A CASE STUDY IN HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

Size: px
Start display at page:

Download "A CASE STUDY IN HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES"

Transcription

1 A CASE STUDY IN HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES Sreejith C 1, Abhijit Roy 2, Abhishek Samanta 3, Indira Ghosh 4 and Ragul G 5 1 Department of Automobile Engineering, Nehru College of Engineering & Research Centre, Thrissur, India 2,3,4,5 Department of Mechanical Engineering, Budge Budge Institute of Technology, Kolkata, India Abstract This paper reports an investigation that was carried out in a HCCI has characteristics of the two most popular forms of combustion used in SI (spark ignition) engines- homogeneous charge spark ignition (gasoline engines) and CI engines: stratified charge compression ignition (diesel engines). As in homogeneous charge spark ignition, the fuel and oxidizer are mixed together. However, rather than using an electric discharge to ignite a portion of the mixture, the density and temperature of the mixture are raised by compression until the entire mixture reacts spontaneously. Stratified charge compression ignition also relies on temperature and density increase resulting from compression, but combustion occurs at the boundary of fuel-air mixing, caused by an injection event, to initiate combustion. The defining characteristic of HCCI is that the ignition occurs at several places at a time which makes the fuel/air mixture burn nearly simultaneously. There is no direct initiator of combustion. This makes the process inherently challenging to control. However, with advances in microprocessors and a physical understanding of the ignition process, HCCI can be controlled to achieve gasoline engine-like emissions along with diesel engine-like efficiency. In fact, HCCI engines have been shown to achieve extremely low levels of Nitrogen oxide emissions (NOx) without an after treatment catalytic converter. The unburned hydrocarbon and carbon monoxide emissions are still high (due to lower peak temperatures), as in gasoline engines, and must still be treated to meet automotive emission regulations. Recent research has shown that the use of two fuels with different reactivities (such as gasoline and diesel) can help solve some of the difficulties of controlling HCCI ignition and burn rates. RCCI or Reactivity Controlled Compression Ignition has been demonstrated to provide highly efficient, low emissions operation over wide load and speed ranges. Index Terms Homogeneous charge compression Ignition, Gasoline Engines, Diesel Engines, Variable Compression ratio. I. INTRODUCTION HCCI has characteristics of the two most popular forms of combustion used in IC engines: homogeneous charge spark ignition (gasoline engines) and stratified charge compression ignition (diesel engines). As in homogeneous charge spark ignition, the fuel and oxidizer are mixed together. However, rather than using an electric discharge to ignite a portion of the mixture, the concentration and temperature of the mixture are raised by compression until the entire mixture reacts simultaneously. Stratified charge compression ignition also relies on temperature increase and concentration resulting from compression, but combustion occurs at the boundary of fuel-air mixing, caused by an injection event, to initiate combustion. In SI engines, large cycle-to-cycle variations occur since the early flame development varies considerably due to mixture in homogeneity in the vicinity of the spark plug. With HCCI, cycle-to-cycle variations of combustion are very small, since combustion initiation takes place at many points at the same time. This defining characteristic of HCCI makes the fuel/air mixture burn nearly simultaneously. There is no direct initiator of combustion. This makes the process inherently challenging to control. However, with advances in microprocessors and a physical understanding of the ignition process, HCCI can be controlled to achieve gasoline engine-like emissions along with diesel engine-like efficiency. In fact, HCCI engines have been shown to achieve extremely low levels of Nitrogen oxide emissions (NOx) without after treatment catalytic converter. The unburned hydrocarbon and carbon monoxide emissions are still high (due to lower peak temperatures), as in gasoline engines, and must still be treated to meet automotive emission regulations. The IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 158

2 homogeneous charge compression ignition (HCCI) engine has caught the attention of automotive and diesel engine manufacturers worldwide because of its potential to rival the high efficiency of diesel engines while keeping NOx and particulate emissions extremely low. However, researchers must overcome several technical barriers, such as controlling ignition timing, reducing unburned hydrocarbon and carbon monoxide emissions, extending operation to higher loads, and maintaining combustion stability through rapid transients. HCCI engines can operate using a variety of fuels. In the near term, the application of HCCI to automotive engines will likely involve mixed-mode combustion in which HCCI is used at low-to-moderate loads and standard spark-ignition (SI) combustion is used at higher loads. other conventional combustion concepts like spark or compression ignition. In the HCCI engine homogeneous mixture is created and it depends on solution in the intake system or inside the cylinder. Homogeneous charge or air is drawn into the cylinder during suction stroke and compressed to high enough temperature and pressure. To achieve homogeneous spontaneous ignition of the charge preferable near TDC, high intake temperature and the high compression ratio are required. In contrast to SI and CI engines HCCI combustion lacks from the flame propagation. Combustion initiation occurs simultaneously at whole volume of combustion chamber and burns at the same time. II. MAIN CHALLENGES AND SOLUTIONS Major Challenges in automobile sector are Emission (NOx & Soot) and Fuel Economy 2.1 Emission NOx is a generic term for oxides of nitrogen, a mixture of nitric oxide (NO) and nitrogen dioxide (NO2), which are by-products of combustion at high temperatures, such as those which occur in an engine cylinder. NOx is a leading cause of, or contributing factor to, a range of respiratory diseases such as asthma, emphysema and bronchitis, conditions which can lead to premature death. The formation of ozone, which can result in lung damage, is another major adverse effect of NOx emissions. 2.2 Fuel Economy Fuel economy is the energy efficiency of a particular vehicle, is given as a ratio of distance travelled per unit of fuel consumed. Fuel economy is a major problem due to increase in population and scarcity of oil. Some of the solutions to these challenges are: Hybrid Vehicles Fuel Cells HCCI Engines GDI Engine III. PRINCIPLE OF WORKING The HCCI concept, which is proposed as an ultimate method of lean burn, is completely different from Fig.1. Photo sequence of HCCI combustion, based on 20 images per degree CA In the fig.1 it can be seen that the combustion starts in almost whole volume of combustion chamber two Crank Angle Degrees before TDC (CAD-02). After combustion initiation the temperature and pressure rapidly increase and whole bulk of fuel burns simultaneously within a few crank angles (CAD-00 to CAD+03). Because the whole mixture burns almost homogeneously unstable flame propagation is avoided. The HCCI non flame combustion process can be described as a premixed distributed reaction zone. On the contrary to the SI engines where large cycle to cycle variation occur, since the early flame development varies considerably due to mixture inhomogeneity in the vicinity of the spark plug, HCCI cycle to cycle variations of combustion are very small. Also in contrast to contemporary engines HCCI fast IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 159

