1. (a) Discuss various types of Kinematic links with examples. (b) Explain different types of constrained motions with examples.

Size: px
Start display at page:

Download "1. (a) Discuss various types of Kinematic links with examples. (b) Explain different types of constrained motions with examples."

Transcription

1 Code No: RR Set No. 1 III B.Tech I Semester Supplementary Examinations, February 2007 KINEMATICS OF MACHINERY ( Common to Mechanical Engineering, Mechatronics and Production Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1. (a) Discuss various types of Kinematic links with examples. (b) Explain different types of constrained motions with examples. [8+8] 2. Explain the Scot-Russel mechanism and show that it generates straight-line motion. [16] 3. In the mechanism, as shown in Figure 1, the crank OA rotates at 20 r.p.m anticlockwise and gives motion to the sliding blocks B and D. The dimensions of the various links are OA = 300 mm; AB = 1200 mm; BC = 450 mm; and CD = 450 mm. For the given configuration, determine: (a) Velocities of sliding at B and D (b) Angular velocity of CD (c) Linear acceleration of D and (d) Angular acceleration of CD. [16] 1 of 3

2 Code No: RR Set No. 1 Figure 1: 4. An engine mechanism ABC has a crank AB of length 4 cm rotating about A. The connecting rod BC is 12 cm long and the piston C has a mass of 100 gm. C moves along the line AC. Draw the velocity diagram and the acceleration diagram for a uniform crank speed of 150 rad/sec in clockwise direction when the angle BAC is What is torque required at the crank to accelerate the piston C at this position? [16] 5. Two shaft P & Q connected together by Hooke s joint have their axes inclined at The shaft P revolves at uniform speed of 1500 r.p.m and the shaft Q carries a fly wheel of weight 150 N, radius of gyration 100 mm. Find the maximum torque in shaft Q, if it is assumed that the shafts are torsionally rigid. [16] 6. A cam operating a knife - edged follower has the following data: (a) Follower moves outwards through 40mm during 60 0 of cam rotation. (b) Follower dwells for the next (c) Follower returns of its original position during next (d) Follower dwells for the rest of the rotation. The displacement of the follower is to take place with simple harmonic motion during both the outward and return strokes. The least radius of the cam is 50mm. Draw the profile of the cam when the axis of the follower is offset 20mm towards right from the cam axis. If the cam rotates at 300 r.p.m., determine maximum velocity and acceleration of the follower during the outward stroke and the return stroke. [16] 7. (a) Explain atleast eight properties of involute toothed gear in mesh. 2 of 3

3 Code No: RR Set No. 1 (b) If the angle of obliquity of a pair of gear wheels is 20 0, and the arc of approach or recess not less than the pitch, what will be the least number of teeth on the pinion. [6+10] 8. An epicyclic bevel gear train, as shown in Figure 2 has fixed gear B meshing with pinion C. The gear E on the driven shaft meshes with the pinion D. The pinions C and D are keyed to a shaft, which revolves in bearings on the arm A. The arm A is keyed to the driving shaft. The number of teeth are: TB = 75, Tc = 20, TD = 18 and TE = 70. Find the speed of the driven shaft, if 1. The driving shaft make 1000 r.p.m. and 2. The gear B turns in the same sense as the driving shaft at 400 r.p.m. the driving shaft still making 1000 r.p.m. [16] Figure 2: 3 of 3

4 Code No: RR Set No. 2 III B.Tech I Semester Supplementary Examinations, February 2007 KINEMATICS OF MACHINERY ( Common to Mechanical Engineering, Mechatronics and Production Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1. Sketch slider crank chain and its various inversions, stating actual machines in which these are used in practice. [16] 2. Explain the following mechanisms: (a) Grasshopper mechanism (b) Tchebicheff s mechanism (c) Robert s mechanism. [5+6+5] 3. In the slider crank mechanism shown in Figure 1 block P reciprocates along the fixed line AB and the crank has a uniform speed of 230rpm. Determine for the given configuration, the velocity and acceleration of the block P and the point D. [16] Figure 1: 4. In the Atkinson engine mechanism shown in Figure 2 the velocity and acceleration of the slider at D are given as 40 cm/ sec and 450 cm/sec 2. Determine ω 2,α 2, ω 3,and α 3. Take O 2 A = 4.5 cm, AB = 12 cm, O 4 B= 6 cm, BC = 2cm AC = 13 cm, CD = 14 cm. [16] 1 of 3

