster and allows the pressure peak to be more concentrated near TDC, with the probable compromise of rougher operation. At high engine speeds, there is less time for heat transfer to occur from the cylinders, and exhaust gases and exhaust valves will be hotter. To maximize flame speed at WOT, no exhaust gas is recycled, resulting in higher levels of NOx.

17 Cruising Operation: For cruising operationsuchassteady freeway driving or long distance airplane travel, less power is needed and brake specific fuel consumption becomes important. For this type of operation aleanmixtureis supplied to the engine, high EGR is used, and ignition timing is advanced to compensate for the resulting slower flame speed. Fuel usage efficiency (miles/liter) will be high, but thermal efficiency of the engine will be lower. This is because the engine will be operating at a lower speed, which gives more time per cycle for heatlosses from thecombustion ti chamber. Idle and Low Engine Speed: At very low engine speeds the throttle will be almost closed,, resulting in a high vacuum in the intake manifold. This high vacuum and low engine speed generate a large exhaust residual during valve overlap. This creates poor combustion, which must be compensated for by supplying arich mixture to the engine. The rich mixture and poor combustion contribute to high exhaust emissions of HC and CO. Misfires and cycles where only partial combustion occurs in some cylinders are more common at idle speeds. A 2% misfire ifi rate would cause exhaust emissions i to exceed acceptable standards by %.

18 Closing Throttle at High Engine Speed: When quick deceleration is desired and the throttle is closed at high engine speed, averylarge vacuum is created in the intake system. High ihengine speed wants a large inflow of air, but the closed throttle allows very little air flow. The result is a high intake vacuum, high exhaust residual, a rich mixture, and poor combustion. Misfires and high exhaust emissions are very common with this kind of operation. The controls on engines with fuel injectors shut the fuel flow down under these conditions, and this results in much smoother operation. Starting a Cold Engine: When a cold engine is started, an over rich supply of fuel must be supplied to assure enough fuelvapor to create a combustible gas mixture. When the walls of the intake system and cylinders are cold, a much smaller percentage of the fuel will vaporize than in normal steady state operation. Thefuelis also cold and does not flow as readily. The engine turns very slowly, being driven only by the starting motor, and a greater amount of the compressive heating during compression is lost by heat transfer to the cold walls. This is made worse by the cold viscous lubricating oil that resists motion and slows the starting speed even more. All of these factors contribute to the need for a very rich air fuel ratio when starting a cold engine. Air fuel ratios as rich as 1:1 are sometimes used.

19 ABNORMAL COMBUSTION: KNOCK AND SURFACE IGNITION There are two primary abnormal combustion phenomena: Knock is the engine sound that results from spontaneous ignition of the unburned fuel air mixture ahead of the flame (the end gas ). Heating of unburnt mixture it by compression and radiation initiates premature combustion. Surface ignition is the ignition of the fuel air mixture by anyhotsurface surface, other than the spark discharge, prior to arrival of the flame.

20 Engine Knock Pressure variation in the cylinder during knocking combustion for normal combustion, light knockandhea heavy knock, respectively. el

21 Engine parameters that effect occurrence of knock i) Compression ratio at high compression ratios, even before spark ignition, the fuel air mixture is compressed to a high pressure and temperature which promotes autoignition ii) Engine speed At low engine speeds the flame velocity is slow and thus the burn time is long, this results in more time for autoignition However at high engine speeds there is less heat loss so the unburned gas temperature is higher which promotes autoignition These are competing effects, some engines show an increase in propensity to knock at high speeds while others don t. iii) Spark timing maximum compression from the piston advance occurs at TC, increasing the spark advance makes the end of combustion crank angle approach TC and thus get higher pressure and temperature in the unburned gas just before burnout.

22 SWIRL The main macro mass motion within the cylinder is a rotational motion called swirl. It is generated by constructing the intake system to give a tangential ti component to the intake flow as it enters the cylinder (see Fig. 6 2). This is done by shaping and contouring the intake manifold, valve ports, and sometimes even the piston face. Swirl greatly enhances the mixing of air and fuel to give a homogeneous mixture in the very short time available for this in modern highspeed engines. It is also a main mechanism for very rapid spreading of the flame front during the combustion process.

