PERFORMANCE ANALYSIS ON DOUBLE PIPE HEAT EXCHANGER USING WIRE COILED AND PIN WIRE COILED TURBULATOR INSERTS

Size: px
Start display at page:

Download "PERFORMANCE ANALYSIS ON DOUBLE PIPE HEAT EXCHANGER USING WIRE COILED AND PIN WIRE COILED TURBULATOR INSERTS"

Transcription

1 June 217 IJIRT Volume 4 Issue 1 ISSN: PERFORMANCE ANALYSIS ON DOUBLE PIPE HEAT EXCHANGER USING WIRE COILED AND PIN WIRE COILED TURBULATOR INSERTS S.Shanmugapriya 1, M.Ganesh karthikeyan 2, Dr.M.Prabakar 3 and S. Senthilkumar 4 1 Thermal Engineering, TRPEC, Trichy, India 2,3,4 Mechanical Engineering, TRPEC, Trichy, India Abstract The heat exchanger is an important device in almost all of the mechanical industries as in case of process industries it is key element. Thus from long time many researchers in this area are working to improve the performance of these heat exchangers in terms of heat transfer rate, keeping pressure drop in limit by using various techniques. This project work deals with of such techniques keeping focus on passive augmentation techniques used in heat exchangers. Here the wire coiled turbulator and pin wire coiled turbulator are used to enhance the heat transfer rate in the double pipe heat exchanger by changing the flow of a liquid. Tests to be conducted at various mass flow rates by controlling the flow control valve, for the following valve opens (25%, 5%, 75%, 1% valve open). Results may indicate that the heat transfer rate enhances inversely with the pitch of the wire coiled turbulator and directly proportional to the mass flow rate. Index Terms Double pipe heat exchanger, Plain, Wire coiled turbulator inserts, Pin wire coiled turbulator inserts, Pressure drop, Friction Co-efficient. I. INTRODUCTION Heat transfer can be increased by active and passive techniques. In the active techniques external power is required to increase the heat transfer. For the passive technique method no external energy is required for the enhancement of heat transfer. Wire coiled coil matrix turbulator (WCCMT), taper wire coiled coil matrix turbulator, and pin wire coiled turbulators are falls under the category of passive techniques. In this experimental work, turbulators are used to increase the heat transfer. Three different types of wire coiled turbulators (shown in figs.) are used to increase the heat transfer. Due to the insertion of turbulators there is increase in pumping power due to the pressure drop. But when compared to enhancement in heat transfer the increase in pumping power is very less. II. TURBULATORS Heat exchangers with the convective heat transfer of fluid inside the tubes arefrequently used in many engineering applications. In order to augment heat transfer andincrease the system efficiency, turbulators with different geometries have been developedand many experimental investigations have been conducted to determine theirthermodynamic characteristics. The turbulators, when they are inserted into the flow, provide redevelopment ofthe boundary layer and increase the heat transfer surface area and cause enhancement ofconvective heat transfer by increasing turbulence. Thus, more compact and economicheat exchanger with lower operation cost can be produced. On the other hand, when thesedevices placed into the flow they deteriorate the flow. Major Applications for Turbulators: 1. Oil Coolers 2. Highly viscous liquids 3. Gas or Air heaters/coolers 4. Static Mixers 5. Falling Film Evaporators 6. Inline reactors 7. Prevention of scale formation on tube. a) Wire coiled and Pin Wire coiledturbulators: The wire coiled turbulator is the old war horse of the Turbulator world and ofcourse we make them in large quantities. This type is also featured in the HTRI softwareas a generic product so customers can do their own design. (A type of wire Turbulator isalso featured but as a proprietary product of Calgavin and customized as per theirconfigurations.) We can give all standard and a large range of custom pitches and offerthem in almost all materials. While in most cases the flexible wire type is a preferredoption, in the case IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 188

2 June 217 IJIRT Volume 4 Issue 1 ISSN: of retrofitting, where there is a lower flexibility with regards toredesigning the existing equipment, this is very often a low pressure drop reasonableefficiency solution. So that I have selected wire coiled and pin wire coiled turbulatorsformy research work. d) Pin wire coiled turbulator: b) Specifications of Wire Coiled Turbulator: Fig. 5 Pin wire coiled turbulator for 15mm pitch Fig. 1.Wire Coiled Turbulator L = length of the wire coiled turbulator(15 mm) P = pitch, 1mm, 15mm) D1 = Outer Diameter of the wire coil turbulator(18mm) D2 = inner Diameter of the wire coil turbulator.(6mm) c) Wire Coiled Turbulator for Various Pitch: Fig. 2 Wire coiled turbulator for 5mm pitch Fig. 3 Wire coiled turbulator for 1mm pitch Fig. 4 Wire coiled turbulator for 15mm pitch III. EXPERIMENTAL SETUP AND PROCEDURE a) Double pipe heat exchanger: A simplest form of heat exchanger is double pipe Heat Exchanger where two pipes are constructed one inside the other. One fluid flows in each of the pipes and gets heated or cooled as per the application. The major use of double pipe heat exchangers is for sensible heating or cooling of process fluids where small heat transfer areas (5 m2) are required. This configuration is also suitable when one or both fluids are at high pressure. Double pipe heat exchangers Can operate between.5kw~15kw. Double pipe heat exchangers have an outer pipe I.D of 5 to 4 mm at a nominallength of 1.5 to 12. m per hairpin. The O.D of the inner tube may vary between 19 to 1 mm. b) Reasons for selection: The heat transfer coefficient and pressure drop are the most significant variables in reducing the size and cost of a heat exchanger. An increase in the heat transfer coefficient generally leads to another advantage of reducing the temperature driving force, which increases the second law efficiency and decreases entropy generation. Thus, research in this area captivated the interest of a number of researchers. So, the double pipe heat exchanger is selected. The experimental setup is shown in fig. 6. It consists of hot and water reservoir, Rota meter, thermocouples, pumps, flow control valves and two concentric tubes in which hot water flows through the inner tube (Copper tube, d= 33 mm, L= 155 mm) and cold water flows in counter flow through annulus.the outer tube is made of MS steel and it s insulated with the asbestos IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 189

