CO 2 Reduction for Spark-Ignition Engines: Two Paths to Success. John E. Kirwan Delphi Powertrain Systems

Size: px
Start display at page:

Download "CO 2 Reduction for Spark-Ignition Engines: Two Paths to Success. John E. Kirwan Delphi Powertrain Systems"

Transcription

1 CO 2 Reduction for Spark-Ignition Engines: Two Paths to Success Leveraging Air Delivery and Fuel Injection Technologies to Improve Engine Efficiency John E. Kirwan Delphi Powertrain Systems

2 High Level Gasoline Engine Technology Roadmap PZEV Market Drivers: EURO 5 EURO 5+ Emissions & Fuel Economy CARB CO2 EU 130g/km US Senate CAFE EURO 6 EU 95g/km EU 70g/km US CAFE Update H2 DI-Engine CNG DI-Engine Alternate cycles, VCR, camless HCCI GDi Engine, DICP & VVA & evcp Spray Stratified Boosted GDi Engines Spray Stratified GDi Engines Homogeneous, Boosted GDi Engines, DICP & VVA Homogeneous, Boosted GDi Engines, DICP Homogeneous GDi Hybrid Engines Homogeneous GDi Engines, VVT Alternate Fuel H2 Engine Alternate Fuel CNG, LPG Alternate Fuel Compatible Engine Flex fuel, E10-E100 Boosted PFI Engines Gasoline Hybrid Engine Gasoline Advanced PFI Engine, active VT, mixture motion, PZEV Gasoline PZEV (AIR) Future

3 Where Does the Fuel Energy Go? Fuel Energy Available Combustion Inefficiency Heat Rejection Exhaust Coolant Engine Friction Indicated Work Pumping Losses Shaft Work Accessories Transmission Vehicle Consumption Inertia Aero Drag Rolling Resistance Source: Nat l Acad Eng. (2002) 3

4 Where Does the Fuel Energy Go? Fuel Energy Available Combustion Inefficiency Heat Rejection Exhaust Coolant Source: SAE Engine Friction Indicated Work Pumping Losses Shaft Work Accessories Transmission Vehicle Consumption Inertia Aero Drag Rolling Resistance Source: Nat l Acad Eng. (2002) 4

5 Where Does the Fuel Energy Go? Fuel Energy Available Combustion Inefficiency Heat Rejection Exhaust Coolant Target Domain: Improve Net Engine Efficiency Engine Friction Indicated Work Pumping Losses Shaft Work Accessories Transmission Vehicle Consumption Inertia Aero Drag Rolling Resistance Source: Nat l Acad Eng. (2002) 5

6 Fundamental SI Engine Control Parameters Air htarget: Reduce pumping losses hmethods: qvalvetrain Technologies 8Variable Cam Phasing 8Cylinder Deactivation 8Variable Valve Lift qturbo / Supercharging Fuel Fuel Energy Available Combustion Inefficiency htarget: Reduce heat rejection and pumping losses hmethods: qhomogeneous Gasoline Direct Injection qstratified Gasoline Direct Injection Spark htarget: Proper timing minimizes heat rejection; advanced ignition systems can enable higher dilution combustion strategies Heat Rejection Indicated Work Exhaust Coolant Engine Friction Pumping Losses Accessories Shaft Work Transmission Vehicle Consumption Inertia Aero Drag Rolling Resistance Source: SAE Source: Nat l Acad Eng. (2002) 6

7 Valvetrain Technologies

8 Variable Cam Phasing Functionality: Control air flow through valve timing to gain performance, emissions reduction and fuel economy Application Type Acronym Schematic Ι Benefit Performance Fuel Economy Emissions HC NOx Intake Only IVCP 4-7 % 1-2 % 15% 25% Exhaust Intake TDC Ε Exhaust Only EVCP < 1 % 1-2 % 15% 25% Exhaust Intake TDC Ε Ι Dual Independent (Intake + Exhaust) DICP 5-8 % 1-4 % 30% 40% Exhaust Intake TDC Ε = Ι Dual Equal DECP < 1 % 1-2 % 20% 30% Exhaust Intake TDC 8

9 Variable Cam Phasing Stator Rotor Vane Cam Phaser 9

10 Variable Cam Phasing Benefits 90 Fuel Consum ption - VCP can provide 2 to 3% better BSFC vs EGR Fuel Consumption E xt. EGR C VCP Low Speed Light Load low e r bsfc Increasing EGR % Increasing Overlap Torque 11% Increase 6% Increase N Ox Retard Advance Engine Speed 10

11 Variable Cam Phasing -- evcp Fuel Consumption Functionality Fuel Consum ption helectric - VCP can provide motor 2 3% provides better BSFC ultra vs EGR fast high 90 authority phase shifting independent of 88 engine oil pressure Stator Increasing E xt. EGR 86 Benefits Rotor EGR % C VCP low e r 84 hcam phasing available bsfc immediately during start-up for cold start emissions and 82 Increasing driveability improvement Overlap with stop-start Low Speed 80 vehicles Light Load 78 hincreased phase angle authority and phasing rate enables advanced Vane Cam Phaser N Ox combustion strategies (e.g., HCCI / CAI) 11

12 Cylinder Deactivation Functionality hdisables intake valves from select engine cylinders at lighter engine loads qlost motion between intake cam and valve Benefits h6 8% lower fuel consumption in 6-cyl and 8-cyl engines qdecreased engine throttling for reduced pumping work qdecreased surface area for reduced heat transfer to engine coolant Pumping work reduction Source: SAE