23 SWIRL Swirl ratio is a dimensionless parameter used to quantify rotational motion within the cylinder. Itisdefined in two different ways in the technical literature: (SR)l = (angular speed)/(engine speed) = w/n (SR)2 = (swirl tangential ti speed)/(average piston speed)= u t /Up Angular larmotion is very non uniform niform within the cylinder, being a maximum away from the walls and being much less near the walls due to viscous drag. Figure 6 3 Average cylinder swirl ratio as a function of crank angle for a typical SI engine. Swirl is high during the intake process, with a maximum near TDC. It then is reduced by viscous drag during the compression stroke. There is a second maximum near the end of compression when the radius of rotation is decreased near TDC and expansion from combustion occurs. Viscous drag with the cylinder walls during the expansion stroke quickly reduces this again before blowdown occurs.

24 COMBUSTION IN CI ENGINES Combustion in a compression ignition engine is quite different from that in an SI engine. Whereas combustion in an SI engine is essentially a flame front moving through a homogeneous mixture, combustion in a CI engine is an unsteady process occurring simultaneously at many spots in a very non homogeneous mixture at a rate controlled by fuel injection. Air intake into the engine is unthrottled, with engine torque and power output controlled by the amount of fuel injected per cycle. Because the incoming air is not throttled, pressure in the intake manifold is consistently at a value close to one atmosphere. This makes the pump work loop of the engine cycle shown in Fig. 3 9 very small, with a corresponding better thermal efficiency compared to an SI engine.

25 A: injection start (15 0 btdc) B: ID= 8 0 btdc and start of combustion C: end of injection 5 0 atdc X: end of combustion ( atdc) Figure 7 16 Cylinder pressure as a function of crank angle for a CI engine. Point A is where fuel injection starts, A to B is ignition delay, and point C is the end of fuel injection. If the cetane number of the fuel is too low, a greater amount of fuel will be injected during ignition delay time. When combustion then starts, the additional fuel will cause the pressure at point B to increase too fast, resulting in a rough engine cycle.

26 COMBUSTION IN CI ENGINES Only air is contained din the cylinder during the compression stroke, and much higher compression ratios are used in CI engines. Compression ratios of modern CI engines range from 12 to 24. Compared to normal SI engines, highthermal efficiencies (fuel conversion efficiencies) are obtained. However, because the overall air fuel ratio on which CI engines operate is quite lean (equivalence ratio ϕ = 0.8), less brake power output is often obtained for a given engine displacement. Fuel is injected into the cylinders late in the compression stroke by one or more injectors located in each cylinder combustion chamber. Injection time is usually about 20 of crankshaft rotation, starting at about 15 btdc and ending about 5 atdc. Ignition delay is fairly constant in real time, so at higher engine speeds fuel injection must be started slightly earlier in the cycle. In addition to the swirl and turbulence of the air, a high injection velocity is needed to spread the fuel throughout the cylinder and cause it to mix with the air.

27 COMBUSTION IN CI ENGINES After injection the fuel must go through a series of events to assure the proper combustion process: 1 Atomization. Fuel drops break into very small droplets. The smaller the original dropsize emitted by the injector, the quicker and more efficient will be this atomization process. 2. Vaporization. The small droplets of liquid fuel evaporate to vapor. This occurs very quickly due to the hot air temperatures created by the high compression of CI engines. High air temperature needed for this vaporization process requires a minimum compression ratio in CI engines of about 12:1. About 90% of the fuel injected into the cylinder has been vaporized within second after injection. As the first fuel evaporates, the immediate surroundings are cooled by evaporative cooling. This greatly affects subsequent evaporation. Near the core of the fuel jet, the combination of high h fuel concentration ti and evaporative cooling will cause adiabatic saturation of fuel to occur. Evaporation will stop in this region, and only after additional mixing and heating will this fuel be evaporated.

28 3. Mixing. After vaporization, the fuel vapor must mix with air to form a mixture within the AF range which is combustible. This mixing comes about because of the high hfuel injection velocity added d to the swirl and turbulence in the cylinder. Figure 7 15 shows the non homogeneous distribution of air fuel ratio that develops around the injected fuel jet. Combustion can occur within the equivalence ratio limits ofϕϕ = 1.8 (rich) and ϕ = 0.8 (lean). Non-homogeneous distribution of AF Self-ignition starts In general most of the combustion occurs under very rich conditions within the head of the jet, this produces a considerable amount of solid carbon (soot) (mainly Zone A &B).