3 June 217 IJIRT Volume 4 Issue 1 ISSN: rope to minimize the heat loss with surroundings. Six RTD Pt 1 type temperature sensors with ±.1 C accuracy are used to measure the inlet and outlet temperature of the hot and cold water.the water is heated using 3 KW water heaters in the hot water tank and the desired temperature controller. The water at constant temperature is taken from the tank using the centrifugal pump to the test section. c) Experimental procedure: The hot and cold water tank is filled with the required level water. The heater is switched on through the main power supply of the setup. The RTD (Relational Temperature Detector) is set with the required temperature of hot water inlet. Fig. 6Experimental setup In this experiment there are two flow control valves are used in that two initially one flow control valve is closed and another one is open this allow the fluid to fill in the container by using this we measure the flow rate. After that both the flow control valves are open the cold water is entered into the inner pipe of the setup. The hot water is entered into an outer tube of the heat exchanger through flow control valve. The sensor measures the hot water and inlet and outlet temperature and indicates in the temperature indicator. After taking the required readings the gate valves is adjusted to the initial position. Finally the heater and main power is switch OFF and the water is drained. d) Specifications: (1) Inner of the double pipe: i.material - Copper ii.inner diameter - 33 mm iii.outer diameter - 38 mm iv.length mm (2) Outer pipe of the double pipe: i.material - Mild steel ii.inner diameter mm iii.outerdiameter mm iv.length mm v.insulation material - Asbestos (3) Heater: i.capacity of heating coil 1W ii.number of heating coil - 3 no s (4) Pump: i.type - Centrifugal pump ii.power - ½ HP iii.number of pumps - 1no s iv. Cold water pump - 1no s e) Digital temperature indicator: i. Sensor - RTD-Pt 1 ii. Number of sensors - 6 no s iii. Range C iv. Display unit - Digital LED) v. Number of Channel - 1 f) Digital temperature controller: i. Sensor - k-type ii. Number of sensors - 6 no s. iii. Range - -4 C IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 19

4 June 217 IJIRT Volume 4 Issue 1 ISSN: iv. Display unit -Digital (LED) g) Hot and cold water tank: i. Length -.47 m. ii. Breadth -.47 m. iii. Height -.75 m.2 liter container(used for drinking water storage) PVC pipe.5 (length~1m) Funnel (for feed input) Rubber or plastic cap (to seal container) Cap.5 (to seal effluent pipe) Pipe (for gas output, was used LPG pipe) (1.5m) Tyre tube (for store the biogas) T- junction M seal Black paint (to absorb heat energy from surroundings) IV. DATA REDUCTION EQUATIONS 1. The average inside heat transfer coefficient and the mean Nusselt number for the plain and the wire coiled matrix turbulator cases are evaluated as: Q = m Cp (T T i) = h i A i ( T i) m Where, A i = π Di L ( T i) m = (T MW-T i) (T MW-T i) ln (T MW-T i) (T MW-T i) T MW=T W/2 2. The average inside heat transfer co efficient hi = (Q / A i ( T i)m) 3. Nusseltnumber, friction factor, pressure drop equations (plain tube): Δp = 4fLVc 2 2D 2 4. Nusselt number, friction factor, pressure drop equations (Plain tube with coiled turbulators): Δp = 4fLVc 2 2D 2 V. RESULT AND DISCUSSION The present experimental results on heat transfer and friction characteristics in a plain tube are first validated in terms of Nusselt number and friction factor. It is important to compare the experimental results obtained for the fully developed turbulent flow for various turbulator inserts. At 25% valve open, with a pitch of 5 mm, the wire coiled turbulators without bonding have resulted in almost 2 times enhancement when compared with plain tube. On the other hand, for pitches of 1 mm and 15 mm the enhancement were 1.75 times and 1.5 times, respectively. At 5% valve open, with a pitch of 5 mm, the wire coiled turbulators without bonding have resulted in almost 1.83 times enhancement when compared with plain tube. On the other hand, for pitches of 1 mm and 15 mm the enhancement were 1.66 times and 1.33 times, respectively. At 75% valve open, with a pitch of 5 mm, the wire coiled turbulators without bonding have resulted in almost 1.75 times enhancement when compared with plain tube. On the other hand, for pitches of 1 mm and 15 mm the enhancement were 1.63 times and 1.37, respectively. At 1% valve open, with a pitch of 5 mm, the wire coiled turbulators without bonding have resulted in almost 1.63 times enhancement when compared with plain tube. On the other hand, for pitches of 1 mm and 15 mm the enhancement were 1.45 times and 1.27 times, respectively. At 25% valve open, with a pin wire coiled turbulator without bonding have resulted in almost 2.5 times enhancement when compared with plain tube. At 5% valve open, with a pin wire coiled turbulator without bonding have resulted in almost 2.16 times enhancement when compared with plain tube. At 75% valve open, with a pin wire coiled turbulator without bonding have resulted in almost 2 times enhancement when compared with plain tube. At 1% valve open, IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 191

5 Theoretical Heat transfer coefficient friction factor Exp Heat transfer co-efficient hexp (W/m2K) friction factor June 217 IJIRT Volume 4 Issue 1 ISSN: with a pin wire coiled turbulator without bonding have resulted in almost 1.81 times enhancement when compared with plain tube. On other hand the Nusselt number, friction factor, and pressure drop are indirectly proportional to the pitch. wire coiled turbulator while compare with other turbulators. Vs Exp friction factor Plain Vs Exp Heat transfer co-efficient Plain Fig 7 Reynolds number Vs Experimental Heat transfer co-efficient. Vs Theoretical Heat transfer co-efficientplain Fig 8 Reynolds number Vs Theoretical Heat transfer co-efficient. Figures 7 and 8 shows variation of Nusselt number with Reynolds number for the different cases like plain tube, wire coiled turbulator, taper wire coiled turbulator, and pin wire coiled turbulator. It is observed that the heat transfer rate is higher for pin Fig 9 Reynolds number Vs Experimental friction factor Vs Theoretical friction factor Pin Wire Coiled Turbulator Plain Pin Wire Coiled Turbulator Fig 1 Reynolds number Vs Theoretical friction factor. Figures 9 and 1 shows variation of friction factor with Reynolds number for the different cases like plain tube, wire coiled turbulator, taper wire coiled turbulator,and pin wire coiled turbulator. It is observed that the friction factor is higher for pin wire coiled turbulator while compare with other turbulators. IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 192