3 combustion causes very high and fast heat and pressure release. Under some conditions where enough power was generated p max exceeded 200 bars what is considered to be the critical limit for engine mechanisms. To avoid so fast combustion highly diluted mixture must be used. Fig.2.SI, CI and HCCI Engine Comparison 3.1 Method of Operation The mixture will spontaneously ignite when it reaches its auto-ignition temperature as a result of the temperature increase in the compression stroke. A mixture of fuel and air will ignite when the concentration and temperature of reactants is sufficiently high. The concentration and/or temperature can be increased by several different ways: High compression ratio Pre-heating of induction gases Forced induction Retained or re-inducted exhaust gases Fig.3. HCCI Concept IV. MODES OF OPERATION 4.1 Different Modes of Operation Combustion start is controlled externally in both SI and CI engine, while in HCCI; combustion start is dependent only on the thermo-chemical conditions inside the cylinder. As the driver steps further on the accelerator, more fuel is introduced into the engine and hence higher temperature and pressure build up inside the cylinder, which causes the combustion to start earlier. Unfortunately, in the lower load area, combustion starts too late to have a sustainable combustion. This is called misfire. In contrast, at higher loads, the combustion starts too early causing a large heat release rate which causes a phenomenon called combustion knock. This limits the operating range into a narrow window. So HCCI engines will need to switch to a conventional SI or diesel mode at very low and high load conditions due to dilution limits. 4.2 HCCI-DI DUAL MODE A dual combustion system could potentially overcome the limits of low-load operations and allow for a gradual transition between the conventional DI mode at high load and the HCCI external mixture formation at idle and low load. Using an automotive common rail Diesel engine, a rapid prototyping ECU is used to control the direct injection system, varying the number of injections, rail pressure, timings and fuel quantities. The ECU also controls the quantity of fuel atomized in the intake manifold, as well as the EGR dilution and charge temperature. Long ignition delay and rapid mixing are required to achieve diluted homogeneous mixture. Combustion noise and NOx emissions were reduced substantially without an increase in Pm. Combustion phasing is controlled by injection timing. Thus DI-HCCI proves to be promising alternative for conventional HCCI with good range of operation. 4.3 HCCI-SI DUAL MODE Another concept to overcome the disadvantages of HCCI is to use HCCI / SI dual mode combustion. Equipped with the VVA and spark ignition system, the HCCI/SI dual mode engine is able to operate in HCCI mode at low to medium loads and it can switch into SI mode to meet the large power output requirements. However the mode transition, especially from HCCI IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 160

4 to SI, is not very stable and smooth so that more improvements would be needed on the control strategies to diminish the cycle-to-cycle variation. Generally, this dual mode engine combines the HCCI and SI together to achieve the best performance. V. RESULTS USING DIFFERENT FUELS 5.1 Gasoline Gasoline has multiple advantages as an HCCI fuel. Gasoline also has a high octane number, which allows the use of reasonably high compression ratios in HCCI engines. Actual compression ratios for gasoline-fueled HCC engine data vary from 12:1 to 21:1 depending on the fuel octane number, intake air temperature, and the specific engine used (which may affect the amount of hot residual naturally retained). This compressionratio range allows gasoline-fuelled HCCI engines to achieve relatively high thermal efficiencies (in the range of diesel-fueled CIDI engine efficiencies). A potential drawback to higher compression ratios is that the engine design must accommodate the relatively high cylinder pressures that can result, particularly at high engine loads. Additional advantages of gasoline include easy evaporation, simple mixture preparation, and a ubiquitous refuelling infrastructure 5.2 Diesel Fuel Diesel fuel auto ignites rapidly at relatively low temperatures but is difficult to evaporate. To obtain diesel-fuel HCCI combustion, the air-fuel mixture must be heated considerably to evaporate the fuel. The compression ratio of the engine must be very low (8:1 or lower) to obtain satisfactory combustion, which results in a low engine efficiency. Alternatively, the fuel can be injected in-cylinder, but without air preheating, temperatures are not sufficiently high for diesel-fuel vaporization until well up the compression stroke. This strategy often results in incomplete fuel vaporization and poor mixture preparation, which can lead to particulate matter and NOx emissions. However, one concept for direct injection of diesel fuel, involving late injection (after TDC) with high swirl, has been successful at thoroughly vaporizing and mixing the fuel before ignition at light loads. This mode of operation is used in the Nissan MK engine, to be discussed in the next sub-section. In addition, diesel fuel has an extensive refueling infrastructure. 5.3 Propane Propane is an excellent fuel for HCCI. High efficiencies can be achieved with propane-fueled HCCI engines because propane has a high octane number (105). Because propane is a gaseous fuel, it can be easily mixed with air. Some infrastructure also exists for propane. Because it can be maintained as a liquid at moderate pressures, the amount of fuel that can be stored onboard a vehicle is comparable to what can be stored for typical liquid fuels. 5.4 Natural Gas Because natural gas has an extremely high octane rating (about 110), natural gas HCCI engines can be operated at very high compression ratios (15:1 to 21:1), resulting in high efficiency. However, similar to gasoline or propane, the engine design must accommodate the relatively high cylinder pressures that can result. Natural gas is widely available throughout the U.S. VI. CONTROLLING COMBUSTION IN HCCI 6.1 Difficulty Controlling HCCI is a major hurdle to more widespread commercialization. HCCI is more difficult to control than other popular modern combustion engines, such as Spark Ignition (SI) and Diesel. In a typical gasoline engine, a spark is used to ignite the pre-mixed fuel and air. In Diesel engine, combustion begins when the fuel is injected into compressed air. In both cases, the timing of combustion is explicitly controlled. In an HCCI engine, however, the homogeneous mixture of fuel and air is compressed and combustion begins whenever the appropriate conditions are reached. This means that there is no well-defined combustion initiator that can be directly controlled. An engine can be designed so that the ignition conditions occur at a desirable timing. However, this would only happen at one operating point. The engine could not change the amount of work it produces. This could work in a hybrid vehicle, but most engines must modulate their output to meet user demands dynamically. To achieve dynamic operation in an HCCI engine, the control system must change the conditions that induce combustion. Thus, the engine must control either the compression ratio, IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 161