29 4. Self Ignition. At about 8 btdc, 6 8 after the start of injection, the air fuel mixture starts to self ignite. 5. Combustion. Combustion starts from self ignition simultaneously at many locations in the slightly rich zone of the fuel jet, where the equivalence ratio is ϕ = 1 to 1.5 (zone B in Fig. 7 15). At this time, somewhere between 70% and 95% of the fuel in the combustion chamber is in the vapor state. When combustion starts, multiple flame fronts spreading from the many selfignition sites quickly consume all the gas mixture which is in a correct combustible air fuel ratio, even where self ignition wouldn't occur. This gives a very quick rise in temperature and pressure within the cylinder, shown in Fig Combustion lasts for about 40 to 50 of engine rotation, much longer than the 20 of fuel injection. This is because some fuel particles take a long time to mix into a combustible mixture with the air, and combustion therefore lasts well into the power stroke. This can be seen in Fig. 7 16, where the pressure remains high until the piston is atdc. Burning rate increases with engine speed

30 Diesel Combustion Process Spontaneous combustion (auto ignition) due to temperature increase of reactants. Ignition triggered by compression heating of fuel-air mixture. Ignition initiated at random point in combustion chamber Fast combustion process Less complete combustion process

31 Fuel Injection The nozzle diameter of a typical fuel injector is mm. Velocity of liquid fue1leaving a nozzle is usually about 100 to 200 m/sec. This is quickly reduced by viscous drag, evaporation, and combustion chamber swirl. Evaporation occurs on the outside of the fuel jet while the center remains liquid. Figure 7 15 shows how the inner liquid core is surrounded by successive vapor zones of air fuel that are: A. too rich to burn B. rich combustible C. stoichiometric t i D. lean combustible E. too lean to burn Factors that affect droplet size include pressure differential across the nozzle, nozzle size and geometry, fuel properties, and air temperature and turbulence. Higher nozzle pressure differentials give smaller droplets.

32 Cold Weather Problems Glow plug is used when starting most CI engines. A glow plug is a simple resistance heater connected to a battery with the heated surface located within the combustion chamber of the engine. For a short time, 10 15seconds, before starting the engine, the glow plug is turned on and the resistor becomes red hot. Now, when the engine is started, combustion in the first few cycles is not ignited by compressive heating but by surface ignition off the glow plug. After just a few cycles the cylinder walls and lubricant are warmed enough, so more normal operation of the engine is possible, the glow plug is turned off, and self ignition caused by compressive heating occurs.

33 See Examples:

Combustion. T Alrayyes

Combustion. T Alrayyes Combustion T Alrayyes Fluid motion with combustion chamber Turbulence Swirl SQUISH AND TUMBLE Combustion in SI Engines Introduction The combustion in SI engines inside the engine can be divided into three

More information

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion Turbulent Combustion The motion of the charge in the engine cylinder is always turbulent, when it is reached by the flame front. The charge motion is usually composed by large vortexes, whose length scales

More information

ACTUAL CYCLE. Actual engine cycle

ACTUAL CYCLE. Actual engine cycle 1 ACTUAL CYCLE Actual engine cycle Introduction 2 Ideal Gas Cycle (Air Standard Cycle) Idealized processes Idealize working Fluid Fuel-Air Cycle Idealized Processes Accurate Working Fluid Model Actual

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

Heat Transfer in Engines. Internal Combustion Engines

Heat Transfer in Engines. Internal Combustion Engines Heat Transfer in Engines Internal Combustion Engines Energy Distribution Removing heat is critical in keeping an engine and lubricant from thermal failure Amount of energy available for use: Brake thermal

More information

Lecture 5. Abnormal Combustion

Lecture 5. Abnormal Combustion Lecture 5 Abnormal Combustion Abnormal Combustion The Abnormal Combustion:- When the combustion gets deviated from the normal behavior resulting loss of performance or damage to the engine. It is happened

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd.

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd. Mechanisms of HC Formation in SI Engines... contd. The Lecture Contains: HC from Lubricating Oil Film Combustion Chamber Deposits HC Mixture Quality and In-Cylinder Liquid Fuel HC from Misfired Combustion

More information

Figure 1: The spray of a direct-injecting four-stroke diesel engine

Figure 1: The spray of a direct-injecting four-stroke diesel engine MIXTURE FORMATION AND COMBUSTION IN CI AND SI ENGINES 7.0 Mixture Formation in Diesel Engines Diesel engines can be operated both in the two-stroke and four-stroke process. Diesel engines that run at high

More information

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ ME 410 Day 30 Phases of Combustion 1. Ignition 2. Early flame development θd θ 3. Flame propagation b 4. Flame termination The flame development angle θd is the crank angle between the initial spark and