6 Theoretical Pressure Drop ( P) (bar) Exp Pressure Drop ( P) (bar) June 217 IJIRT Volume 4 Issue 1 ISSN: Vs Exp Pressure Drop Plain Fig 11.Reynolds number Vs Experimental Pressure drop. Figures 11 and 12 shows variation of pressure drop with Reynolds number for the differentcaseslike plain tube, it is observedthat the pressure dropis higher for pin wire coiled turbulator while compare with other turbulators. Vs Theoretical Pressure Drop Plain Fig 12 Reynolds number Vs Theoretical Pressure drop VI. CONCLUSION Experimental data obtained were compared with those obtained from the theoretical data of plain tube. The maximum Nusselt number for pitch 5 mm was obtained which indicates that heat transfer coefficient increases with the decreasing pitch of the turbulator. The friction factor also increases with the decreasing pitch. The above findings indicate that the use of wire coiled coil matrix turbulator and pin wire coiled turbulators in the tube-in-tube heat exchanger enhances the heat transfer with considerable pressure drop. The experimental data which indicates the heat transfer rate of pin wire coiled turbulator is higher than the wire coiled turbulators. REFERENCES [ 1 ] P. Murugesan, K. Mayilsamy, S. Suresh, P.S.S. Srinivasan,Heattransfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert: International Communications in Heat and Mass Transfer 38(211) [ 2 ] PaisarnNaphon, TanaponSuchana,Heat transfer enhancement andpressure drop of the horizontal concentric tube with twisted wires brush inserts:international Communications in Heat and Mass Transfer 38 (211) [ 3 ] Halit Bas, VeyselOzceyhan,Heat transfer enhancement in a tube withtwisted tape inserts placed separately from the tube wall: Experimental Thermaland Fluid Science 41 (212) [ 4 ] PaisarnNaphon,Second law analysis on the heat transfer of the horizontalconcentric tube heat exchanger: Heat and Mass Transfer 33 (26) [ 5 ] PaisarnNaphon,Effect of coil-wire insert on heat transfer enhancement andpressure drop of the horizontal concentric tubes: International Communications inheat and Mass Transfer 33 (26) [ 6 ] Suresh S., M. Chandrasekar, S. Chandra Sekhar,(21) ExperimentalStudies On Heat IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 193

7 June 217 IJIRT Volume 4 Issue 1 ISSN: Transfer And Friction Factor Characteristics Of Cuo/Water NanoFluid Under Turbulent Flow In A Helically Dimpled, ExperimentalThermal and Fluid Science, page no [ 7 ] Juin Chen a, Hans Muller-Steinhagen b, Geoffrey G. Duffy a, (21) Heat Transfer Enhancement in Dimpled s, Applied Thermal Engineering,page no [ 8 ] Pedro g, Vicente, Alberto Garcia, Antonio Viedma, (21) Heat Transfer And Pressure Drop For Low Reynolds Turbulent Flow In Helically Dimpleds,International journal of Heat and Mass Transfer, page no [ 9 ] Suresh S., K.P. Venkitaraj, P. Selvakumar, (21) Comparative Study OnThermal Performance Of Helical Screw Tape Inserts In Laminar Flow UsingAl2o3/Water And Cuo/Water Nanofluids, Super lattice Microst, page no [ 1 ] Juin Chen a, Hans Muller-Steinhagen b, Geoffrey G. Duffy a, (21) Heat Transfer Enhancement In Dimpled s, Applied Thermal Engineering,page no [ 11 ] Eiamsa-ard S. and Promvonge P. (26) Experimental investigation ofheat transfer and friction characteristics in a circular tube fitted with V-nozzleturbulators, International Communications in Heat and Mass Transfer, Vol.33,No.5, pp [ 12 ] Eiamsa-ard S. and Promvonge P. (27) Heat transfer characteristics in atube fitted with helical screw-tape with/without core-rod inserts, InternationalCommunications in Heat and Mass Transfer, Vol.34, No.2, pp IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 194

NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] VOLUME 1, ISSUE 1 NOV-2014

NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] VOLUME 1, ISSUE 1 NOV-2014 Review of Heat Transfer Parameters using internal threaded pipe fitted with inserts of different materials Mr. D.D.Shinde Department of Mechanical Engineering Shivaji University, PVPIT Budhagaon, Dist:

More information

Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts

Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts Deepali Gaikwad 1, Kundlik Mali 2 Assistant Professor, Department of Mechanical Engineering, Sinhgad College of

More information

Experimental Study of Heat Transfer Augmentation in Concentric Tube Heat Exchanger with Different Twist Ratio of Perforated Twisted Tape Inserts

Experimental Study of Heat Transfer Augmentation in Concentric Tube Heat Exchanger with Different Twist Ratio of Perforated Twisted Tape Inserts International search Journal of Advanced Engineering and Science Experimental Study of Heat Transfer Augmentation in Concentric Tube Heat Exchanger with Different Twist Ratio of Perforated Twisted Tape

More information

Visualization of Flow and Heat Transfer in Tube with Twisted Tape Consisting of Alternate Axis

Visualization of Flow and Heat Transfer in Tube with Twisted Tape Consisting of Alternate Axis 2012 4th International Conference on Computer Modeling and Simulation (ICCMS 2012) IPCSIT vol.22 (2012) (2012) IACSIT Press, Singapore Visualization of Flow and Heat Transfer in Tube with Twisted Tape

More information

ABSTRACT I. INTRODUCTION III. GEOMETRIC MODELING II. LITERATURE REVIW

ABSTRACT I. INTRODUCTION III. GEOMETRIC MODELING II. LITERATURE REVIW 2017 IJSRSET Volume 3 Issue 5 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Performance Analysis of Helical Coil Heat Exchanger Using Numerical Technique Abhishek

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 5, May -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Increase

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 0, October-205 97 The Effect of Pitch and Fins on Enhancement of Heat Transfer in Double Pipe Helical Heat Exchanger 2 Abdulhassan

More information

Analysis to Determine Heat Transfer Using Twisted Tape Inserts In a Horizontal Tube

Analysis to Determine Heat Transfer Using Twisted Tape Inserts In a Horizontal Tube Analysis to Determine Heat Transfer Using Twisted Tape Inserts In a Horizontal Tube Suraj C Belagali M.Tech Student Department of Thermal Engineering Ellenki College of Engineering and Technology Telangana,

More information

An Experimental Study of Thermo-Hydraulic Performance of Modified Double Pipe Heat Exchanger Using Mesh Inserts

An Experimental Study of Thermo-Hydraulic Performance of Modified Double Pipe Heat Exchanger Using Mesh Inserts An Experimental Study of Thermo-Hydraulic Performance of Modified Double Pipe Heat Exchanger Using Mesh Inserts Prof.A.M.Patil 1, M.R.Todkar 2 Professor, Department of Mechanical Engineering, PVPIT, Budhgaon,

More information

THERMAL ANALYSIS OF HELICALLY GROOVED COIL IN A CONCENTRIC TUBE HEAT EXCHANGER

THERMAL ANALYSIS OF HELICALLY GROOVED COIL IN A CONCENTRIC TUBE HEAT EXCHANGER THERMAL ANALYSIS OF HELICALLY GROOVED COIL IN A CONCENTRIC TUBE HEAT EXCHANGER A. RESHMA P.G Scholar, Thermal Engineering, Aditya Engineering College, Surampalem M.SREENIVASA REDDY Professor, Mechanical