5 inducted gas temperature, inducted gas pressure, fuelair ratio, or quantity of retained or re inducted exhaust. The approaches suggested for control are Variable compression ratio Variable induction temperature Variable valve actuation Variable exhaust gas percentage Variable fuel ignition quality 6.2 Variable Compression ratio There are several methods for modulating both the geometric and effective compression ratio. The geometric compression ratio can be changed with a movable plunger at the top of the cylinder head. The effective compression ratio can be reduced from the geometric ratio by closing the intake valve either very late or very early with some form of variable valve actuation. Both of the approaches mentioned above require some amounts of energy to achieve fast responses. Additionally, implementation is expensive. Control of an HCCI engine using variable compression ratio strategies has been shown effective. 6.3 Variable Induction Temperature In HCCI engines, the auto ignition event is highly sensitive to temperature. Various methods have been developed which use temperature to control combustion timing. The simplest method uses resistance heaters to vary the inlet temperature, but this approach is slow (cannot change on a cycle-to-cycle basis). Another technique is known as fast thermal management (FTM). It is accomplished by rapidly varying the cycle to cycle intake charge temperature by rapidly mixing hot and cold air streams. It is also expensive to implement and has limited bandwidth associated with actuator energy. Fig.4.FTM System 6.4 Variable Valve Actuation Variable valve actuation (VVA) has been proven to extend the HCCI operating region by giving finer control over the temperature-pressure-time history within the combustion chamber. VVA can achieve this via two distinct methods. Controlling the effective compression ratio: A variable duration VVA system on intake can control the point at which the intake valve closes. If this is retarded past bottom dead center (BDC), then the compression ratio will change, altering the in-cylinder pressure-time history prior to combustion. Controlling the amount of hot exhaust gas retained in the combustion chamber: A VVA system can be used to control the amount of hot internal exhaust gas recirculation (EGR) within the combustion chamber. This can be achieved with several methods, including valve re-opening and changes in valve overlap. By balancing the percentage of cooled external EGR with the hot internal EGR generated by a VVA system, it may be possible to control the in-cylinder temperature. While electro-hydraulic and cam less VVA systems can be used to give a great deal of control over the valve event, the component for such systems is currently complicated and expensive. Mechanical variable lift and duration systems, however, although still being more complex than a standard valve train, are far cheaper and less complicated. If the desired VVA characteristic is known, then it is relatively simple to configure such systems to achieve the necessary control over the valve lift curve. 6.5 Variable Exhaust Gas Percentage Exhaust gas can be very hot if retained or re-inducted from the previous combustion cycle or cool if recirculate through the intake as in conventional EGR systems. The exhaust has dual effects on HCCI combustion. It dilutes the fresh charge, delaying ignition and reducing the chemical energy and engine work. Hot combustion products conversely will increase the temperature of the gases in the cylinder and advance ignition. 6.6 Variable Fuel Ignition Quality Another means to extend the operating range is to control the onset of ignition and the heat release rate by manipulating the fuel itself. This is usually carried out by adopting multiple fuels and blending them "on the fly" for the same engine. Examples could be IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 162

6 blending of commercial gasoline and diesel fuels, adopting natural gas or ethanol. This can be achieved in a number of ways: Blending fuels upstream of the engine: Two fuels are mixed in the liquid phase, one with low resistance to ignition (such as diesel fuel) and a second with a greater resistance (gasoline), the timing of ignition is controlled by varying the compositional ratio of these fuels. Fuel is then delivered using either a port or direct injection event. Having two fuel circuits: Fuel A can be injected in the intake duct (port injection) and Fuel B using a direct injection (in-cylinder) event, the proportion of these fuels can be used to control ignition, heat release rate as well as exhaust gas emissions. A. Power Output In both a spark ignition engine and diesel engine, power can be increased by introducing more fuel into the combustion chamber. These engines can withstand a boost in power because the heat release rate in these engines is slow. However, in HCCI engines the entire mixture burns nearly simultaneously. Increasing the fuel/air ratio will result in even higher peak pressures and heat release rates. In addition, many of the viable control strategies for HCCI require thermal preheating of the charge which reduces the density and hence the mass of the air/fuel charge in the combustion chamber, reducing power. These factors make increasing the power in HCCI engines challenging. One way to increase power is to use fuels with different autoignition properties. This will lower the heat release rate and peak pressures and will make it possible to increase the equivalence ratio. Another way is to thermally stratify the charge so that different points in the compressed charge will have different temperatures and will burn at different times lowering the heat release rate making it possible to increase power. A third way is to run the engine in HCCI mode only at part load conditions and run it as a diesel or spark ignition engine at full or near full load conditions. Since much more research is required to successfully implement thermal stratification in the compressed charge, the last approach is being studied more intensively. B. Emissions from HCCI Engine Because HCCI operates on lean mixtures, the peak temperatures are lower in comparison to spark ignition (SI) and Diesel engines. The low peak temperatures prevent the formation of NOx. This leads to NOx emissions at levels far less than those found in traditional engines. However, the low peak temperatures also lead to incomplete burning of fuel, especially near the walls of the combustion chamber. This leads to high carbon monoxide and hydrocarbon emissions. An oxidizing catalyst would be effective at removing the regulated species because the exhaust is still oxygen rich. VII. ADVANTAGES HCCI provides up to a 15-30% fuel savings, while meeting current emissions standards. Since HCCI engines are fuel-lean, they can operate at a Diesel-like compression ratios (>15), thus achieving higher efficiencies than conventional spark-ignited gasoline engines. Homogeneous mixing of fuel and air leads to cleaner combustion and lower emissions. Actually, because peak temperatures are significantly lower than in typical spark ignited engines, NOx levels are almost negligible. Additionally, the premixed lean mixture does not produce soot HCCI engines can operate on gasoline, diesel fuel, and most alternative fuels. In regards to gasoline engines, the omission of throttle losses improves HCCI efficiency. HCCI engines may be lower cost due to lack of injection system etc. VIII. DISADVANTAGES High in-cylinder peak pressures may cause damage to the engine. High heat release and pressure rise rates contribute to engine wear. The auto ignition event is difficult to control, unlike the ignition event in spark ignition (SI) and diesel engines which are controlled by spark plugs and in-cylinder fuel injectors, respectively. HCCI engines have a small power range, constrained at low loads by lean flammability limits and high loads by in-cylinder pressure restrictions. Carbon monoxide (CO) and hydrocarbon (HC) pre-catalyst emissions are higher than a typical spark ignition engine, caused by incomplete IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 163