13 Cylinder Deactivation Functionality Deactivation Valve Lifter Hardware Animation hdisables intake valves from select engine cylinders at lighter engine loads Benefits qlost motion between intake cam and valve h6 8% Lower fuel consumption in 6-cyl and 8- cyl engines qdecreased engine throttling for reduced pumping work 13

14 Variable Valve Activation: 2-Step and Continuously Variable (CVVL) Functionality hvaries valve lift, duration and timing (with cam phasing) as a function of engine load to reduce pumping work losses either by discrete 2-step or continuously valve lift profiles (CVVL) henables greater flexibility in engine combustion by de-throttling and increased dilution capability Valve Lift (mm) Valve Lift (mm) E xh a u s t T D C L o w -L ift C a m H ig h -L ift C a m B D C C ra n k P o s itio n (C A D ) GEMS 250a VVA Mechanism Valve Lift Curves 0 Deg -1 Deg -2 Deg -3 Deg -4 Deg -5 Deg -6 Deg -7 Deg -8 Deg -9 Deg -10 Deg 2-Step CVVL Camshaft Rotation (Degrees CW)

15 Variable Valve Activation: 2-Step and Continuously Variable (CVVL) Functionality hvaries valve lift, duration and timing (with cam phasing) as a function of engine load to reduce pumping work losses either by discrete 2-step or continuously valve lift profiles (CVVL) henables greater flexibility in engine combustion by de-throttling and increased dilution capability Benefits h6 8% lower fuel consumption hhelps optimize E85 flex-fuel and HCCI combustion schemes Source: SAE

16 Variable Valve Activation: 2-Step and Continuously Variable (CVVL) 2-Step Example Hardware 2-Step Rocker Arm Tri-Lobe Cam Oil Control Valve Oil Supply Gallery Hydraulic Lash Adjuster Valve Lift (mm) E xh a u s t T D C L o w -L ift C a m H ig h -L ift C a m Higher load 2 Lower load B D C C ra n k P o s itio n (C A D )

17 Variable Valve Activation: 2-Step and Continuously Variable (CVVL) 2-Step Hardware Animation Lower load 17

18 Variable Valve Activation: 2-Step and Continuously Variable (CVVL) CVVL Example Hardware GEMS 250a VVA Mechanism Valve Lift Curves Input cam Rocker/Output cam Valve Lift (mm) Deg -1 Deg -2 Deg -3 Deg -4 Deg -5 Deg -6 Deg -7 Deg -8 Deg -9 Deg -10 Deg Increasing load 2 High lift Low lift Control shaft Camshaft Rotation (Degrees CW) 18

19 Variable Valve Activation: 2-Step and Continuously Variable (CVVL) CVVL Hardware Animation 19

20 Gasoline Direct Injection

21 Gasoline Direct Injection vs. Port Injection Mechanization hinjector tip in combustion chamber hfuel pressure increased from 400 kpa to 20+ MPa hside-mount and central mount injection configurations PFI Injector Intake valve GDi side mount GDi central mount GDi Intake Port Injector Piston Injector Intake Port 21 Piston

22 Gasoline Direct Injection vs. Port Injection Features hin-cylinder evaporation of finely atomized fuel spray qcools intake charge to increase volumetric efficiency and enable knock-free operation at higher cylinder pressures 8Enabler for higher compression ratios, increased boost henables both homogeneous and stratified combustion strategies GDi side mount GDi Intake Port PFI Injector GDi central mount Intake valve Injector Piston Injector Intake Port 22 Piston

23 Gasoline Direct Injection Homogeneous Systems System Features hinwardly-opening, multi-hole GDi Injectors, fuel rail and engine-driven high pressure fuel pump hinjection during the intake stroke focused on complete vaporization and mixing of fuel and air hstoichiometric operation allows emissions control via traditional 3-way exhaust catalyst hreduced in-cylinder temperature enables increased compression ratios (NA) or engine boosting Low Pressure Lines High Pressure Lines Pressure Sensor Fuel Rail 23 High Pressure Pump Injector Wiring Harness and Connectors

24 Gasoline Direct Injection Homogeneous Systems System Features hinwardly-opening, multi-hole GDi Injectors, fuel rail and engine-driven high pressure fuel pump hstoichiometric operation allows emissions control via traditional 3-way exhaust catalyst hreduced in-cylinder temperature enables increased compression ratios (NA) or engine boosting Benefits hfuel economy improvement q1-3% for naturally aspirated q9-12% with downsizing and boost himproved fuel control and rapid catalyst light-off with split-injection during cold start hincreased power and torque Source: Königstein et al (GM): 2008 Vienna Motor Symposium 1.8L engine downsized to 1.4L turbo (with down-speeding) 11% fuel consumption reduction Equivalent performance 24 Source: Schame (Ford): 2008 SAE Congress Presentation

25 Gasoline Direct Injection Homogeneous Systems Key Requirements hoperation at fuel pressures up to 200 bar hinjector packaging for cylinder side mount and central mount hspray generation for good vaporization and mixing without wetting in-cylinder surfaces hgood linear flow range Side mount Central mount Up to 190 mm long Injector Linear Flow Range Comparison Deviation from Linear 20% 15% 10% 5% 0% -5% 0-10% -15% 0 Competition Bosch Ecotec Delphi Delphi Bravo Flow (mg/pulse) 25