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

AE 1005 AUTOMOTIVE ENGINES COMBUSTION IN SI ENGINES

AE 1005 AUTOMOTIVE ENGINES COMBUSTION IN SI ENGINES AE 1005 AUTOMOTIVE ENGINES COMBUSTION IN SI ENGINES Syllabus Combustion in premixed and diffusion flames - Combustion process in IC engines. Stages of combustion - Flame propagation - Flame velocity and

More information

COMBUSTION in SI ENGINES

COMBUSTION in SI ENGINES Internal Combustion Engines MAK 493E COMBUSTION in SI ENGINES Prof.Dr. Cem Soruşbay Istanbul Technical University Internal Combustion Engines MAK 493E Combustion in SI Engines Introduction Classification

More information

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION LECTURE NOTES on INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION Integrated Master Course on Mechanical Engineering Mechanical Engineering Department November 2015 Approach SI _ indirect injection

More information

Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition

Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition Chapter 1 Introduction 1-3 ENGINE CLASSIFICATIONS Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition 1 (a) Spark Ignition (SI). An SI engine starts the combustion

More information

Internal Combustion Engines

Internal Combustion Engines Air and Fuel Induction Lecture 3 1 Outline In this lecture we will discuss the following: A/F mixture preparation in gasoline engines using carburetion. Air Charging technologies: Superchargers Turbochargers

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION Module 2:Genesis and Mechanism of Formation of Engine Emissions POLLUTANT FORMATION The Lecture Contains: Engine Emissions Typical Exhaust Emission Concentrations Emission Formation in SI Engines Emission

More information

COMBUSTION in SI ENGINES

COMBUSTION in SI ENGINES Internal Combustion Engines ME422 COMBUSTION in SI ENGINES Prof.Dr. Cem Soruşbay Internal Combustion Engines Combustion in SI Engines Introduction Classification of the combustion process Normal combustion

More information

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

More information

Alternative Fuels & Advance in IC Engines

Alternative Fuels & Advance in IC Engines Alternative Fuels & Advance in IC Engines IIT Kanpur Kanpur, India (208016) Combustion in SI Engine Course Instructor Dr. Avinash Kumar Agarwal Professor Department of Mechanical Engineering Indian Institute

More information

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS The Lecture Contains: Crankcase Emission Control (PCV System) Evaporative Emission Control Exhaust Gas Recirculation Water Injection file:///c /...%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/engine_combustion/lecture20/20_1.htm[6/15/2012

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 320 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

Focus on Training Section: Unit 2

Focus on Training Section: Unit 2 All Pump Types Page 1 1. Title Page Learning objectives Become familiar with the 4 stroke cycle Become familiar with diesel combustion process To understand how timing affects emissions To understand the

More information

SI engine combustion

SI engine combustion SI engine combustion 1 SI engine combustion: How to burn things? Reactants Products Premixed Homogeneous reaction Not limited by transport process Fast/slow reactions compared with other time scale of

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Engine Cycles. T Alrayyes

Engine Cycles. T Alrayyes Engine Cycles T Alrayyes Introduction The cycle experienced in the cylinder of an internal combustion engine is very complex. The cycle in SI and diesel engine were discussed in detail in the previous

More information

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 10 (January 2013), PP. 01-06 Effect of Tangential Grooves on Piston Crown

More information

Ignition control. The ignition system tasks. How is the ignition coil charge time and the ignition setting regulated?

Ignition control. The ignition system tasks. How is the ignition coil charge time and the ignition setting regulated? 1 Ignition control The ignition system tasks To transform the system voltage (approximately 14 V) to a sufficiently high ignition voltage. In electronic systems this is normally above 30 kv (30 000 V).

More information

Powertrain Efficiency Technologies. Turbochargers

Powertrain Efficiency Technologies. Turbochargers Powertrain Efficiency Technologies Turbochargers Turbochargers increasingly are being used by automakers to make it possible to use downsized gasoline engines that consume less fuel but still deliver the

More information

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION *P. Manoj Kumar 1, V. Pandurangadu 2, V.V. Pratibha Bharathi 3 and V.V. Naga Deepthi 4 1 Department of

More information

5. Control System CONTROL SYSTEM FUEL INJECTION (FUEL SYSTEM) A: GENERAL FU(H4DOTC)-29

5. Control System CONTROL SYSTEM FUEL INJECTION (FUEL SYSTEM) A: GENERAL FU(H4DOTC)-29 W1860BE.book Page 29 Tuesday, January 28, 2003 11:01 PM 5. Control System A: GENERAL The ECM receives signals from various sensors, switches, and other control modules. Using these signals, it determines