More information

HEAT TRANSFER ENHANCEMENT BY USING TWISTED TAPE INSERTS WITH CIRCULAR HOLES IN FORCED CONVECTION

HEAT TRANSFER ENHANCEMENT BY USING TWISTED TAPE INSERTS WITH CIRCULAR HOLES IN FORCED CONVECTION HEAT TRANSFER ENHANCEMENT BY USING TWISTED TAPE INSERTS WITH CIRCULAR HOLES IN FORCED CONVECTION Prof. Kurhade Anant Sidhappa Miss. Sonal S. Hande Mr. Swarup B. Patil Mr.Vivekanand R.Maske ABSTRACT In

More information

An Approach for Enhancement of Heat Transfer Using Conical Convergent Ring Inserts In Tube

An Approach for Enhancement of Heat Transfer Using Conical Convergent Ring Inserts In Tube An Approach for Enhancement of Heat Transfer Using Conical Convergent Ring Inserts In Tube Ms. Nishidha A. Lokhande 1, Dr. M. Basavaraj 2 1,2 (Department of Mechanical Engineering, BIT College, Ballarpur,

More information

Enhance the Performance of Heat Exchanger with Twisted Tape Insert: A Review

Enhance the Performance of Heat Exchanger with Twisted Tape Insert: A Review Enhance the Performance of Heat Exchanger with Twisted Tape Insert: A Review M.J.Patel 1, K.S.Parmar 2, Umang R. Soni 3 1,2. M.E. Student, department of mechanical engineering, SPIT,Basna, Gujarat, India,

More information

CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix angle

CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix angle CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix 1 Saket A Patel, 2 Hiren T Patel 1 M.E. Student, 2 Assistant Professor 1 Mechanical Engineering Department, 1 Mahatma

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 976 ISSN 976 634 (Print) ISSN 976 6359 (Online) Volume

More information

EXPERIMENTAL INVESTIGATIONS OF DOUBLE PIPE HEAT EXCHANGER WITH TRIANGULAR BAFFLES

EXPERIMENTAL INVESTIGATIONS OF DOUBLE PIPE HEAT EXCHANGER WITH TRIANGULAR BAFFLES International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 8 Aug-216 www.irjet.net p-issn: 2395-72 EXPERIMENTAL INVESTIGATIONS OF DOUBLE PIPE HEAT EXCHANGER WITH

More information

Design, Fabrication and Testing of helical tube in tube coil heat exachanger

Design, Fabrication and Testing of helical tube in tube coil heat exachanger Design, Fabrication and Testing of helical tube in tube coil heat exachanger #1 Sachin Meshram, #2 Prof.P.T.Nitnaware, #3 M.R.Jagdale ABSTRACT Helical coil heat exchangers are one of the most common equipment

More information

Experimental investigation of shell-and-tube heat exchanger with different type of baffles

Experimental investigation of shell-and-tube heat exchanger with different type of baffles International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 5161 216 INPRESSCO, All Rights served Available at http://inpressco.com/category/ijcet search Article Experimental

More information

Heat Transfer Enhancement In Pipe With Passive Enhancement Technique

Heat Transfer Enhancement In Pipe With Passive Enhancement Technique Heat Transfer Enhancement In Pipe With Passive Enhancement Technique Srinivas Valmiki Associate Professor Department of Mechanical Engineering PDA College of Engineering, Kalaburagi, Karnataka, India Abstract

More information

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate Sandeep M, U Sathishkumar Abstract In this paper, a study of different cross section bundle arrangements

More information

Experimental Investigation on Turbulent Flow Heat Transfer in a Horizontal Circular Pipe using Coil and Twisted Tape Inserts

Experimental Investigation on Turbulent Flow Heat Transfer in a Horizontal Circular Pipe using Coil and Twisted Tape Inserts IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 5 Ver. VI (Sep- Oct. 2014), PP 07-14 Experimental Investigation on Turbulent Flow Heat

More information

ENHANCEMENT OF HEAT TRANSFER IN SHELL AND TUBE HEAT EXCHANGER WITH TABULATOR AND NANOFLUID

ENHANCEMENT OF HEAT TRANSFER IN SHELL AND TUBE HEAT EXCHANGER WITH TABULATOR AND NANOFLUID International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 3, May June 2016, pp.125 138, Article ID: IJMET_07_03_012 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=3

More information

HEAT TRANSFER ENHANCEMENT BY V-NOZZLE TURBULATORS

HEAT TRANSFER ENHANCEMENT BY V-NOZZLE TURBULATORS HEAT TRANSFER ENHANCEMENT BY V-NOZZLE TURBULATORS Deepali S. Bankar Lecturer, Automobile Engineering Department G. H. Raisoni Polytechnic Nagpur (Maharashtra), India bankardeepali@gmail.com Abstract The

More information

Comparison of Heat transfer Enhancement in Tube in Tube heat exchanger using Different Turbulent Generator.

Comparison of Heat transfer Enhancement in Tube in Tube heat exchanger using Different Turbulent Generator. INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD 382 481, 8-10 DECEMBER, 2011 1 Comparison of Heat transfer Enhancement in Tube in Tube heat exchanger using Different Turbulent Generator. A. Mehta

More information

Influence of Pressure Drop, Reynolds Number and Temperature in the Design of Double Pipe Heat Exchanger on Hot Fluid Side in Inner Pipe

Influence of Pressure Drop, Reynolds Number and Temperature in the Design of Double Pipe Heat Exchanger on Hot Fluid Side in Inner Pipe Influence of Pressure Drop, Reynolds Number and Temperature in the Design of Double Pipe Heat Exchanger on Hot Fluid Side in Inner Pipe V Lokesh Varma 1, Suresh Babu Koppula 2, Dr N.V.V.S.Sudheer 3 1 (Mechanical

More information

Experimental Investigation of Heat Transfer characteristics Enhancement through Grooved Tube

Experimental Investigation of Heat Transfer characteristics Enhancement through Grooved Tube International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347 5161 216 INPRESSCO, All Rights served Available at http://inpressco.com/category/ijcet search Article Experimental

More information

EFFECT OF EXTERNAL THREADED INSIDE TUBE ON HEAT TRANSFER RATE IN A CONCENTRIC TUBE HEAT EXCHANGER: A CRITICAL REVIEW

EFFECT OF EXTERNAL THREADED INSIDE TUBE ON HEAT TRANSFER RATE IN A CONCENTRIC TUBE HEAT EXCHANGER: A CRITICAL REVIEW EFFECT OF EXTERNAL THREADED INSIDE TUBE ON HEAT TRANSFER RATE IN A CONCENTRIC TUBE HEAT EXCHANGER: A CRITICAL REVIEW Pritesh S. Khobragade 1, Mahendra P. Nimkar 2 1 Student, M-Tech, Heat Power Engineering,

More information

CFD Analysis of Double Pipe Heat Exchanger with Twisted Tape Insert in Inner Pipe