26 Gasoline Direct Injection Stratified Systems System Features houtwardly-opening, hollow-cone GDi Injectors, fuel rail and engine-driven high pressure fuel pump hcentral mount injector near spark plug hinjection during the compression stroke for careful placement of fuel mixture in space and time q Multiple injections required to improve confinement of fuel mixture hstratified fuel mixture enables unthrottled operation hreduced in-cylinder temperature enables increased compression ratios (NA) or engine boosting Recirculation Zone 26

27 Gasoline Direct Injection Stratified Systems System Features h Outwardly-opening, hollow-cone GDi Injectors, fuel rail and engine-driven high pressure fuel pump h Stratified mode allows unthrottled operation but requires lean NOx reduction 180 (NOx trap) q Euro vs US Nox emissions Gasoline NA q Low-sulfur fuel h Excellent synergy with turbocharging 140 h Reduces in-cylinder temperatures to enable increased compression ratios (NA) or engine boosting Benefits hfuel economy improvement q10-15% for naturally aspirated q15-20% with downsizing and boost himproved fuel control and rapid catalyst light-off with split-injection during cold start hincreased power and torque NEDC CO2-Emission [g/km] 4 Cylinder Powered Vehicles in Germany Gasoline CNG Diesel Turbo Turbo-diesel Engine Power [kw] 27 MPFI turbo DIG turbo, λ=1,0 Homog. Boosted GDi DIG spray guided, λ>1,0 Stratified GDi European strategy hcurrent barriers to US implementation: qmore stringent NOx standards qlean NOx catalyst durability qfuel sulfur concentration

28 Gasoline Direct Injection Stratified Systems Key Requirements hoperation at fuel pressures up to 200 bar hlow noise in critical frequency range hwell-atomized and well-placed stratified mixture under engine conditions hmultiple injection capability hhigh linear flow range Stable spray under engine conditions 5 bar 10 bar 20 bar Backpressure Fuel Mass (mg/shot) fp = 200 bar 20% 15% 10% 5% 0% -5% -10% -15% Deviation (%) Injector Pulse Width (ms) -20% 28

29 Summary Variable valvetrain technologies and gasoline direct injection offer technology improvements for two critical paths to CO 2 reduction in SI engines hattack pumping losses and heat rejection to improve net engine efficiency hcan be used to optimize alternative fuel performance and advanced combustion strategies (e.g. HCCI / CAI, highly dilute combustion) These innovations will substantially contribute to reducing fuel consumption required by Government and sought by customers happlicable to wide spectrum of engine sizes / power needs hoffer simultaneous performance benefits so that CO 2 reduction need not conflict with fun-to-drive vehicles Fuel Energy Available Combustion Inefficiency Heat Rejection Exhaust Coolant Source: SAE Engine Friction 29 Indicated Work Pumping Losses Shaft Work Accessories Transmission Vehicle Consumption Inertia Aero Drag Rolling Resistance Source: Nat l Acad Eng. (2002)

30 Thank you

Gasoline Engine Performance and Emissions Future Technologies and Optimization

Gasoline Engine Performance and Emissions Future Technologies and Optimization Gasoline Engine Performance and Emissions Future Technologies and Optimization Paul Whitaker - Technical Specialist - Ricardo 8 th June 2005 RD. 05/52402.1 Contents Fuel Economy Trends and Drivers USA

More information

Low Emissions IC Engine Development at Ford Motor Company

Low Emissions IC Engine Development at Ford Motor Company Low Emissions IC Engine Development at Ford Motor Company George Davis Powertrain Research and Advanced Engineering ERC Symposium University of Wisconsin at Madison Research and Advanced Engineering June

More information

The results were measured on the different MCE-5 VCRi prototypes: single-cylinder engines, multi-cylinder engines and a demo car

The results were measured on the different MCE-5 VCRi prototypes: single-cylinder engines, multi-cylinder engines and a demo car VCRi: Pushing back the fuel consumption reduction limits Key results The results were measured on the different VCRi prototypes: single-cylinder engines, multi-cylinder engines and a demo car DOWNSIZING

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System. Jason King, Chief Engineer

SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System. Jason King, Chief Engineer SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System Jason King, Chief Engineer FPC2015 Quick overview of Integral Powertrain (IPT) SuperGen concept Analysis results Test results

More information

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey)

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) SAE Homogeneous Charge Compression Ignition Symposium 19-20 September 2005 ACKNOWLEDGEMENTS Contribution

More information

Powertrain: New Technologies and Strategies. Contents

Powertrain: New Technologies and Strategies. Contents Contents Table of Figures... 5 Introduction... 8 Industry Drivers... 13 Legislation and regulation... 13 Sulphur... 18 Meeting consumer requirements... 20 Gasoline Engine Technology... 22 Fuel efficiency...

More information

Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines

Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines !"" #$!%& Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines GMPT Europe, Engine Development & Simulation Vincenzo Bevilacqua, Jany Krieg, Roland Maucher, Raymond Reinmann

More information

Lubrication Needs for Next Generation Gasoline Passenger Car Engine Technology

Lubrication Needs for Next Generation Gasoline Passenger Car Engine Technology Lubrication Needs for Next Generation Gasoline Passenger Car Engine Technology V Simpósio de Lubrificantes, Aditivos e Fluidos São Paulo, Brasil, October 24, 2012 Ravi Tallamraju Passenger Car Motor Oil

More information

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion ERC Symposium 2009 1 Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion Rolf D. Reitz, Reed Hanson, Derek Splitter, Sage Kokjohn Engine Research Center University of Wisconsin-Madison

More information

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 295-306 295 AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE by Jianyong ZHANG *, Zhongzhao LI,