More information

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

More information

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Kul-14.4100 Internal Combustion Engine Technology Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Definitions Combustion engines convert the chemical energy of fuel to mechanical

More information

ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY

ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY 1 INTERNAL COMBUSTION ENGINES ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT DIVISON OF THERMAL AND ENERGY CONVERSION IC Engine Fundamentals 2 Engine Systems An engine

More information

AT AUTOMOTIVE ENGINES QUESTION BANK

AT AUTOMOTIVE ENGINES QUESTION BANK AT6301 - AUTOMOTIVE ENGINES QUESTION BANK UNIT I: CONSTRUCTION & WORKING PRINCIPLE OF IC ENGINES 1. State the application of CI engines? 2. What is Cubic capacity of an engine? 3. What is the purpose of

More information

UNIT IV INTERNAL COMBUSTION ENGINES

UNIT IV INTERNAL COMBUSTION ENGINES UNIT IV INTERNAL COMBUSTION ENGINES Objectives After the completion of this chapter, Students 1. To know the different parts of IC engines and their functions. 2. To understand the working principle of

More information

Chapter 6. Supercharging

Chapter 6. Supercharging SHROFF S. R. ROTARY INSTITUTE OF CHEMICAL TECHNOLOGY (SRICT) DEPARTMENT OF MECHANICAL ENGINEERING. Chapter 6. Supercharging Subject: Internal Combustion Engine 1 Outline Chapter 6. Supercharging 6.1 Need

More information

Combustion engines. Combustion

Combustion engines. Combustion Combustion engines Chemical energy in fuel converted to thermal energy by combustion or oxidation Heat engine converts chemical energy into mechanical energy Thermal energy raises temperature and pressure

More information

5. Control System CONTROL SYSTEM FUEL INJECTION (FUEL SYSTEM) A: GENERAL. FU(STi)-27

5. Control System CONTROL SYSTEM FUEL INJECTION (FUEL SYSTEM) A: GENERAL. FU(STi)-27 W1860BE.book Page 27 Tuesday, January 28, 2003 11:01 PM 5. Control System A: GENERAL The ECM receives signals from various sensors, switches, and other control modules. Using these signals, it determines

More information

UNDERSTANDING 5 GAS DIAGNOSIS

UNDERSTANDING 5 GAS DIAGNOSIS UNDERSTANDING 5 GAS DIAGNOSIS AND EMISSIONS Gas Diagnostic Steps This procedure will help in your efforts to figure out what the five-gas reading are telling you. In order for five gas analyses to be conclusive

More information

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 23.-24.5.213. INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE Kastytis Laurinaitis, Stasys Slavinskas Aleksandras

More information

Sensors & Controls. Everything you wanted to know about gas engine ignition technology but were too afraid to ask.

Sensors & Controls. Everything you wanted to know about gas engine ignition technology but were too afraid to ask. Everything you wanted to know about gas engine ignition technology but were too afraid to ask. Contents 1. Introducing Electronic Ignition 2. Inductive Ignition 3. Capacitor Discharge Ignition 4. CDI vs

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

Experimental Investigation of Hot Surface Ignition of Hydrocarbon-Air Mixtures

Experimental Investigation of Hot Surface Ignition of Hydrocarbon-Air Mixtures Paper # 2D-09 7th US National Technical Meeting of the Combustion Institute Georgia Institute of Technology, Atlanta, GA Mar 20-23, 2011. Topic: Laminar Flames Experimental Investigation of Hot Surface

More information

Fuel Metering System Component Description

Fuel Metering System Component Description 1999 Chevrolet/Geo Tahoe - 4WD Fuel Metering System Component Description Purpose The function of the fuel metering system is to deliver the correct amount of fuel to the engine under all operating conditions.

More information

EMISSION CONTROL EMISSION CONTROLS

EMISSION CONTROL EMISSION CONTROLS EMISSION CONTROL EMISSION CONTROLS Emissions control systems on Land Rover vehicles work closely with fuel system controls to reduce airborne pollutants. Improper operation of these systems can lead to

More information

I.C Engine Topic: Fuel supply systems Part-1

I.C Engine Topic: Fuel supply systems Part-1 I.C Engine Topic: Fuel supply systems Part-1 By: Prof.Kunalsinh Kathia Essential parts of carburetor Fuel strainer Float chamber Metering and idiling system Choke and throttle Fuel strainer As gasoline

More information

Which are the four important control loops of an spark ignition (SI) engine?