7 oxidation (due to the rapid combustion event and low in-cylinder temperatures) and trapped crevice gases, respectively. Extending the Operating Range to High Load Cold-Start Capability IX. RESEARCH 9.1 Introduction Ford, General Motors (GM), and Cummins Engine Company have been performing research on HCCI combustion. Ford motor company has an active research program in HCCI combustion. Researchers are using optical diagnostics in single-cylinder engines to explore viable HCCI operating regimes and to investigate methods of combustion control. In addition, chemical kinetic and cycle simulation models are being applied to better understand the fundamentals of the HCCI process and to explore methods of implementing HCCI technology.gm, at a research level, is evaluating the potential for incorporating HCCI combustion into engine systems. This work includes assessing the strengths and weaknesses of HCCI operation relative to other advanced concepts, assessing how best to integrate HCCI combustion into a viable power train, and the development of appropriate modeling tools. Work is focused on fuels, combustion control, combustion modeling, and mode transitioning between HCCI and traditional SI or CI combustion. GM is also supporting HCCI work at the university level. Cummins has been researching HCCI for almost 15 years. Industrial engines run in-house using HCCI combustion of natural gas has achieved remarkable emission and efficiency results The main areas requiring R&D are outlined below Ignition Timing Control Heat release rate Engine Cold-Start Multi-Cylinder Engine Effects Fuel System Engine Control Strategies and Systems 9.2 Ignition Timing Control R&D is needed to develop control methods for HCCI engines in order to overcome the challenge of maintaining ignition timing as load and speed are varied. Maintaining optimal ignition timing is more challenging for HCCI engines than for conventional engines because no positive mechanism, such as spark or fuel-injection, determines ignition timing. In HCCI engines, ignition timing is determined by the chemical kinetic reaction rates of the mixture, which are controlled by time, temperature, and mixture composition. Of these parameters, ignition timing is most sensitive to temperature. As engine speed and load (time and mixture) are varied, the ignition timing will also vary, unless the charge temperature is adjusted to compensate. The amount of compensation required is a strong function of fuel type, with onestage-ignition fuels (e.g. gasoline) requiring much less compensation for changes in speed and load than twostage-ignition fuels (e.g. diesel). Perhaps the most straightforward way to control charge temperature in an HCCI engine is to add a variable amount of hot EGR to the intake; however, the response is slow, and transients are not handled well. Alternatively, varying the temperature by mechanical variation of the compression ratio (VCR) has recently been demonstrated as an excellent way of controlling HCCI ignition timing. 9.3 Heat Release Rate R&D is needed to develop methods to slow the rate of combustion in HCCI engines at high engine loads to prevent excessive noise and engine damage. Two solutions are as follows: First, on a shorter time horizon, at high loads the engine could switch over and run as a conventional SI or CIDI engine. SI operation has advantages for control of NOx emissions, and gasoline-like fuels offer additional advantages. On the other hand, CIDI operation has the advantage of high efficiency. Conversion to SI operation may require reducing the compression ratio, which would be straightforward for an engine equipped with a VVT or VCR system. Second, the charge temperature and/or mixture could be partially stratified to smooth out the heat release rate. Because even small variations in intake temperature (~10 C) can significantly alter HCCI ignition timing, thermal stratification is a feasible means of spreading out the heat release. 9.4 Engine Cold Start R&D is needed to develop concepts to overcome the challenge of ignition in cold HCCI engines without compromising the warm engine performance. Past IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 164

8 research has focused on warm-engine HCCI operation, and little, if any, research has been conducted to address the issue of cold start. HCCI combustion is strongly dependent on the charge temperature. During cold-start, the fuel/air charge receives no preheating from the intake manifolds and ports, and heat transfer from the compressed charge to the cold combustion chamber walls is high. The combination of these effects can significantly reduce the compressed-gas temperature and prevent an HCCI engine from firing. Three solutions appear possible. First, the engine could be started as a conventional spark-ignition (SI) engine, and then switched to HCCI mode after a short warm-up. This scheme would likely require the compression ratio to be reduced during the SI, warm-up operation, which could be readily accomplished on an engine equipped with a VVT or VCR system to handle transients. VVT has the added benefit of allowing the hot residual to be retained from the previous cycle; thereby allowing a more rapid transition to HCCI. (The engine could also be started as a CIDI engine without any compression-ratio adjustment, but gasoline-like fuels offer more advantages). Second, the engine could be started in HCCI mode by increasing the compression ratio during cold start, with a VVT or VCR system. Third, a glow plug could be used to assist HCCI ignition until the engine warms up. Combinations of these systems might also be used. 9.5 Multi Cylinder Engine Effects R&D is needed to develop intake and exhaust manifold designs for multi-cylinder engines to overcome the challenge of maintaining strict uniformity of the inlet and exhaust flows of each cylinder to assure smooth engine operation. In multicylinder engines, manifold wave dynamics can cause small differences in the amount of hot residual combustion products remaining and the amount of fresh charge delivered to the various cylinders. 9.6 Fuel System R&D is necessary to develop a fuel delivery system because it is a key enabling technology to overcome the challenge of maintaining proper ignition timing, smooth combustion rates, and low emissions over the operating range of the engine. Various types of fuel systems have been proposed including port fuel injectors, DI fuel injectors similar to those designed for SI engines, DI diesel engine injectors, and combinations of these injectors. Each type has advantages for different operating regimes and fuel types. 9.7 Engine Control Strategies R&D is necessary to develop a methodology for feedback and closed-loop control of the fuel and air systems to keep the combustion optimized over the speed and load range of the engine in a production vehicle. Control mechanisms, sensors, and appropriate control algorithms are key enabling technologies for practical HCCI engines. VVT and/or VCR systems have a strong potential for controlling HCCI engines and addressing many of the important issues such as ignition timing, cold-start, transients, fuel type, and switching into or out of SI mode X. FUTURE OF HCCI ENGINE The future of HCCI looks promising especially with partial HCCI mode. Major companies such as GM, Mercedes-Benz, Honda, and Volkswagen have invested in HCCI research. Table.1.Investment Details Company General Motors Mercede s Volkswa gen Satur n- Aura Opel- Vectr a Diesotto Toura n Technolo gy phcci phcci 2015 phcci CCS 2015 Ford phcci 2015 Estimated Year of Commercializat ion Test Vehicle is on road Test Vehicle is on road Because HCCI works best at relatively constant, partial-load conditions, the HCCI engines being developed right now are actually combination engines that can run as either spark ignition or HCCI. At higher IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 165