More information

REVIEW ON GASOLINE DIRECT INJECTION

REVIEW ON GASOLINE DIRECT INJECTION International Journal of Aerospace and Mechanical Engineering REVIEW ON GASOLINE DIRECT INJECTION Jayant Kathuria B.Tech Automotive Design Engineering jkathuria97@gmail.com ABSTRACT Gasoline direct-injection

More information

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION LECTURE NOTES on INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION Integrated Master Course on Mechanical Engineering Mechanical Engineering Department November 2015 Approach SI _ indirect injection

More information

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS

Module 5: Emission Control for SI Engines Lecture20:ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS ADD-ON SYSTEMS FOR CONTROL OF ENGINE-OUT EMISSIONS The Lecture Contains: Crankcase Emission Control (PCV System) Evaporative Emission Control Exhaust Gas Recirculation Water Injection file:///c /...%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/engine_combustion/lecture20/20_1.htm[6/15/2012

More information

Increased efficiency through gasoline engine downsizing

Increased efficiency through gasoline engine downsizing Loughborough University Institutional Repository Increased efficiency through gasoline engine downsizing This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Dual VCP Optimization at WOT & part loads for a Gasoline engine

Dual VCP Optimization at WOT & part loads for a Gasoline engine Dual VCP Optimization at WOT & part loads for a Gasoline engine Indian GT-Suite Conference Yashaswi R Padmavathi R Saravanan Muthiah Mahindra & Mahindra Ltd. th Sep Copyright Mahindra & Mahindra Ltd. All

More information

Powertrain Efficiency Technologies. Turbochargers

Powertrain Efficiency Technologies. Turbochargers Powertrain Efficiency Technologies Turbochargers Turbochargers increasingly are being used by automakers to make it possible to use downsized gasoline engines that consume less fuel but still deliver the

More information

Potential of the Mild HCCI Combustion for Worldwide Applications

Potential of the Mild HCCI Combustion for Worldwide Applications Potential of the Mild HCCI Combustion for Worldwide Applications Future Fuels for IC Engines ERC Research Symposium Madison June 6-7, 2007 P.Gastaldi M.Besson JP.Hardy Renault Powertrain Division Overview

More information

MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5

MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5 MIXTURE FORMATION IN SPARK IGNITION ENGINES Chapter 5 Mixture formation in SI engine Engine induction and fuel system must prepare a fuel-air mixture that satisfiesthe requirements of the engine over its

More information

University. 2 Under Graduate student, Department of Mechanical Engineering, S. B. Jain College of Engineering, RTM Nagpur University,

University. 2 Under Graduate student, Department of Mechanical Engineering, S. B. Jain College of Engineering, RTM Nagpur University, An approach to design and develop a Gasoline Direct injection system (GDI) to meet Bharat Stage 6/Euro 6 emission norms and customer performance requirement. : A Case Study Sumeet Wadibhasme 1,Vaibhav

More information

Dual Fuel Combustion an Applicable Technology for Mobile Application?

Dual Fuel Combustion an Applicable Technology for Mobile Application? 1 S C I E N C E P A S S I O N T E C H N O L O G Y Dual Fuel Combustion an Applicable Technology for Mobile Application? 10 th Conference Eco Mobility 2025plus Univ.Prof. Dr. Helmut Eichlseder Institute

More information

PM Emissions from HCCI Engines

PM Emissions from HCCI Engines PM Emissions from HCCI Engines H.M. Xu, J. Misztal, M.L. Wyszynski University of Birmingham P. Price, R. Stone Oxford University J. Qiao Jaguar Cars Particulate matter and measurement Cambridge University,

More information

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Kul-14.4100 Internal Combustion Engine Technology Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Definitions Combustion engines convert the chemical energy of fuel to mechanical

More information

The New Engine for Accord Hybrid and Study of the Turbocharging Direct Injection Gasoline Engine of Small Diameter of Cylinder

The New Engine for Accord Hybrid and Study of the Turbocharging Direct Injection Gasoline Engine of Small Diameter of Cylinder 22nd Aachen Colloquium Automobile and Engine Technology 2013 1 The New Engine for Accord Hybrid and Study of the Turbocharging Direct Injection Gasoline Engine of Small Diameter of Cylinder Akiyuki Yonekawa

More information

Which are the four important control loops of an spark ignition (SI) engine?

Which are the four important control loops of an spark ignition (SI) engine? 151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

A technology factsheet on Volvo Cars T8 Twin Engine AWD powertrain technology ELECTRIFICATION CLEAN EFFICIENCY RESPONSIVE POWER

A technology factsheet on Volvo Cars T8 Twin Engine AWD powertrain technology ELECTRIFICATION CLEAN EFFICIENCY RESPONSIVE POWER A technology factsheet on Volvo Cars T8 Twin Engine AWD powertrain technology ELECTRIFICATION CLEAN EFFICIENCY RESPONSIVE POWER Contents Twin Engine (PHEV) Technology 3 - Introducing Twin Engine Technology

More information

Boosting System Challenges for Extreme Downsizing

Boosting System Challenges for Extreme Downsizing Department of Mechanical Engineering Powertrain & Vehicle Research Centre Boosting System Challenges for Extreme Downsizing 1 Thanks to contributors to this presentation UNIVERSITY OF BATH Andrew Lewis

More information

Driving Automotive Innovation Cylinder Deactivation

Driving Automotive Innovation Cylinder Deactivation Driving Automotive Innovation Cylinder Deactivation Dr. James McCarthy, Jr September 13, 2016 902 Senate Hart Building, Washington, D.C. Challenge: Move Peak Efficiency Islands to the Driver Operating