CFD Analysis of Double Pipe Heat Exchanger with Twisted Tape Insert in Inner Pipe CFD Analysis of Double Pipe Heat Exchanger with Twisted Tape Insert in Inner Pipe 1 Hardik V Solanki, 2 Jignesh M Barot 1 M.E. Student, 2 Assistant Professor 1 Mechanical Engineering Department, 1 NMahatma

More information

Experimental Analysis of Heat Transfer and Friction Factor Characteristics in Turbulent Flow through a Tube Fitted with Screw Tape

Experimental Analysis of Heat Transfer and Friction Factor Characteristics in Turbulent Flow through a Tube Fitted with Screw Tape GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 7 June 2016 ISSN: 2455-5703 Experimental Analysis of Heat Transfer and Friction Factor Characteristics in Turbulent

More information

Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler

Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler S. Hassan *,a, M. K. Roslim b and R. M. Zain c Mechanical Engineering Department,

More information

Experimental Study of Heat Transfer Enhancement in a Heated tube Caused by Wire-Coil and Rings

Experimental Study of Heat Transfer Enhancement in a Heated tube Caused by Wire-Coil and Rings Journal of Applied Fluid Mechanics, Vol. x, No. x, pp. x-x, 200x. Available online at www.jafmonline.net, ISSN 1735-3645, EISSN 1735-3645. Experimental Study of Heat Transfer Enhancement in a Heated tube

More information

HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE FOR TURBULENT FLOW OF WATER USING PERFORATED RECTANGULAR STRIPE INSERT

HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE FOR TURBULENT FLOW OF WATER USING PERFORATED RECTANGULAR STRIPE INSERT Proceedings of the International Conference on Mechanical Engineering and newable Energy 2017 (ICMERE2017) 18 20 December, 2017, Chittagong, Bangladesh ICMERE2017-PI-244 HEAT TRANSFER ENHANCEMENT IN A

More information

Design and experimental analysis of pipe in pipe heat exchanger

Design and experimental analysis of pipe in pipe heat exchanger International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Design and experimental analysis of pipe in pipe heat exchanger Ojha Pramod Kailash 1, Choudhary Bishwajeet NK 2, Gajera Umang B

More information

Experimental Study of Heat Transfer Enhancement in Tube in Tube Heat Exchanger using Rectangular Wing Type Vortex Generator

Experimental Study of Heat Transfer Enhancement in Tube in Tube Heat Exchanger using Rectangular Wing Type Vortex Generator International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Experimental

More information

Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune , Savitribai Phule Pune University, India

Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune , Savitribai Phule Pune University, India International Engineering search Journal International Engineering search Journal Heat Transfer Enhancement of System with Flow Divider Type Insert in a Circular Pipe Nikhil Phalle, S. R. Deodas Department

More information

An Experimental Investigation for the Rate of Heat Transfer in Double Pipe Heat Exchanger with Fins on Inside Surface of Internal Tube

An Experimental Investigation for the Rate of Heat Transfer in Double Pipe Heat Exchanger with Fins on Inside Surface of Internal Tube American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Effect of Nanofluid on Friction Factor of Pipe and Pipe Fittings: Part I - Effect of Aluminum Oxide Nanofluid

Effect of Nanofluid on Friction Factor of Pipe and Pipe Fittings: Part I - Effect of Aluminum Oxide Nanofluid Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Effect

More information

Numerical Investigation of Convective Heat Transfer and Pressure Loss in a Round tube Fitted with Circular-Ring Turbulators

Numerical Investigation of Convective Heat Transfer and Pressure Loss in a Round tube Fitted with Circular-Ring Turbulators International Journal of Scientific and Research Publications, Volume 4, Issue 4, April 2014 1 Numerical Investigation of Convective Heat Transfer and Pressure Loss in a Round tube Fitted with Circular-Ring

More information

Experimental Analysis and Performance Characteristic Of Heat Transfer In Shell and Twisted Tube Heat Exchanger.

Experimental Analysis and Performance Characteristic Of Heat Transfer In Shell and Twisted Tube Heat Exchanger. Experimental Analysis and Performance Characteristic Of Heat Transfer In Shell and Twisted Tube Heat Exchanger. Nitesh B. Dahare 1, Dr. M. Basavaraj 2 1 Student,M.Tech. Heat Power Engineering, Dept.of

More information

EXPERIMENTAL ANALYSIS AND PERFORMANCE CHARACTERISTIC OF HEAT TRANSFER IN SHELL AND TWISTED TUBE HEAT EXCHANGER

EXPERIMENTAL ANALYSIS AND PERFORMANCE CHARACTERISTIC OF HEAT TRANSFER IN SHELL AND TWISTED TUBE HEAT EXCHANGER International Journal of Emerging Technology and Innovative Engineering Volume 1, Issue 11, November 2015 (ISSN: 2394 6598) EXPERIMENTAL ANALYSIS AND PERFORMANCE CHARACTERISTIC OF HEAT TRANSFER IN SHELL

More information

CRITICAL ASSESSMENT OF LITERATURE IN THE FIELD OF ENHANCED HEAT TRANSFER TECHNIQUES

CRITICAL ASSESSMENT OF LITERATURE IN THE FIELD OF ENHANCED HEAT TRANSFER TECHNIQUES Int. J. Mech. Eng. & Rob. Res. 2015 Manuja Pandey, 2015 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 4, No. 2, April 2015 2015 IJMERR. All Rights Reserved CRITICAL ASSESSMENT OF LITERATURE IN THE

More information

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces 511 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

International Journal of Engineering Research and General Science Volume 5, Issue 3, May-June, 2017 ISSN

International Journal of Engineering Research and General Science Volume 5, Issue 3, May-June, 2017 ISSN HEAT TRANSFER AND FLUID FLOW ANALYSIS OF CIRCULAR RECEIVER TUBE OF SOLAR COLLECTOR Swati Patel 1, M.A.Kadam 2 1 P.G. Student, Department of Mechanical Engineering, Bharati Vidyapeeth Deemed University,

More information

A REVIEW ON INVESTIGATION OF HELICAL COIL HEAT EXCHANGER

A REVIEW ON INVESTIGATION OF HELICAL COIL HEAT EXCHANGER A REVIEW ON INVESTIGATION OF HELICAL COIL HEAT EXCHANGER Umang K Patel 1, Prof. Krunal Patel 2 1 ME scholar, Mechanical Department, LDRP-ITR, Gandhinagar, India 2 Professor, Mechanical Department, LDRP-ITR,

More information

Experimental Study on Heat Enhancement of Helixchanger with Grooved Tubes

Experimental Study on Heat Enhancement of Helixchanger with Grooved Tubes Experimental Study on Heat Enhancement of Helixchanger with Grooved Tubes Pardeep Kumar Research Scholar, Department of Mechanical Engineering University institute of Engineering & Technology, KUK, Haryana,