9 speeds or loads, the engine runs as a normal SI type and then transitions to HCCI when the conditions warrant. The control software required to reliably detect when to operate in either mode as well as transitioning between modes is extremely complex and requires a lot of development. Most of the hardware necessary required to produce HCCI/SI engines exists now and the main stumbling block is getting reliable, cost effective cylinder pressure sensors. All of this technology results in an engine that approaches the efficiency of diesel engines at a significantly lower cost. An HCCI engine provides a fifteen percent boost in fuel economy and reduced emissions compared to a conventional SI engine using pretty much the same exhaust after-treatment systems. For the first media sampling of HCCI, GM provided an automatic transmission-equipped Saturn Aura and five speed manual Opel Vectra. Both cars had the same 2.2L Ecotec four cylinders modified to operate in HCCI mode at speeds up to 55 mph and partial loads. A display mounted on top of the dashboard shows a map of engine speed and fuel mass and indicates when the engine is in SI or HCCI mode. On the test loop that we were able to drive, the transitions between SI and HCCI were largely transparent and far smoother than any of the current production hybrids when starting and stopping the engine. Performance felt pretty much the same as a regular Vectra or Aura. The only detectable difference was a slight audible ticking when the engine was in HCCI. The technology definitely works; the main problem now will be making the control software robust enough to deal with all real world weather, road and driver conditions. XI. CONCLUSION HCCI has been identified as a long-term alternative technology deserving of increased R&D support. A high-efficiency, gasoline-fueled HCCI engine represents a major step beyond SIDI engines for light-duty vehicles. HCCI engines have the potential to match or exceed the efficiency of diesel-fueled CIDI engines without the major challenge of NOx and PM emission control or a major impact on fuelrefining capability. Also, HCCI engines would probably cost less than CIDI engines because HCCI engines would likely use lower-pressure fuelinjection equipment and the combustion characteristics of HCCI would potentially enable the use of emission control devices that depend less on scarce and expensive precious metals. In addition, for heavy-duty vehicles, successful development of the diesel-fueled HCCI engine is an important alternative strategy in the event that CIDI engines cannot achieve future NOx and PM emissions standards. HCCI engines will be cheaper than presently used engines because of their simplified construction. Currently, the only problem to be solved in future work is the balance improvement between load control strategies and HCCI engine exhaust gas emissions. REFERENCE [1] J.Hiltner, R. Agama, F. Mauss, B. Johansson, M. Christensen, Homogeneous charge combustion ignition operation with natural gas, ASME, Journal of engineering for gas turbine and power, 2003, Vol 125. [2] Chia-jui Chiang and Anna G.Stefanopoulou, Stability analysis in homogeneous charge compression ignition (HCCI) engines with high dilution IEEE Transactions on control systems Technology,Vol 12, Issue [3] Anders widd, Kent Ekholm, per Tunestal, Rolf Johansson, Physics Based model predictive Control of HCCI Combustion phasing using Fast Thermal Management and VVA, IEEE Transactions on control systems Technology,2012, Vol.20, Issue.3. [4] Nikhil Ravi, Mathew J. Rolle, Hsien-Hsin Liao, Adams F. Jungkunz, Chen-Fang, model-based Control on HCCI Engines using Exhaust recompression, IEEE Transactions on Control Systems Technology, Vol.18, issue.6,2010. IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 166

Homogeneous Charge Compression Ignition (HCCI) Engines

Homogeneous Charge Compression Ignition (HCCI) Engines Homogeneous Charge Compression Ignition (HCCI) Engines Aravind. I. Garagad. Shri Dharmasthala Manjunatheshwara College of Engineering and Technology, Dharwad, Karnataka, India. ABSTRACT Large reductions

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PROJECT REFERENCE NO. : 37S1036 COLLEGE BRANCH GUIDES : KS INSTITUTE OF TECHNOLOGY, BANGALORE

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION Module 2:Genesis and Mechanism of Formation of Engine Emissions POLLUTANT FORMATION The Lecture Contains: Engine Emissions Typical Exhaust Emission Concentrations Emission Formation in SI Engines Emission

More information

ACTUAL CYCLE. Actual engine cycle

ACTUAL CYCLE. Actual engine cycle 1 ACTUAL CYCLE Actual engine cycle Introduction 2 Ideal Gas Cycle (Air Standard Cycle) Idealized processes Idealize working Fluid Fuel-Air Cycle Idealized Processes Accurate Working Fluid Model Actual

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES Bulletin of the Transilvania University of Braşov Vol. 3 (52) - 2010 Series I: Engineering Sciences STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES R.

More information

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco 16 th International Multidimensional Engine User s Meeting at the SAE Congress 2006,April,06,2006 Detroit, MI RECENT ADVANCES IN SI ENGINE MODELING: A NEW MODEL FOR SPARK AND KNOCK USING A DETAILED CHEMISTRY

More information

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 23.-24.5.213. INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE Kastytis Laurinaitis, Stasys Slavinskas Aleksandras

More information

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS The Lecture Contains: Crankcase Emission Control (PCV System) Evaporative Emission Control Exhaust Gas Recirculation Water Injection file:///c /...%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/engine_combustion/lecture20/20_1.htm[6/15/2012

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

Which are the four important control loops of an spark ignition (SI) engine?

Which are the four important control loops of an spark ignition (SI) engine? 151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

More information

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 295-306 295 AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE by Jianyong ZHANG *, Zhongzhao LI,

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd.

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd. Mechanisms of HC Formation in SI Engines... contd. The Lecture Contains: HC from Lubricating Oil Film Combustion Chamber Deposits HC Mixture Quality and In-Cylinder Liquid Fuel HC from Misfired Combustion

More information

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

More information

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco 17 th International Multidimensional Engine User s Meeting at the SAE Congress 2007,April,15,2007 Detroit, MI RECENT ADVANCES IN DIESEL COMBUSTION MODELING: THE ECFM- CLEH COMBUSTION MODEL: A NEW CAPABILITY

More information

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 2.-27..216. INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL Kastytis Laurinaitis, Stasys Slavinskas

More information

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion Turbulent Combustion The motion of the charge in the engine cylinder is always turbulent, when it is reached by the flame front. The charge motion is usually composed by large vortexes, whose length scales

More information

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM Alexandru-Bogdan Muntean *, Anghel,Chiru, Ruxandra-Cristina (Dica) Stanescu, Cristian Soimaru Transilvania

More information

A Study of EGR Stratification in an Engine Cylinder

A Study of EGR Stratification in an Engine Cylinder A Study of EGR Stratification in an Engine Cylinder Bassem Ramadan Kettering University ABSTRACT One strategy to decrease the amount of oxides of nitrogen formed and emitted from certain combustion devices,

More information

Homogeneous Charge Compression Ignition combustion and fuel composition

Homogeneous Charge Compression Ignition combustion and fuel composition Loughborough University Institutional Repository Homogeneous Charge Compression Ignition combustion and fuel composition This item was submitted to Loughborough University's Institutional Repository by

More information

REVIEW ON GASOLINE DIRECT INJECTION

REVIEW ON GASOLINE DIRECT INJECTION International Journal of Aerospace and Mechanical Engineering REVIEW ON GASOLINE DIRECT INJECTION Jayant Kathuria B.Tech Automotive Design Engineering jkathuria97@gmail.com ABSTRACT Gasoline direct-injection

More information

ABSTRACT. Electronic fuel injection, Microcontroller, CNG, Manifold injection. Manifold injection with uniflow scavenging.

ABSTRACT. Electronic fuel injection, Microcontroller, CNG, Manifold injection. Manifold injection with uniflow scavenging. ABSTRACT Key Words: Electronic fuel injection, Microcontroller, CNG, Manifold injection. Manifold injection with uniflow scavenging. Manifold injection with uniflow stratified scavenging. Direct CNG injection.

More information

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1.