More information

Ultra-Low Carbon Powertrain Program (ETHOS) Sep 20, 2016

Ultra-Low Carbon Powertrain Program (ETHOS) Sep 20, 2016 Ultra-Low Carbon Powertrain Program (ETHOS) Sep 20, 2016 ETHOS Program Overview Project Motivation Ultra-Low Carbon Powertrain Program (CEC) CEC seeks to fund projects which reduce fossil fuel burning

More information

Homogeneous Charge Compression Ignition (HCCI) Engines

Homogeneous Charge Compression Ignition (HCCI) Engines Homogeneous Charge Compression Ignition (HCCI) Engines Aravind. I. Garagad. Shri Dharmasthala Manjunatheshwara College of Engineering and Technology, Dharwad, Karnataka, India. ABSTRACT Large reductions

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

Development of Two-stage Electric Turbocharging system for Automobiles

Development of Two-stage Electric Turbocharging system for Automobiles Development of Two-stage Electric Turbocharging system for Automobiles 71 BYEONGIL AN *1 NAOMICHI SHIBATA *2 HIROSHI SUZUKI *3 MOTOKI EBISU *1 Engine downsizing using supercharging is progressing to cope

More information

A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE

A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE SYNERGISTICALLY INTEGRATING ADVANCED SPARK IGNITION ENGINES AND FUTURE FUELS Paul Najt General Motors Global R&D THE

More information

Improved Fuel Economy

Improved Fuel Economy ENVIRONMENTAL REPORT 2001 The Challenge of Reducing Enviromental Load Improving Fuel Economy and Reducing Exhaust Emissions Pressing Ahead to Improve the Fuel Economy of Existing Engines and Reduce Exhaust

More information

2.61 Internal Combustion Engines Spring 2008

2.61 Internal Combustion Engines Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.61 Internal Combustion Engines Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Engine Heat Transfer

More information

Study on Compound Injection Technology in Gasoline Engines

Study on Compound Injection Technology in Gasoline Engines International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015) Study on Compound Injection Technology in Gasoline Engines Cuiling Song College of Vehicles and Energy Yanshan

More information

Diesel HCCI Results at Caterpillar

Diesel HCCI Results at Caterpillar Diesel HCCI Results at Caterpillar Kevin Duffy, Jonathan Kilkenny Andrew Kieser, Eric Fluga DOE Contracts DE-FC5-OR2286, DE-FC5-97OR2265 Contract Monitors Roland Gravel, John Fairbanks DEER Conference

More information

Combustion Systems What we might have learned

Combustion Systems What we might have learned Combustion Systems What we might have learned IMechE ADSC, 6 December 2012 Chris Whelan Contents Engines Big & Small Carnot, Otto & Diesel Thermodynamic Cycles Combustion Process & Systems Diesel & Otto

More information

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system Third Two-Day Meeting on Internal Combustion Engine Simulations Using the OpenFOAM technology, Milan 22 nd -23 rd February 2018. Gas exchange and fuel-air mixing simulations in a turbocharged gasoline

More information

Dr. Terry Alger. Southwest Research Institute. Southwest Research Institute. San Antonio, Texas

Dr. Terry Alger. Southwest Research Institute. Southwest Research Institute. San Antonio, Texas Gasoline Engine Technology for High Efficiency Dr. Terry Alger Southwest Research Institute Southwest Research Institute San Antonio, Texas Losses and Opportunities for Improvement in Gasoline Engines

More information

Engine Auxiliary Systems-Spanish

Engine Auxiliary Systems-Spanish Engine Auxiliary Systems-Spanish 1. COMBUSTION ENGINES IN 1.1. INTRODUCTION 1.2. COMBUSTION 1.2.1. IDEAL COMBUSTION 1.2.2. FIRING TRIGGER 1.2.3. Precombustion OR 1.3. FACTORS AFFECTING ON THE COMBUSTION

More information

Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines

Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines ISSN 2395-1621 Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines #1 Shailendra Patil, #2 Santosh Trimbake 1 shailendrapatil7592@gmail.com 2 santoshtrimbake@yahoo.co.in

More information

INTERNATIONAL Diesel Engine Emissions Requirements & Technology

INTERNATIONAL Diesel Engine Emissions Requirements & Technology INTERNATIONAL 2010 Diesel Engine Emissions Requirements & Technology Independent Armored Car Operators Association, Inc. 2008 Annual Convention Monday, June 23, 2008 2007 EPA Emissions Standards 1994 500

More information

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory 8 th International Symposium TCDE 2011 Choongsik Bae and Sangwook Han 9 May 2011 KAIST Engine Laboratory Contents 1. Background and Objective 2. Experimental Setup and Conditions 3. Results and Discussion

More information

The effect of ethanolled gasoline on the performance and gaseous and particulate emissions on a 2/4-stroke switchable DI engine Yan Zhang & Hua Zhao

The effect of ethanolled gasoline on the performance and gaseous and particulate emissions on a 2/4-stroke switchable DI engine Yan Zhang & Hua Zhao The effect of ethanolled gasoline on the performance and gaseous and particulate emissions on a 2/4-stroke switchable DI engine Yan Zhang & Hua Zhao Centre for Advanced Powertrain and Fuels (CAPF) Brunel

More information

Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains

Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains Dipl.-Ing. Michael Huß BMW Group (05/2007 04/2010) Prof. Dr.-Ing Georg Wachtmeister LVK