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014-1491 - Promotion of heat transfer using twisted tape to generate additional turbulent Qasim Al-Saiman, Ossama Thamer

More information

HEAT TRANSFER AUGMENTATION OF LAMINAR NANOFLUID FLOW IN HORIZONTAL TUBE INSERTED WITH TWISTED TAPES

HEAT TRANSFER AUGMENTATION OF LAMINAR NANOFLUID FLOW IN HORIZONTAL TUBE INSERTED WITH TWISTED TAPES International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 3, May June 216, pp.225 239, Article ID: IJMET_7_3_21 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=3

More information

Review on Comparative Study between Straight Tube Heat Exchanger and Helical Coil Heat Exchanger

Review on Comparative Study between Straight Tube Heat Exchanger and Helical Coil Heat Exchanger Review on Comparative Study between Straight Tube Heat Exchanger and Helical Coil Heat Exchanger Vaibhav M. Samant 1, Jayesh V. Bute 2 1 (Student (Mechanical Engineering)/Pimpri Chinchwad College Of Engineering

More information

AUGMENTATION OF TURBULENT FLOW HEAT TRANSFER IN A HORIZONTAL TUBE WITH VARYING WIDTH TWISTED TAPE INSERTS

AUGMENTATION OF TURBULENT FLOW HEAT TRANSFER IN A HORIZONTAL TUBE WITH VARYING WIDTH TWISTED TAPE INSERTS International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 6, pp. 797-810, July-December 2012 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.6.2012.11.0065

More information

Heat Transfer Augmentation Technique Using Twisted Tape Insert

Heat Transfer Augmentation Technique Using Twisted Tape Insert Heat Transfer Augmentation Technique Using Twisted Tape Insert Shubham Jadhav 1, Jayesh Jain 2, Vikas Jadhav 3, Prof.R. R. Yenare 4 1 shubham.jd18@gmail.com 2 jjain277@gmail.com 3 vikasjadhav976@gmail.com

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

COMPUTATIONAL ANALYSIS TO MAXIMIZE THE HEAT TRANSFER RATE OF DOUBLE TUBE HELICAL COIL HEAT EXCHANGER

COMPUTATIONAL ANALYSIS TO MAXIMIZE THE HEAT TRANSFER RATE OF DOUBLE TUBE HELICAL COIL HEAT EXCHANGER COMPUTATIONAL ANALYSIS TO MAXIMIZE THE HEAT TRANSFER RATE OF DOUBLE TUBE HELICAL COIL HEAT EXCHANGER Ramesh Babu. T #1, Krishna Kishore.K #2, Nithin Kumar.P #3 # Mechanical Department, Narasaraopeta Engineering

More information

The Practical Uses of Computational Fluid Dynamics Not Just a Pretty Picture

The Practical Uses of Computational Fluid Dynamics Not Just a Pretty Picture The Practical Uses of Computational Fluid Dynamics Not Just a Pretty Picture Presenter: William Osley Company: CALGAVIN Ltd Email: william.osley@calgavin.com Page 1 Contents: Introduction Case Study 1:

More information

ENHANCEMENT OF HEAT TRANSFER COEFFICIENT THROUGH HELICAL COIL

ENHANCEMENT OF HEAT TRANSFER COEFFICIENT THROUGH HELICAL COIL ENHANCEMENT OF HEAT TRANSFER COEFFICIENT THROUGH HELICAL COIL Rahul G.Karmankar Assistant Professor, Mechanical Engineering department,nagpur University, Maharashtra,India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

A Review on Experimental Investigation of U-Tube Heat Exchanger using Plain Tube and Corrugated Tube

A Review on Experimental Investigation of U-Tube Heat Exchanger using Plain Tube and Corrugated Tube A Review on Experimental Investigation of U-Tube Heat Exchanger using Plain Tube and Corrugated Tube 1 Dhavalkumar A. Maheshwari, 2 Kartik M. Trivedi 1 ME Student, 2 Assistant Professor 1 Mechanical Engineering

More information

Flow Characteristics of Air in Square Channel Using Perforated Ribs

Flow Characteristics of Air in Square Channel Using Perforated Ribs IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 1 Ver. II (Jan. - Feb. 2016), PP 106-112 www.iosrjournals.org Flow Characteristics of

More information

SINGLE-PHASE CONVECTIVE HEAT TRANSFER AND PRESSURE DROP COEFFICIENTS IN CONCENTRIC ANNULI

SINGLE-PHASE CONVECTIVE HEAT TRANSFER AND PRESSURE DROP COEFFICIENTS IN CONCENTRIC ANNULI UNIVERSITY OF PRETORIA SOUTH AFRICA SINGLE-PHASE CONVECTIVE HEAT TRANSFER AND PRESSURE DROP COEFFICIENTS IN CONCENTRIC ANNULI By: Warren Van Zyl Supervisors: Dr J Dirker Prof J.P Meyer 1 Topic Overview

More information

GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE PIPE HEAT EXCHANGER USING TAGUCHI METHOD D.

GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE PIPE HEAT EXCHANGER USING TAGUCHI METHOD D. ISSN 2277-2685 IJESR/March 2018/ Vol-8/Issue-3/18-24 D. Bahar et. al., / International Journal of Engineering & Science Research GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE

More information

Performance of Solar Flat plate by using Semi- Circular Cross Sectional Tube

Performance of Solar Flat plate by using Semi- Circular Cross Sectional Tube Performance of Solar Flat plate by using Semi- Circular Cross Sectional Tube Alok Kumar 1 1 National Institute of Technology Patna, kumargaurav4321@gmail.com and 9576288028 Abstract Solar flat plate collector

More information

Heat transfer enhancement of a single row of tube

Heat transfer enhancement of a single row of tube Heat transfer enhancement of a single row of tube Takayuki Tsutsui 1,* 1 Department of Mechanical Engineering, The National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 238-8686 Japan Abstract.

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-772 Published BY AENSI Publication EISSN: 1998-19 http://www.aensiweb.com/anas 216 Special1(7): pages 69-74 Open Access Journal Enhancement Of Heat Transfer

More information

CFD analysis of triple concentric tube heat exchanger

CFD analysis of triple concentric tube heat exchanger Available online at www.ganpatuniversity.ac.in University Journal of Research ISSN (Online) 0000 0000, ISSN (Print) 0000 0000 CFD analysis of triple concentric tube heat exchanger Patel Dharmik A a, V.