Which are the four important control loops of an spark ignition (SI) engine? 151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

More information

Internal Combustion Engines

Internal Combustion Engines Internal Combustion Engines The internal combustion engine is an engine in which the burning of a fuel occurs in a confined space called a combustion chamber. This exothermic reaction of a fuel with an

More information

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4DOTC

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4DOTC EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4DOTC SYSTEM OVERVIEW 1. System Overview There are three emission control systems, which are as follows: Crankcase emission control system Exhaust emission

More information

CEE 452/652. Week 6, Lecture 1 Mobile Sources. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 6, Lecture 1 Mobile Sources. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 6, Lecture 1 Mobile Sources Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Read chapter 18 Review of urban atmospheric chemistry What are mobile

More information

Vacuum Readings for Tuning and Diagnosis

Vacuum Readings for Tuning and Diagnosis Vacuum Readings for Tuning and Diagnosis -Henry P. Olsen Once you learn to properly interpret its readings, a vacuum gauge can be one of the most useful tools in your toolbox. 22 FEATURE Some people consider

More information

Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine

Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine Vivek Shankhdhar a, Neeraj Kumar b a M.Tech Scholar, Moradabad Institute of Technology, India b Asst. Proff. Mechanical

More information

Chapter 6. NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE)

Chapter 6. NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Editor s Note: Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) was written

More information

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 112 CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 8.1 INTRODUCTION Energy conservation and emissions have become of increasing concern over the past few decades. More stringent emission laws along

More information

EEN-E2002 Combustion Technology 2017 LE 3 answers

EEN-E2002 Combustion Technology 2017 LE 3 answers EEN-E2002 Combustion Technology 2017 LE 3 answers 1. Plot the following graphs from LEO-1 engine with data (Excel_sheet_data) attached on my courses? (12 p.) a. Draw cyclic pressure curve. Also non-fired

More information

State of the Art (SOTA) Manual for Internal Combustion Engines

State of the Art (SOTA) Manual for Internal Combustion Engines State of the Art (SOTA) Manual for Internal Combustion Engines July 1997 State of New Jersey Department of Environmental Protection Air Quality Permitting Program State of the Art (SOTA) Manual for Internal

More information

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE G.S.Gosavi 1, R.B.Solankar 2, A.R.Kori 3, R.B.Chavan 4, S.P.Shinde 5 1,2,3,4,5 Mechanical Engineering Department, Shivaji University, (India)

More information

Handout Activity: HA185

Handout Activity: HA185 Cylinder heads Handout Activity: HA185 HA185-2 Cylinder head The cylinder head bolts onto the top of the cylinder block where it forms the top of the combustion chamber. It carries the valves and, in many

More information

Basic Requirements. ICE Fuel Metering. Mixture Quality Requirements. Requirements for Metering & Mixing

Basic Requirements. ICE Fuel Metering. Mixture Quality Requirements. Requirements for Metering & Mixing Basic Requirements ICE Fuel Metering Dr. M. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Combustion process Emission cleaning Fuel distribution Glow plugs Injectors Low and high pressure pumps

Combustion process Emission cleaning Fuel distribution Glow plugs Injectors Low and high pressure pumps Page 1 of 16 S60 (-09), 2004, D5244T, M56, L.H.D, YV1RS799242356771, 356771 22/1/2014 PRINT Combustion process Emission cleaning Fuel distribution Glow plugs Injectors Low and high pressure pumps Fuel

More information

CHAPTER 6 IGNITION SYSTEM

CHAPTER 6 IGNITION SYSTEM CHAPTER 6 CHAPTER 6 IGNITION SYSTEM CONTENTS PAGE Faraday s Law 02 The magneto System 04 Dynamo/Alternator System 06 Distributor 08 Electronic System 10 Spark Plugs 12 IGNITION SYSTEM Faraday s Law The

More information

Control of PCCI Combustion using Physical and Chemical Characteristics of Mixed Fuel

Control of PCCI Combustion using Physical and Chemical Characteristics of Mixed Fuel Doshisha Univ. - Energy Conversion Research Center International Seminar on Recent Trend of Fuel Research for Next-Generation Clean Engines December 5th, 27 Control of PCCI Combustion using Physical and

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

Numerical simulation of detonation inception in Hydrogen / air mixtures

Numerical simulation of detonation inception in Hydrogen / air mixtures Numerical simulation of detonation inception in Hydrogen / air mixtures Ionut PORUMBEL COMOTI Non CO2 Technology Workshop, Berlin, Germany, 08.03.2017 09.03.2017 Introduction Objective: Development of