More information

Optical Techniques in Gasoline Engine Performance and Emissions Development

Optical Techniques in Gasoline Engine Performance and Emissions Development Optical Techniques in Gasoline Engine Performance and Emissions Development TC GDI engines: analysis and development techniques to solve pre-ignition and soot formation issues Ernst Winklhofer AVL List

More information

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization (SAE Paper- 2009-01-0306) Craig D. Marriott PE, Matthew A. Wiles PE,

More information

CNG 2.0 CNG 2.0. Massimo Ferrera. FCA EMEA Powertrain Engineering R&T (CRF) Massimo Ferrera. EMEA Powertrain Engineering R&T (CRF) Alternative Fuels

CNG 2.0 CNG 2.0. Massimo Ferrera. FCA EMEA Powertrain Engineering R&T (CRF) Massimo Ferrera. EMEA Powertrain Engineering R&T (CRF) Alternative Fuels CNG 2.0 CNG 2.0 Massimo Ferrera FCA EMEA Powertrain Engineering R&T (CRF) Massimo Ferrera EMEA Powertrain Engineering R&T (CRF) Alternative Fuels June 30, 2016 SAE/ATA - CO2 reduction for Transportation

More information

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI)

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Andrew Nicol AECC Technical Seminar on Heavy-Duty Vehicle Emissions (Euro VI) Brussels 25 October 2007 Contents Emissions Legislation

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

EMS & OBD Engine Testing and Instrumentation 1

EMS & OBD Engine Testing and Instrumentation 1 EMS & OBD Engine Management System (EMS) It consists of ECU, various sensors and actuators in the engine. It uses the information acquired from sensors to control the fuel injection, ignition systems,

More information

INTERNAL COMBUSTION ENGINE (SKMM 4413)

INTERNAL COMBUSTION ENGINE (SKMM 4413) INTERNAL COMBUSTION ENGINE (SKMM 4413) Dr. Mohd Farid bin Muhamad Said Room : Block P21, Level 1, Automotive Development Centre (ADC) Tel : 07-5535449 Email: mfarid@fkm.utm.my HISTORY OF ICE History of

More information

Potential of Modern Internal Combustion Engines Review of Recent trends

Potential of Modern Internal Combustion Engines Review of Recent trends Potential of Modern Internal Combustion Engines Review of Recent trends David Kittelson Department of Mechanical Engineering University of Minnesota February 15, 2011 Outline Background Current engine

More information

The Future for the Internal Combustion Engine and the Advantages of Octane

The Future for the Internal Combustion Engine and the Advantages of Octane The Future for the Internal Combustion Engine and the Advantages of Octane DAVE BROOKS Director, Global Propulsion Systems R&D Laboratories GM Research & Development KEY DRIVERS OF THE TRANSFORMATION

More information

Vehicle Powertrain CO 2 Emissions in Review

Vehicle Powertrain CO 2 Emissions in Review Vehicle Powertrain CO 2 Emissions in Review August 17-18, 2011 MIT/NESCAUM Forum Endicott House Tim Johnson JohnsonTV@Corning.com The US EPA (and CARB) are considering 5%/yr reduction in light-duty (LD)

More information

Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century

Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century Jason Martz Assistant Research Scientist and Adjunct Assistant Professor Department of Mechanical Engineering University

More information

Ultraboost: Investigations into the Limits of Extreme Engine Downsizing Dr J.W.G. Turner

Ultraboost: Investigations into the Limits of Extreme Engine Downsizing Dr J.W.G. Turner Ultraboost: Investigations into the Limits of Extreme Engine Downsizing Dr J.W.G. Turner Jaguar Land Rover Powertrain Research Overview of Presentation The Ultraboost Project Targets and Sizing 3-Phase

More information

On the Road to the Future Powertrain. David Johnson President and CEO Achates Power

On the Road to the Future Powertrain. David Johnson President and CEO Achates Power On the Road to the Future Powertrain David Johnson President and CEO Achates Power Prof Daniel Sperling, University of California Davis Number of vehicles will double Need for sharply reduced fuel consumption

More information

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 1897-1906 1897 EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane by Jianyong

More information

High Efficiency Engines through Dilution Opportunities and Challenges. Dr. Terry Alger Southwest Research Institute

High Efficiency Engines through Dilution Opportunities and Challenges. Dr. Terry Alger Southwest Research Institute High Efficiency Engines through Dilution Opportunities and Challenges Dr. Terry Alger Southwest Research Institute Efficiency Drivers from the Marketplace and Regulators Oil price volatility CO 2 and CAFE

More information

Reduction of Fuel Consumption and Emissions Electromechanical Valve Train in Vehicle Operation

Reduction of Fuel Consumption and Emissions Electromechanical Valve Train in Vehicle Operation Technology- H i g h l i g h t s a n d R & D A c t i v i t i e s a t F E V Issue 12 / Aug. 1999 Reduction of Fuel Consumption and Emissions Electromechanical Valve Train in Vehicle Operation FEV has proven

More information

Advanced Diesel Combustion Concept: PCCI - A Step Towards Meeting BS VI Emission Regulations

Advanced Diesel Combustion Concept: PCCI - A Step Towards Meeting BS VI Emission Regulations October - November 2015 1. Advanced Diesel Combustion Concept: PCCI - A Step Towards Meeting BS VI Emission Regulations 2. ARAI offers Indigenously Developed Downsized 3 Cylinder High Power Density CRDI