More information

Numerical and Experimental Investigations of Heat Transfer in Double Pipe Heat Exchangers with Inner and Annular Twisted Tape

Numerical and Experimental Investigations of Heat Transfer in Double Pipe Heat Exchangers with Inner and Annular Twisted Tape IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Numerical and Experimental Investigations of Heat Transfer in Double Pipe Heat Exchangers

More information

CONSTRUCTION AND ANALYSIS OF TUBE IN TUBE TYPE HEAT EXCHANGER

CONSTRUCTION AND ANALYSIS OF TUBE IN TUBE TYPE HEAT EXCHANGER CONSTRUCTION AND ANALYSIS OF TUBE IN TUBE TYPE HEAT EXCHANGER N. S. Panchal 1, O. V. Pathak 2, G. P. Chaudhari 3, A. H. Paulkar 4, Asst. Prof. B. M. Dusane 5 Department of mechanical engineering, Sandip

More information

Experimental investigation and performance analysis of triple concentric helical tube heat exchanger

Experimental investigation and performance analysis of triple concentric helical tube heat exchanger Experimental investigation and performance analysis of triple concentric helical tube heat exchanger M. Sahoo #1, V.M. Behera #2, S.N.Das *3,H.C.Das #4 #1,#3,#4 Mechanical Department, SOA University #2

More information

Forced Convection Heat Transfer Analysis through Dimpled Surfaces with Different Arrangements

Forced Convection Heat Transfer Analysis through Dimpled Surfaces with Different Arrangements American Journal of Energy Engineering 2015; 3(3): 37-45 Published online May 8, 2015 (http://www.sciencepublishinggroup.com/j/ajee) doi: 10.11648/j.ajee.20150303.12 ISSN: 2329-1648 (Print); ISSN: 2329-163X

More information

Research Article Thermohydraulic Analysis of Shell-and-Tube Heat Exchanger with Segmental Baffles

Research Article Thermohydraulic Analysis of Shell-and-Tube Heat Exchanger with Segmental Baffles ISRN Chemical Engineering Volume 213, Article ID 548676, 5 pages http://dx.doi.org/1.1155/213/548676 search Article Thermohydraulic Analysis of Shell-and-Tube Heat Exchanger with Segmental Baffles Amarjit

More information

THERMAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER

THERMAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 596 606, Article ID: IJMET_08_05_066 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtyp

More information

Experimental Investigation on Forced Convection Heat Transfer Augmentation Using Annular Blockages

Experimental Investigation on Forced Convection Heat Transfer Augmentation Using Annular Blockages Experimental Investigation on Forced Convection Heat Transfer Augmentation Using Annular Blockages Ms A.A.Herle, Mr. P.R.Kulkarni Mechanical Engineering, JJMCOE, Jaysingpur, India, amruta.rkarve@gmail.com

More information

Comparative Numerical Analysis of Straight and Conical Coil Heat Exchanger

Comparative Numerical Analysis of Straight and Conical Coil Heat Exchanger GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 11 October 2017 ISSN: 2455-5703 Comparative Numerical Analysis of Straight and Conical Coil Heat Exchanger Rajesh Satish

More information

CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD

CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD Rudragouda R Patil 1, V Santosh Kumar 2, R Harish 3, Santosh S Ghorpade 4 1,3,4 Assistant Professor, Mechanical Department, Jayamukhi

More information

Heat Transfer in Rectangular Duct with Inserts of Triangular Duct Plate Fin Array

Heat Transfer in Rectangular Duct with Inserts of Triangular Duct Plate Fin Array Heat Transfer in Rectangular Duct with Inserts of Triangular Duct Plate Fin Array Deepak Kumar Gupta M. E. Scholar, Raipur Institute of Technology, Raipur (C.G.) Abstract: In compact plate fin heat exchanger

More information

CFD Analysis on Shell and Coiled Tube Heat Exchanger for Heat Transfer Augmentation Due to Air Bubbles Injection

CFD Analysis on Shell and Coiled Tube Heat Exchanger for Heat Transfer Augmentation Due to Air Bubbles Injection CFD Analysis on Shell and Coiled Tube Heat Exchanger for Heat Transfer Augmentation Due to Air Bubbles Injection Prof. O.P Shukla 1, Bablu Kumar Yadav 2 1 Corporate Institute of Science and Technology,

More information

Optimisation of Double Pipe Helical Tube Heat Exchanger and its Comparison with Straight Double Tube Heat Exchanger

Optimisation of Double Pipe Helical Tube Heat Exchanger and its Comparison with Straight Double Tube Heat Exchanger DOI 1.17/s432-16-261-x ORIGINAL CONTRIBUTION Optimisation of Double Pipe Helical Tube Heat Exchanger and its Comparison with Straight Double Tube Heat Exchanger Rashid Kareem 1 Received: 3 June 214 / Accepted:

More information

International Engineering Research Journal Numerical Analysis of Heat Exchanger Tubes

International Engineering Research Journal Numerical Analysis of Heat Exchanger Tubes International Engineering Research Journal Numerical Analysis of Heat Exchanger Tubes Anita D. Patil 1, Dr. Rajendra K. Patil 2 1 Department of Mechanical Engineering,TSSM s Padmabhooshan Vasantdada Patil

More information

Heat Exchangers (Chapter 5)

Heat Exchangers (Chapter 5) Heat Exchangers (Chapter 5) 2 Learning Outcomes (Chapter 5) Classification of heat exchangers Heat Exchanger Design Methods Overall heat transfer coefficient LMTD method ε-ntu method Heat Exchangers Pressure

More information

International Research Journal of Engineering and Technology (IRJET) e-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: A Review on Experimental and CFD Analysis for Heat Transfer Enhancement in Heat Exchanger Tube using Drilled Twisted Tape Inserts of various Geometries Tushar R. Shinde 1, Prof. D. G. Kumbhar 2 1PG Student,

More information

CFD ANALYSIS ON LOUVERED FIN

CFD ANALYSIS ON LOUVERED FIN CFD ANALYSIS ON LOUVERED FIN P.Prasad 1, L.S.V Prasad 2 1Student, M. Tech Thermal Engineering, Andhra University, Visakhapatnam, India 2Professor, Dept. of Mechanical Engineering, Andhra University, Visakhapatnam,

More information

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr.