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1. Introduction: Main three types of automotive vehicle being used 1. Passenger cars powered by four stroke gasoline engines 2. Motor cycles, scooters and auto rickshaws powered mostly by small two stroke

More information

Chapter 6. NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE)

Chapter 6. NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Editor s Note: Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) was written

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Diesel engines are the primary power source of vehicles used in heavy duty applications. The heavy duty engine includes buses, large trucks, and off-highway construction

More information

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016) SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2000 Certified Institution Dr. E.M.Abdullah

More information

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD CONAT243 THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD KEYWORDS HCCI, EGR, heat release rate Radu Cosgarea *, Corneliu Cofaru, Mihai Aleonte Transilvania

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL IC Engine - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Internal Combustion Engine GATE, IES & PSUs IC Engine - ME GATE, IES, PSU 2 C O N T E N T 1.

More information

Gasoline Engine Performance and Emissions Future Technologies and Optimization

Gasoline Engine Performance and Emissions Future Technologies and Optimization Gasoline Engine Performance and Emissions Future Technologies and Optimization Paul Whitaker - Technical Specialist - Ricardo 8 th June 2005 RD. 05/52402.1 Contents Fuel Economy Trends and Drivers USA

More information

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels Sage Kokjohn Acknowledgments Direct-injection Engine Research Consortium (DERC) US Department of Energy/Sandia

More information

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE Haroun A. K. Shahad hakshahad@yahoo.com Department of mechanical

More information

UNIT IV INTERNAL COMBUSTION ENGINES

UNIT IV INTERNAL COMBUSTION ENGINES UNIT IV INTERNAL COMBUSTION ENGINES Objectives After the completion of this chapter, Students 1. To know the different parts of IC engines and their functions. 2. To understand the working principle of

More information

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION *P. Manoj Kumar 1, V. Pandurangadu 2, V.V. Pratibha Bharathi 3 and V.V. Naga Deepthi 4 1 Department of

More information

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION LECTURE NOTES on INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION Integrated Master Course on Mechanical Engineering Mechanical Engineering Department November 2015 Approach SI _ indirect injection

More information

Figure 1: The spray of a direct-injecting four-stroke diesel engine

Figure 1: The spray of a direct-injecting four-stroke diesel engine MIXTURE FORMATION AND COMBUSTION IN CI AND SI ENGINES 7.0 Mixture Formation in Diesel Engines Diesel engines can be operated both in the two-stroke and four-stroke process. Diesel engines that run at high

More information

9 th Diesel Engine Emission Reduction Conference Newport, Rhode Island, August 2003

9 th Diesel Engine Emission Reduction Conference Newport, Rhode Island, August 2003 9 th Diesel Engine Emission Reduction Conference Newport, Rhode Island, 24. 28. August 2003 Recent Developments in BMW s Diesel Technology Fritz Steinparzer, BMW Motoren, Austria 1. Introduction The image

More information

Crankcase scavenging.

Crankcase scavenging. Software for engine simulation and optimization www.diesel-rk.bmstu.ru The full cycle thermodynamic engine simulation software DIESEL-RK is designed for simulating and optimizing working processes of two-

More information

Influence of ANSYS FLUENT on Gas Engine Modeling

Influence of ANSYS FLUENT on Gas Engine Modeling Influence of ANSYS FLUENT on Gas Engine Modeling George Martinas, Ovidiu Sorin Cupsa 1, Nicolae Buzbuchi, Andreea Arsenie 2 1 CERONAV 2 Constanta Maritime University Romania georgemartinas@ceronav.ro,

More information

2) Rich mixture: A mixture which contains less air than the stoichiometric requirement is called a rich mixture (ex. A/F ratio: 12:1, 10:1 etc.

2) Rich mixture: A mixture which contains less air than the stoichiometric requirement is called a rich mixture (ex. A/F ratio: 12:1, 10:1 etc. Unit 3. Carburettor University Questions: 1. Describe with suitable sketches : Main metering system and Idling system 2. Draw the neat sketch of a simple carburettor and explain its working. What are the

More information

Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE)

Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Editor s Note: Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) includes

More information

A REVIEW ON EXHAUST GAS RECIRCULATION (EGR) SYSTEM IN IC ENGINES

A REVIEW ON EXHAUST GAS RECIRCULATION (EGR) SYSTEM IN IC ENGINES A REVIEW ON EXHAUST GAS RECIRCULATION (EGR) SYSTEM IN IC ENGINES Jitender Singh 1, Vikas Bansal 2 1,2 Department of Mechanical Engineering, University College of Engineering, Rajasthan Technical University,

More information

Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine

Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine Vivek Shankhdhar a, Neeraj Kumar b a M.Tech Scholar, Moradabad Institute of Technology, India b Asst. Proff. Mechanical

More information

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey)

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) SAE Homogeneous Charge Compression Ignition Symposium 19-20 September 2005 ACKNOWLEDGEMENTS Contribution

More information

Lecture 5. Abnormal Combustion

Lecture 5. Abnormal Combustion Lecture 5 Abnormal Combustion Abnormal Combustion The Abnormal Combustion:- When the combustion gets deviated from the normal behavior resulting loss of performance or damage to the engine. It is happened

More information

Combustion. T Alrayyes

Combustion. T Alrayyes Combustion T Alrayyes Fluid motion with combustion chamber Turbulence Swirl SQUISH AND TUMBLE Combustion in SI Engines Introduction The combustion in SI engines inside the engine can be divided into three

More information

AN EXPERIMENTAL STUDY ON THE EFFECTS OF EGR AND EQUIVALENCE RATIO ON CO AND SOOT EMISSIONS OF DUAL FUEL HCCI ENGINE

AN EXPERIMENTAL STUDY ON THE EFFECTS OF EGR AND EQUIVALENCE RATIO ON CO AND SOOT EMISSIONS OF DUAL FUEL HCCI ENGINE AN EXPERIMENTAL STUDY ON THE EFFECTS OF AND EQUIVALENCE RATIO ON CO AND SOOT EMISSIONS OF DUAL FUEL HCCI ENGINE M. R. KALATEH 1, M. GHAZIKHANI 1 1 Department of Mechanical Engineering, Ferdowsi University

More information

Sensors & Controls. Everything you wanted to know about gas engine ignition technology but were too afraid to ask.