More information

2B.3 - Free Piston Engine Hydraulic Pump

2B.3 - Free Piston Engine Hydraulic Pump 2B.3 - Free Piston Engine Hydraulic Pump Georgia Institute of Technology Milwaukee School of Engineering North Carolina A&T State University Purdue University University of Illinois, Urbana-Champaign University

More information

Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter

Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter Gasoline HCCI engine with DME (Di-methyl Ether) as an Ignition Promoter Kitae Yeom, Jinyoung Jang, Choongsik Bae Abstract Homogeneous charge compression ignition (HCCI) combustion is an attractive way

More information

Introduction. Internal Combustion Engines

Introduction. Internal Combustion Engines Introduction Internal Combustion Engines Internal Combustion Engines A heat engine that converts chemical energy in a fuel into mechanical energy. Chemical energy first converted into thermal energy (Combustion)

More information

Engine Tests with Ambixtra Ignition System

Engine Tests with Ambixtra Ignition System Engine Tests with Ambixtra Ignition System Comparision of Ambixtra Ignition System with a Coil Ignitions System with Single Spark Dr. Ralf Tröger, Dr.-Ing. Thomas Emmrich, Sascha Nicklitzsch Chemnitz,

More information

WATER INJECTION FOR PETROL COMBUSTION SYSTEMS

WATER INJECTION FOR PETROL COMBUSTION SYSTEMS WATER INJECTION FOR PETROL COMBUSTION SYSTEMS Further CO 2 emission reduction of passenger cars is mandatory beyond 2020. FEV has developed a concept of condensed water injection, which is ideally combinable

More information

Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines

Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines A. H. Guzel, J. Martin North American GT Conference 2017 11/14/2017 1 Overview Program Goal & Technology

More information

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD CONAT243 THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD KEYWORDS HCCI, EGR, heat release rate Radu Cosgarea *, Corneliu Cofaru, Mihai Aleonte Transilvania

More information

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016) SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2000 Certified Institution Dr. E.M.Abdullah

More information

2.61 Internal Combustion Engines

2.61 Internal Combustion Engines Due: Thursday, February 19, 2004 2.61 Internal Combustion Engines Problem Set 2 Tuesday, February 10, 2004 1. Several velocities, time, and length scales are useful in understanding what goes on inside

More information

Engine Systems. Basic Engine Operation. Firing Order. Four Stroke Cycle. Overhead Valves - OHV. Engine Design. AUMT Engine Systems 4/4/11

Engine Systems. Basic Engine Operation. Firing Order. Four Stroke Cycle. Overhead Valves - OHV. Engine Design. AUMT Engine Systems 4/4/11 Advanced Introduction Brake to Automotive Systems Diagnosis Service and Service Basic Engine Operation Engine Systems Donald Jones Brookhaven College The internal combustion process consists of: admitting

More information

Light-Duty SI Engine Technologies and the Impact of Higher Carbon Alcohol Fuels

Light-Duty SI Engine Technologies and the Impact of Higher Carbon Alcohol Fuels 1 Sustainable Fuels and Clean Vehicles Light-Duty SI Engine Technologies and the Impact of Higher Carbon Alcohol Fuels Jeffrey D. Naber APSRC Center Director Ronald and Elaine Starr Professor of Energy

More information

Principles of Engine Operation. Information

Principles of Engine Operation. Information Internal Combustion Engines MAK 4070E Principles of Engine Operation Prof.Dr. Cem Soruşbay Istanbul Technical University Information Prof.Dr. Cem Soruşbay İ.T.Ü. Makina Fakültesi Motorlar ve Taşıtlar Laboratuvarı

More information

Electronic Engine Controls Subscription Methods of Pressure Cycle Processing for Engine Control Nonlinear Analysis of

Electronic Engine Controls Subscription Methods of Pressure Cycle Processing for Engine Control Nonlinear Analysis of Electronic Engine Controls Subscription 2003-01-0352 Methods of Pressure Cycle Processing for Engine Control 2003-01-0354 Nonlinear Analysis of Combustion Engine Vibroacoustic Signals for Misfire Detection

More information

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions D.R. Cohn* L. Bromberg* J.B. Heywood Massachusetts Institute of Technology

More information

System Simulation for Aftertreatment. LES for Engines

System Simulation for Aftertreatment. LES for Engines System Simulation for Aftertreatment LES for Engines Christopher Rutland Engine Research Center University of Wisconsin-Madison Acknowledgements General Motors Research & Development Caterpillar, Inc.

More information

EEN-E2002 Combustion Technology 2017 LE 3 answers

EEN-E2002 Combustion Technology 2017 LE 3 answers EEN-E2002 Combustion Technology 2017 LE 3 answers 1. Plot the following graphs from LEO-1 engine with data (Excel_sheet_data) attached on my courses? (12 p.) a. Draw cyclic pressure curve. Also non-fired

More information

BOOSTED HCCI OPERATION ON MULTI CYLINDER V6 ENGINE

BOOSTED HCCI OPERATION ON MULTI CYLINDER V6 ENGINE Journal of KONES Powertrain and Transport, Vol. 13, No. 2 BOOSTED HCCI OPERATION ON MULTI CYLINDER V6 ENGINE Jacek Misztal, Mirosław L Wyszyński*, Hongming Xu, Athanasios Tsolakis The University of Birmingham,

More information

High efficient SI-engine with ultra high injection pressure Chalmers University]