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr. ISSN 2277-2685 IJESR/May 2015/ Vol-5/Issue-5/352-356 Mohammed Mohsin Shkhair et. al./ International Journal of Engineering & Science Research SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER

More information

Numerical Analysis of Compact Heat Exchanger for Flow Distribution

Numerical Analysis of Compact Heat Exchanger for Flow Distribution Indian Journal of Science and Technology, Vol 9(6), DOI: 10.17485/ijst/2016/v9i6/74596, February 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Numerical Analysis of Compact Heat Exchanger for

More information

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2016, 8 (7):31-40 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Comparison

More information

Single-phase Coolant Flow and Heat Transfer

Single-phase Coolant Flow and Heat Transfer 22.06 ENGINEERING OF NUCLEAR SYSTEMS - Fall 2010 Problem Set 5 Single-phase Coolant Flow and Heat Transfer 1) Hydraulic Analysis of the Emergency Core Spray System in a BWR The emergency spray system of

More information

Performance Evaluation Of A Helical Baffle Heat Exchanger

Performance Evaluation Of A Helical Baffle Heat Exchanger Performance Evaluation Of A Helical Baffle Heat Exchanger Mayank Vishwakarma 1, Professor. K. K. Jain 2 1 M.E IV Semester (Heat Power Engineering) Shri Ram Institute of Technology, Jabalpur 482002 (M.P)

More information

PERFORMANCE ANALYSIS OF DIFFERENT HEAT EXCHANGER DESIGN USING CFD SIMULATION 1 KVENUMADHAV 2 SUDHANSHU KUMAR

PERFORMANCE ANALYSIS OF DIFFERENT HEAT EXCHANGER DESIGN USING CFD SIMULATION 1 KVENUMADHAV 2 SUDHANSHU KUMAR PERFORMANCE ANALYSIS OF DIFFERENT HEAT EXCHANGER DESIGN USING CFD SIMULATION 1 KVENUMADHAV 2 SUDHANSHU KUMAR 3 CHANDRASHEKAR GOUD.V 1 PG Scholar, Department of MECH, Aurora s Scientific, Technological

More information

Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator

Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator RESEARCH ARTICLE OPEN ACCESS Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator Vishwa Deepak Dwivedi, Ranjeet Rai Scholar of Master of Technology, Mechanical Engineering Department,

More information

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate Malatesh Barki. 1, Ganesha T. 2, Dr. M. C. Math³ 1, 2, 3, Department of Thermal Power Engineering 1, 2, 3 VTU

More information

A STUDY ON THE PROPELLER SHAFT OF CAR USING CARBON COMPOSITE FIBER FOR LIGHT WEIGHT

A STUDY ON THE PROPELLER SHAFT OF CAR USING CARBON COMPOSITE FIBER FOR LIGHT WEIGHT International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 603 611, Article ID: IJMET_09_05_066 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2, Issue 12, December -2015 e-issn (O): 2348-4470 p-issn (P): 2348-6406 An

More information

Experimental Investigation on Mixing time Analysis of Jet Mixer

Experimental Investigation on Mixing time Analysis of Jet Mixer Abstract Research Journal of Engineering Sciences ISSN 2278 9472 Vol. 1(), 7-11, November (212) Experimental Investigation on Mixing time Analysis of Jet Mixer Perumal R. 1 and Saravanan K. 2 1 Department

More information

Thermal Stress Analysis of Diesel Engine Piston

Thermal Stress Analysis of Diesel Engine Piston International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 576 Thermal Stress Analysis of Diesel Engine Piston B.R. Ramesh and Kishan

More information

Prediction of Thermal Deflection at Spindle Nose-tool Holder Interface in HSM

Prediction of Thermal Deflection at Spindle Nose-tool Holder Interface in HSM Prediction of Thermal Deflection at Spindle Nose-tool Holder Interface in HSM V Prabhu Raja, J Kanchana, K Ramachandra, P Radhakrishnan PSG College of Technology, Coimbatore - 641004 Abstract Loss of machining

More information

Widest Range of Turbulators for Heat Transfer Enhancement

Widest Range of Turbulators for Heat Transfer Enhancement Heat Transfer. Optimized. Widest Range of Turbulators for Heat Transfer Enhancement www.conceptengg.com www.pinfintube.com www.allturbulators.com About Us Concept Engineering International is a heat transfer

More information

Design and Fabrication of Shell and Tube Type Heat Exchanger and Performance Analysis

Design and Fabrication of Shell and Tube Type Heat Exchanger and Performance Analysis Design and Fabrication of Shell and Tube Type Heat Exchanger and Performance Analysis Tanveer Raza 1, Marooph Patel 2. 1 Student, Mechanical Engineering Department, SKN, tanveer.raza23@gmail.com 2 Student,

More information

Design and Performance Analysis of Louvered Fin Automotive Radiator using CAE Tools

Design and Performance Analysis of Louvered Fin Automotive Radiator using CAE Tools Design and Performance Analysis of Louvered Fin Automotive Radiator using CAE Tools Vishwa Deepak Dwivedi Scholar of Master of Technology, Mechanical Engineering Department, UCER, Allahabad, India Ranjeet

More information

Flow Behavior and Friction Factor. in Internally Grooved Pipe Wall

Flow Behavior and Friction Factor. in Internally Grooved Pipe Wall Adv. Studies Theor. Phys., Vol. 8, 2014, no. 14, 643-647 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2014.4573 Flow Behavior and Friction Factor in Internally Grooved Pipe Wall Putu Wijaya

More information

CFD Analysis of Heat Transfer Prediction for Corrugated Shell & Tube Heat Exchanger

CFD Analysis of Heat Transfer Prediction for Corrugated Shell & Tube Heat Exchanger CFD Analysis of Heat Transfer Prediction for Corrugated Shell & Tube Heat Exchanger Mr. MohdIshaq Patel 1, Mr. Anand kumar S Malipatil 2 1 MTech Student, Dept. of Thermal Power Engineering, VTU Regional

More information

CFD Integrated Optimum Design and Prototyping of Shell and Tube Heat Exchanger

CFD Integrated Optimum Design and Prototyping of Shell and Tube Heat Exchanger GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 4 March 2016 ISSN: 2455-5703 CFD Integrated Optimum Design and Prototyping of Shell and Tube Heat Exchanger S. Prabakaran

More information

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine Alvin

More information

ENHANCEMENT OF HEAT TRANSFER RATE AND REDUCTION OF SHELL SIDE PRESSURE DROP IN HELIX HEAT EXCHANGER WITH CONTINUOUS HELICAL BAFFLES

ENHANCEMENT OF HEAT TRANSFER RATE AND REDUCTION OF SHELL SIDE PRESSURE DROP IN HELIX HEAT EXCHANGER WITH CONTINUOUS HELICAL BAFFLES International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN 2249-6890 Vol. 3, Issue 2, Jun 2013, 47-56 TJPRC Pvt. Ltd. ENHANCEMENT OF HEAT TRANSFER RATE AND REDUCTION

More information

Abstract In this study the heat transfer characteristics inside a rectangular duct with circular, rectangular, drop

Abstract In this study the heat transfer characteristics inside a rectangular duct with circular, rectangular, drop International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 25 INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS IN A RECTNAGULAR CHANNEL WITH PERFORATED DROP SHAPED PIN FINS C.

More information