More information

HALDERMAN

HALDERMAN HALDERMAN WWW.JAMESHALDERMAN.COM 1. Diesel fuel ignition in a warm engine is being discussed. Technician A says diesel fuel is ignited by the heat of the compression. Technician B says diesel fuel is ignited

More information

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 295-306 295 AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE by Jianyong ZHANG *, Zhongzhao LI,

More information

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4SO

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4SO EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4SO SYSTEM OVERVIEW 1. System Overview There are three emission control systems, which are as follows: Crankcase emission control system Exhaust emission

More information

2013 THERMAL ENGINEERING-I

2013 THERMAL ENGINEERING-I SET - 1 II B. Tech II Semester, Regular Examinations, April/May 2013 THERMAL ENGINEERING-I (Com. to ME, AME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~

More information

Fire in the Hole. Choosing a set of racing spark. Racing Spark Plugs. By Larry Carley, Technical Editor

Fire in the Hole. Choosing a set of racing spark. Racing Spark Plugs. By Larry Carley, Technical Editor Fire in the Hole Racing By Larry Carley, Technical Editor lcarley@babcox.com Choosing a set of racing spark plugs for a particular application is not as easy as it sounds because the plugs have to be closely

More information

Dual Fuel Engine Charge Motion & Combustion Study

Dual Fuel Engine Charge Motion & Combustion Study Dual Fuel Engine Charge Motion & Combustion Study STAR-Global-Conference March 06-08, 2017 Berlin Kamlesh Ghael, Prof. Dr. Sebastian Kaiser (IVG-RF), M. Sc. Felix Rosenthal (IFKM-KIT) Introduction: Operation

More information

A Study of EGR Stratification in an Engine Cylinder

A Study of EGR Stratification in an Engine Cylinder A Study of EGR Stratification in an Engine Cylinder Bassem Ramadan Kettering University ABSTRACT One strategy to decrease the amount of oxides of nitrogen formed and emitted from certain combustion devices,

More information

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H6DO

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H6DO EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H6DO SYSTEM OVERVIEW 1. System Overview There are three emission control systems, which are as follows: Crankcase emission control system Exhaust emission

More information

Comparative Study Of Four Stroke Diesel And Petrol Engine.

Comparative Study Of Four Stroke Diesel And Petrol Engine. Comparative Study Of Four Stroke Diesel And Petrol Engine. Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion

More information

Template for the Storyboard stage

Template for the Storyboard stage Template for the Storyboard stage Animation can be done in JAVA 2-D. Mention what will be your animation medium: 2D or 3D Mention the software to be used for animation development: JAVA, Flash, Blender,

More information

Lecture 27: Principles of Burner Design

Lecture 27: Principles of Burner Design Lecture 27: Principles of Burner Design Contents: How does combustion occur? What is a burner? Mixing of air and gaseous fuel Characteristic features of jet Behavior of free (unconfined) and confined jet

More information

MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5

MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5 MIXTURE FORMATION IN SPARK IGNITION ENGINES Chapter 5 Mixture formation in SI engine Engine induction and fuel system must prepare a fuel-air mixture that satisfiesthe requirements of the engine over its

More information

Learning Guide EMISSION SPECIALIST 5 GAS ANALYSIS COURSE NUMBER: E001-01

Learning Guide EMISSION SPECIALIST 5 GAS ANALYSIS COURSE NUMBER: E001-01 Learning Guide EMISSION SPECIALIST 5 GAS ANALYSIS COURSE NUMBER: E001-01 Notice Due to the wide range of vehicles makes and models, the information given during the class will be general in nature and

More information

Air Cooled Engine Technology. Roth 9 th Ch 5 2 & 4 Cycle Engines Pages 81 94

Air Cooled Engine Technology. Roth 9 th Ch 5 2 & 4 Cycle Engines Pages 81 94 Roth 9 th Ch 5 2 & 4 Cycle Engines Pages 81 94 1. The of the piston is its movement in the cylinder from one end of its travel to another. Either TDC to BDC (downstroke) or BDC to TDC (upstroke). Identified

More information

Name Date. True-False. Multiple Choice

Name Date. True-False. Multiple Choice Name Date True-False T F 1. Oil film thickness increases with an increase in oil temperature. T F 2. Displacement is the volume that a piston displaces in an engine when it travels from top dead center

More information

There are predominantly two reasons for excessive fuelling: increased fuel pressure and extended injector duration. Figure 1.0

There are predominantly two reasons for excessive fuelling: increased fuel pressure and extended injector duration. Figure 1.0 In this tutorial we look at the actuators and components that affect the vehicles exhaust emissions when the electronically controlled fuel injection system is found to be over fuelling. There are predominantly