High efficient SI-engine with ultra high injection pressure Chalmers University] High efficient SI-engine with ultra high injection pressure [Research @ Chalmers University] Event; Energirelaterad forskning, 2017 Gothenburg, Sweden 5 th October 2017 Peter Granqvist President DENSO

More information

Chapter 6. Supercharging

Chapter 6. Supercharging SHROFF S. R. ROTARY INSTITUTE OF CHEMICAL TECHNOLOGY (SRICT) DEPARTMENT OF MECHANICAL ENGINEERING. Chapter 6. Supercharging Subject: Internal Combustion Engine 1 Outline Chapter 6. Supercharging 6.1 Need

More information

UNIT IV INTERNAL COMBUSTION ENGINES

UNIT IV INTERNAL COMBUSTION ENGINES UNIT IV INTERNAL COMBUSTION ENGINES Objectives After the completion of this chapter, Students 1. To know the different parts of IC engines and their functions. 2. To understand the working principle of

More information

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

Internal Combustion Optical Sensor (ICOS)

Internal Combustion Optical Sensor (ICOS) Internal Combustion Optical Sensor (ICOS) Optical Engine Indication The ICOS System In-Cylinder Optical Indication 4air/fuel ratio 4exhaust gas concentration and EGR 4gas temperature 4analysis of highly

More information

New Direct Fuel Injection Engine Control Systems for Meeting Future Fuel Economy Requirements and Emission Standards

New Direct Fuel Injection Engine Control Systems for Meeting Future Fuel Economy Requirements and Emission Standards Hitachi Review Vol. 53 (2004), No. 4 193 New Direct Fuel Injection Engine Control Systems for Meeting Future Fuel Economy Requirements and Emission Standards Minoru Osuga Yoshiyuki Tanabe Shinya Igarashi

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark 26 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark Hardik Bambhania, 2 Vijay Pithiya,

More information

Proposal to establish a laboratory for combustion studies

Proposal to establish a laboratory for combustion studies Proposal to establish a laboratory for combustion studies Jayr de Amorim Filho Brazilian Bioethanol Science and Technology Laboratory SCRE Single Cylinder Research Engine Laboratory OUTLINE Requirements,

More information

2018 Schaeffler Symposium Jerry Dixon - The Next Generation of Valve Train 9/6/2018 THE NEXT GENERATION OF VALVE TRAIN JERRY DIXON

2018 Schaeffler Symposium Jerry Dixon - The Next Generation of Valve Train 9/6/2018 THE NEXT GENERATION OF VALVE TRAIN JERRY DIXON THE NEXT GENERATION OF VALVE TRAIN JERRY DIXON 1 WHAT SHOULD BE EXPECTED FROM THE NEXT GENERATION OF VALVE TRAINS? Next Generation Valve Train Expectations 1 Improved Performance 2 Modularity / Flexibility

More information

Advancement of Gasoline Direct Injection Compression Ignition (GDCI) for US 2025 CAFE and Tier3 Emissions

Advancement of Gasoline Direct Injection Compression Ignition (GDCI) for US 2025 CAFE and Tier3 Emissions Advancement of Gasoline Direct Injection Compression Ignition (GDCI) for US 2025 CAFE and Tier3 Emissions M. Sellnau, M. Foster, W. Moore, K. Hoyer, J. Sinnamon, B. Klemm Delphi Powertrain Auburn Hills,

More information

Effects of intake air temperature on HCCI combustion and emissions with gasoline and n-heptane

Effects of intake air temperature on HCCI combustion and emissions with gasoline and n-heptane Effects of intake air temperature on HCCI combustion and emissions with gasoline and n-heptane 1 by Jianyong ZHANG, Zhongzhao LI, Kaiqiang ZHANG, Xingcai LV, Zhen HUANG Key Laboratory of Power Machinery

More information

Air Injection for Internal Combustion Engines. George C. K. Chen Oct. 7th, 2013 US patent #

Air Injection for Internal Combustion Engines. George C. K. Chen Oct. 7th, 2013 US patent # Air Injection for Internal Combustion Engines George C. K. Chen Oct. 7th, 2013 US patent #8434462 Agenda Efficiency and power loss due to 10% residual exhaust gas in cylinder Existing Solutions Proposed

More information

The 1.4 ltr. and 1.6 ltr. FSI engine with timing chain

The 1.4 ltr. and 1.6 ltr. FSI engine with timing chain Service. Self study programme 296 The 1.4 ltr. and 1.6 ltr. FSI engine with timing chain Design and function For Volkswagen, new and further development of engines with direct petrol injection is an important

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd.

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd. Mechanisms of HC Formation in SI Engines... contd. The Lecture Contains: HC from Lubricating Oil Film Combustion Chamber Deposits HC Mixture Quality and In-Cylinder Liquid Fuel HC from Misfired Combustion

More information

Advanced Propulsion/Powertrain Track

Advanced Propulsion/Powertrain Track Advanced Propulsion/Powertrain Track The Powertrain, Fuels and Lubricants sessions focus on information in the area of properties, selection, processing, performance, use, and effects of fuels and lubricants

More information

EURO 4-5 Diesel Exhaust Pollutant. After-Threatment

EURO 4-5 Diesel Exhaust Pollutant. After-Threatment EURO4-5 Common Rail EURO 4-5 Diesel Exhaust Pollutant After-Threatment 1 Exhaust gas recirculation EGR fundamentals: AFR: Air to Fuel Ratio. This parameter is used to define the ratio between fuel (petrol,

More information

Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application

Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application SUNDHARAM K, PG student, Department of Mechanical Engineering, Internal Combustion Engineering Divisions,

More information