Sensors & Controls. Everything you wanted to know about gas engine ignition technology but were too afraid to ask. Everything you wanted to know about gas engine ignition technology but were too afraid to ask. Contents 1. Introducing Electronic Ignition 2. Inductive Ignition 3. Capacitor Discharge Ignition 4. CDI vs

More information

Development of In-Line Coldstart Emission Adsorber System (CSEAS) for Reducing Cold Start Emissions in 2 Stroke SI Engine

Development of In-Line Coldstart Emission Adsorber System (CSEAS) for Reducing Cold Start Emissions in 2 Stroke SI Engine Development of In-Line Coldstart Emission Adsorber System (CSEAS) for Reducing Cold Start Emissions in 2 Stroke SI Engine Wing Commander M. Sekaran M.E. Professor, Department of Aeronautical Engineering,

More information

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions D.R. Cohn* L. Bromberg* J.B. Heywood Massachusetts Institute of Technology

More information

State of the Art (SOTA) Manual for Internal Combustion Engines

State of the Art (SOTA) Manual for Internal Combustion Engines State of the Art (SOTA) Manual for Internal Combustion Engines July 1997 State of New Jersey Department of Environmental Protection Air Quality Permitting Program State of the Art (SOTA) Manual for Internal

More information

ME 74 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering-vii sem Question Bank( )

ME 74 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering-vii sem Question Bank( ) ME 74 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering-vii sem Question Bank(2013-2014) UNIT I INTRODUCTION 1. How the transient operation of S.I engine will cause CO formation? (may /June 2007)

More information

Thermo-Kinetic Model to Predict Start of Combustion in Homogeneous Charge Compression Ignition Engine

Thermo-Kinetic Model to Predict Start of Combustion in Homogeneous Charge Compression Ignition Engine Thermo-Kinetic Model to Predict Start of Combustion in Homogeneous Charge Compression Ignition Engine Harshit Gupta and J. M. Malliarjuna Abstract Now-a-days homogeneous charge compression ignition combustion

More information

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/101984, October 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study of Performance and Emission Characteristics

More information

Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter

Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter Kitae Yeom, Jinyoung Jang, Choongsik Bae Abstract Homogeneous charge compression ignition (HCCI) combustion is an attractive way

More information

Learning Guide EMISSION SPECIALIST 5 GAS ANALYSIS COURSE NUMBER: E001-01

Learning Guide EMISSION SPECIALIST 5 GAS ANALYSIS COURSE NUMBER: E001-01 Learning Guide EMISSION SPECIALIST 5 GAS ANALYSIS COURSE NUMBER: E001-01 Notice Due to the wide range of vehicles makes and models, the information given during the class will be general in nature and

More information

Module 5:Emission Control for SI Engines Lecture 24:Lean de-nox Catalysts and Catalyst Poisoning. The Lecture Contains: Lean de-no x Catalysts

Module 5:Emission Control for SI Engines Lecture 24:Lean de-nox Catalysts and Catalyst Poisoning. The Lecture Contains: Lean de-no x Catalysts The Lecture Contains: Lean de-no x Catalysts NO x storage-reduction (NSR) catalyst SCR Catalysts CATALYST DEACTIVATION Catalyst Poisoning file:///c /...%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/engine_combustion/lecture24/24_1.htm[6/15/2012

More information

EMS & OBD Engine Testing and Instrumentation 1

EMS & OBD Engine Testing and Instrumentation 1 EMS & OBD Engine Management System (EMS) It consists of ECU, various sensors and actuators in the engine. It uses the information acquired from sensors to control the fuel injection, ignition systems,

More information

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI)

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Andrew Nicol AECC Technical Seminar on Heavy-Duty Vehicle Emissions (Euro VI) Brussels 25 October 2007 Contents Emissions Legislation

More information

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine RESEARCH ARTICLE OPEN ACCESS Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine P. Saichaitanya 1, K. Simhadri 2, G.Vamsidurgamohan 3 1, 2, 3 G M R Institute of Engineering and Technology,

More information

Exhaust System - 2.2L Diesel

Exhaust System - 2.2L Diesel Page 1 of 9 Published: Mar 8, 2007 Exhaust System - 2.2L Diesel COMPONENT LOCATION - WITH DIESEL PARTICULATE FILTER Item Part Number Description 1 Exhaust manifold (ref only) 2 Pressure differential sensor

More information

COMBUSTION in SI ENGINES

COMBUSTION in SI ENGINES Internal Combustion Engines MAK 493E COMBUSTION in SI ENGINES Prof.Dr. Cem Soruşbay Istanbul Technical University Internal Combustion Engines MAK 493E Combustion in SI Engines Introduction Classification

More information

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 1897-1906 1897 EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane by Jianyong

More information

Onboard Plasmatron Generation of Hydrogen Rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications.

Onboard Plasmatron Generation of Hydrogen Rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications. PSFC/JA-02-30 Onboard Plasmatron Generation of Hydrogen Rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications L. Bromberg 1, D.R. Cohn 1, J. Heywood 2, A. Rabinovich 1 December 11, 2002

More information

Technical Support Note

Technical Support Note Title: Measuring Emissions from Diesel-Fueled Equipment TSN Number: 09 File:S:\Bridge_Analyzers\Customer_Service_Documentation\Technical_Support_Notes\ 09_Measuring_Emissions_from_Diesel_Fuel_Equipment.docx

More information

Overview & Perspectives for Internal Combustion Engine using STAR-CD. Marc ZELLAT

Overview & Perspectives for Internal Combustion Engine using STAR-CD. Marc ZELLAT Overview & Perspectives for Internal Combustion Engine using STAR-CD Marc ZELLAT TOPICS Quick overview of ECFM family models Examples of validation for Diesel and SI-GDI engines Introduction to multi-component

More information

EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE. Maduravoyal, Chennai, India

EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE. Maduravoyal, Chennai, India International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 218-166 (Online); Volume 3, pp. 279-292, January-June 211 Universiti Malaysia Pahang DOI: http://dx.doi.org/1.15282/ijame.3.211.5.24

More information

EURO 4-5 Diesel Exhaust Pollutant. After-Threatment

EURO 4-5 Diesel Exhaust Pollutant. After-Threatment EURO4-5 Common Rail EURO 4-5 Diesel Exhaust Pollutant After-Threatment 1 Exhaust gas recirculation EGR fundamentals: AFR: Air to Fuel Ratio. This parameter is used to define the ratio between fuel (petrol,

More information

Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels. William Cannella. Chevron

Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels. William Cannella. Chevron Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels William Cannella Chevron Acknowledgement Work Done In Collaboration With: Vittorio Manente, Prof. Bengt

More information

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD Dr.S.L.V. Prasad 1, Prof.V.Pandurangadu 2, Dr.P.Manoj Kumar 3, Dr G. Naga Malleshwara Rao 4 Dept.of Mechanical

More information

IDENTIFICATION OF FUEL INJECTION CONTROL SYSTEM IN A GDI ENGINE

IDENTIFICATION OF FUEL INJECTION CONTROL SYSTEM IN A GDI ENGINE Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 IDENTIFICATION OF FUEL INJECTION CONTROL SYSTEM IN A GDI ENGINE Zbigniew Wo czy ski Technical University of Radom Chrobrego Av. 45, 26-6 Radom,

More information

Focus on Training Section: Unit 2

Focus on Training Section: Unit 2 All Pump Types Page 1 1. Title Page Learning objectives Become familiar with the 4 stroke cycle Become familiar with diesel combustion process To understand how timing affects emissions To understand the