More information

Homogeneous Charge Compression Ignition (HCCI) Engines

Homogeneous Charge Compression Ignition (HCCI) Engines Homogeneous Charge Compression Ignition (HCCI) Engines Aravind. I. Garagad. Shri Dharmasthala Manjunatheshwara College of Engineering and Technology, Dharwad, Karnataka, India. ABSTRACT Large reductions

More information

Handout Activity: HA170

Handout Activity: HA170 Basic diesel engine components Handout Activity: HA170 HA170-2 Basic diesel engine components Diesel engine parts are usually heavier or more rugged than those of similar output gasoline engines. Their

More information

Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE)

Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Editor s Note: Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) includes

More information

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES Bulletin of the Transilvania University of Braşov Vol. 3 (52) - 2010 Series I: Engineering Sciences STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES R.

More information

Chrysler Electronic Ignition System

Chrysler Electronic Ignition System 1 of 11 1/6/2010 11:02 PM Chrysler Electronic Ignition System Classic Winnebago's Post by: DaveVA78Chieftain on August 13, 2009, 10:15 PM Components The Chrysler Electronic Ignition System consists of

More information

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1.

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1. Introduction: Main three types of automotive vehicle being used 1. Passenger cars powered by four stroke gasoline engines 2. Motor cycles, scooters and auto rickshaws powered mostly by small two stroke

More information

CHAPTER-5 USE OF HYDROGEN AS FUEL IN C.I ENGINE

CHAPTER-5 USE OF HYDROGEN AS FUEL IN C.I ENGINE 124 CHAPTER-5 USE OF HYDROGEN AS FUEL IN C.I ENGINE In this chapter use of hydrogen as fuel in I.C. engine is discussed on the basis of literature survey. Prospects of use of hydrogen in C.I. engine have

More information

ENGINE & WORKING PRINCIPLES

ENGINE & WORKING PRINCIPLES ENGINE & WORKING PRINCIPLES A heat engine is a machine, which converts heat energy into mechanical energy. The combustion of fuel such as coal, petrol, diesel generates heat. This heat is supplied to a

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(9): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(9): Research Article Available online www.jsaer.com, 2018, 5(9):62-67 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR A Study on Engine Performance and Emission Characteristics of LPG Engine with Hydrogen Addition Sung

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Simulation of Performance

More information

UniversitiTeknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia

UniversitiTeknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia Applied Mechanics and Materials Vol. 388 (2013) pp 201-205 Online available since 2013/Aug/30 at www.scientific.net (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.388.201

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL IC Engine - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Internal Combustion Engine GATE, IES & PSUs IC Engine - ME GATE, IES, PSU 2 C O N T E N T 1.

More information

Honda Accord/Prelude

Honda Accord/Prelude Honda Accord/Prelude 1984-1995 In Tank Fuel Pumps TEST 1. Turn the ignition OFF. 2. On the Accord, remove the screws securing the underdash fuse box to its mount. Remove the fuel cut off relay from the

More information

Lambda Control Fuel Adaptation and Fuel Trim

Lambda Control Fuel Adaptation and Fuel Trim Lambda Control Fuel Adaptation and Fuel Trim Q: What is Lambda and Lambda Control? A: In the case of a gasoline engine, the optimal mixture of air to fuel for complete combustion is a ratio of 14.7 parts

More information

2) Rich mixture: A mixture which contains less air than the stoichiometric requirement is called a rich mixture (ex. A/F ratio: 12:1, 10:1 etc.

2) Rich mixture: A mixture which contains less air than the stoichiometric requirement is called a rich mixture (ex. A/F ratio: 12:1, 10:1 etc. Unit 3. Carburettor University Questions: 1. Describe with suitable sketches : Main metering system and Idling system 2. Draw the neat sketch of a simple carburettor and explain its working. What are the

More information

Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn

Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn G. Desoutter, A. Desportes, J. Hira, D. Abouri, K.Oberhumer, M. Zellat* TOPICS Introduction

More information

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction UNIT 2 POWER PLANTS Power Plants Structure 2.1 Introduction Objectives 2.2 Classification of IC Engines 2.3 Four Stroke Engines versus Two Stroke Engines 2.4 Working of Four Stroke Petrol Engine 2.5 Working

More information

2.61 Internal Combustion Engines Spring 2008

2.61 Internal Combustion Engines Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.61 Internal Combustion Engines Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Engine Heat Transfer

More information