More information

AE 1005 AUTOMOTIVE ENGINES COMBUSTION IN SI ENGINES

AE 1005 AUTOMOTIVE ENGINES COMBUSTION IN SI ENGINES AE 1005 AUTOMOTIVE ENGINES COMBUSTION IN SI ENGINES Syllabus Combustion in premixed and diffusion flames - Combustion process in IC engines. Stages of combustion - Flame propagation - Flame velocity and

More information

Variable Intake Manifold Development trend and technology

Variable Intake Manifold Development trend and technology Variable Intake Manifold Development trend and technology Author Taehwan Kim Managed Programs LLC (tkim@managed-programs.com) Abstract The automotive air intake manifold has been playing a critical role

More information

UniversitiTeknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia

UniversitiTeknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia Applied Mechanics and Materials Vol. 388 (2013) pp 201-205 Online available since 2013/Aug/30 at www.scientific.net (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.388.201

More information

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 4, Issue 3 (October 2012), PP. 23-27 Analysis of Emission characteristics on Compression

More information

Engine Exhaust Emissions

Engine Exhaust Emissions Engine Exhaust Emissions 1 Exhaust Emission Control Particulates (very challenging) Chamber symmetry and shape Injection characteristics (mixing rates) Oil control Catalyst (soluble fraction) Particulate

More information

Promising Alternative Fuels for Improving Emissions from Future Vehicles

Promising Alternative Fuels for Improving Emissions from Future Vehicles Promising Alternative Fuels for Improving Emissions from Future Vehicles Research Seminar: CTS Environment and Energy in Transportation Council Will Northrop 12/17/2014 Outline 1. Alternative Fuels Overview

More information

Potential of Modern Internal Combustion Engines Review of Recent trends

Potential of Modern Internal Combustion Engines Review of Recent trends Potential of Modern Internal Combustion Engines Review of Recent trends David Kittelson Department of Mechanical Engineering University of Minnesota February 15, 2011 Outline Background Current engine

More information

ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY

ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY 1 INTERNAL COMBUSTION ENGINES ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT DIVISON OF THERMAL AND ENERGY CONVERSION IC Engine Fundamentals 2 Engine Systems An engine

More information

Investigators: C. F. Edwards, Associate Professor, Mechanical Engineering Department; M.N. Svreck, K.-Y. Teh, Graduate Researchers

Investigators: C. F. Edwards, Associate Professor, Mechanical Engineering Department; M.N. Svreck, K.-Y. Teh, Graduate Researchers Development of Low-Irreversibility Engines Investigators: C. F. Edwards, Associate Professor, Mechanical Engineering Department; M.N. Svreck, K.-Y. Teh, Graduate Researchers This project aims to implement

More information

ENGINES ENGINE OPERATION

ENGINES ENGINE OPERATION ENGINES ENGINE OPERATION Because the most widely used piston engine is the four-stroke cycle type, it will be used as the example for this section, Engine Operation and as the basis for comparison in the

More information

Powertrain Efficiency Technologies. Turbochargers

Powertrain Efficiency Technologies. Turbochargers Powertrain Efficiency Technologies Turbochargers Turbochargers increasingly are being used by automakers to make it possible to use downsized gasoline engines that consume less fuel but still deliver the

More information

Diesel HCCI Results at Caterpillar

Diesel HCCI Results at Caterpillar Diesel HCCI Results at Caterpillar Kevin Duffy, Jonathan Kilkenny Andrew Kieser, Eric Fluga DOE Contracts DE-FC5-OR2286, DE-FC5-97OR2265 Contract Monitors Roland Gravel, John Fairbanks DEER Conference

More information

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends International Journal of Current Engineering and Technology E-ISSN 77 416, P-ISSN 47 5161 16 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Study of the

More information

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ ME 410 Day 30 Phases of Combustion 1. Ignition 2. Early flame development θd θ 3. Flame propagation b 4. Flame termination The flame development angle θd is the crank angle between the initial spark and

More information

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes A Kowalewicz Technical University of Radom, al. Chrobrego 45, Radom, 26-600, Poland. email: andrzej.kowalewicz@pr.radom.pl

More information

A Kowalewicz Technical University of Radom, ul. Chrobrego 45, Radom, , Poland.

A Kowalewicz Technical University of Radom, ul. Chrobrego 45, Radom, , Poland. co-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part : comparison of emissions and efficiency for two base fuels: diesel fuel and ester A Kowalewicz Technical University of Radom,

More information

The influence of thermal regime on gasoline direct injection engine performance and emissions

The influence of thermal regime on gasoline direct injection engine performance and emissions IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The influence of thermal regime on gasoline direct injection engine performance and emissions To cite this article: C I Leahu

More information

Modelling Combustion in DI-SI using the G-equation Method and Detailed Chemistry: Emissions and knock. M.Zellat, D.Abouri, Y.Liang, C.

Modelling Combustion in DI-SI using the G-equation Method and Detailed Chemistry: Emissions and knock. M.Zellat, D.Abouri, Y.Liang, C. Modelling Combustion in DI-SI using the G-equation Method and Detailed Chemistry: Emissions and knock Realize innovation. M.Zellat, D.Abouri, Y.Liang, C.Kralj Main topics of the presentation 1. Context

More information

Module 6:Emission Control for CI Engines Lecture 31:Diesel Particulate Filters (contd.) The Lecture Contains: Passive/Catalytic Regeneration

Module 6:Emission Control for CI Engines Lecture 31:Diesel Particulate Filters (contd.) The Lecture Contains: Passive/Catalytic Regeneration Module 6:Emission Control for CI Engines The Lecture Contains: Passive/Catalytic Regeneration Regeneration by Fuel Additives Continuously Regenerating Trap (CRT) Syatem Partial Diesel Particulate Filters

More information

Internal Combustion Optical Sensor (ICOS)

Internal Combustion Optical Sensor (ICOS) Internal Combustion Optical Sensor (ICOS) Optical Engine Indication The ICOS System In-Cylinder Optical Indication 4air/fuel ratio 4exhaust gas concentration and EGR 4gas temperature 4analysis of highly

More information

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST Sagar.A.Patil 1, Priyanka.V.Kadam 2, Mangesh.S.Yeolekar 3, Sandip.B.Sonawane 4 1 Student (Final Year), Department

More information

Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications

Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications Patric Ouellette, Lew Fulton STEPS Presentation May 24, 2017 Intro and Question Large content of biofuel

More information

Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines

Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines ISSN 2395-1621 Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines #1 Shailendra Patil, #2 Santosh Trimbake 1 shailendrapatil7592@gmail.com 2 santoshtrimbake@yahoo.co.in

More information