5 Code No: RR Set No. 2 Figure 2: 5. The angle between the axes of two horizontal shafts to be connected by Hook s joint is The speed of driving shaft is 150rpm. The driven shaft carries a flywheel weighing 10 Kg and having a radius of gyration of 10 Cm. If the forked end of the driving shaft rotates 30 0 from horizontal plane, find the torque required to drive the shaft to overcome the inertia of the flywheel. [16] 6. A radial translating flat - face follower has a lift of 3 cm. The rise takes place with SHM for of cam rotation, followed by dwell of 30 0 and simple harmonic return for followed by another dwell. The base circle radius of the cam is 3 cm. Obtain the cam profile and the minimum length of the follower face with a clearance of 0.3 cm at both the ends. Assume anticlockwise rotation of the cam. What are the maximum velocity and accelerations values during the follower rise when cam rotates at 50 r.p.m. [16] 7. (a) Name the curves, which satisfy the condition for, correct gearing and compare them giving atleast six points. (b) A gear wheel having 20 teeth of involute form of module pitch 6 mm with an angle of obliquity of 20 0, drives another wheel of the same dimensions. Calculate i. the length of the arc of contact if the addendum is one module. ii. If the addendum was altered so that the arc of contact was the maximum possible what would be the length of this arc, and the addendum required for this condition. [8+8] 2 of 3

6 Code No: RR Set No In the epicyclic train shown in Figure 3 the shaft A transmits 7.5kW to the shaft B. If the shaft A rotates at 700 r.p.m., find the torque transmitted by the pinions E and H respectively. The wheels G and H have 30 teeth; D and E have 52 teeth each. Wheel F is fixed. [16] Figure 3: 3 of 3

7 Code No: RR Set No. 3 III B.Tech I Semester Supplementary Examinations, February 2007 KINEMATICS OF MACHINERY ( Common to Mechanical Engineering, Mechatronics and Production Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1. (a) Explain giving examples the following terms: i. Kinematic link ii. Kinematic pair iii. Kinematic chain iv. Mechanism v. Machine vi. Inversion (b) Define and classify lower pairs and higher pairs with examples. [9+7] 2. (a) What is the purpose of a Pantograph? Explain it s working with a sketch. (b) Provide the mathematical proof for working of pantograph. [8+8] 3. In a quick return mechanism, as shown is Figure 1, the driving crank OA is 60 mm long and rotates at a uniform speed of 200r.p.m in clockwise direction. For the positions shown, find (a) velocity of the ram R (b) acceleration of the ram R; and (c) acceleration of the sliding block A along with the slotted bar CD. [16] 1 of 3

8 Code No: RR Set No. 3 Figure 1: 4. The crank OA drives the rod AB as shown in Figure 2. A lever CD is pin-jointed to the rod at C and to a block D which moves in the fixed guides; there is a similar arrangement for the rod EF. The speed of block F is 0.72 m/sec for the configuration shown in the figure. Find the speed of crank OA in rpm. In figure the dimensions are given as hereunder OA = 18cm, AB = 72cm, AC = 40cm, CD = 36 cm, CE = 24 cm, EF = 30 cm. [16] 5. (a) Describe the working of Davis steering gear mechanism giving neat sketch. Derive the condition for correct steering of the above mechanism. (b) The Distance between the steering pivots of a Davis Steering gear is 1.3m. The wheel base is 2.75 metres. What will be the inclination of the track arms to the longitudinal axis of the vehicle if it is moving in a straight path. [8+8] 6. A flat ended valve tappet is operated by a symmetrical cam with circular arcs for flank and nose profiles. The total angle of action is base circle diameter 125 mm and the lift 25 mm. During the lift, the period of acceleration is half that of the retardation. Speed of cam shaft is 1250 r.p.m. The straight line path of the tapper passes through the cam axis. Find (a) Radii of the nose and flank, and (b) Maximum acceleration and retardation during the lift. [16] 7. (a) Define the following: Involute, Cycloid, Epicycloid and Hypocycloid. 2 of 3

9 Code No: RR Set No. 3 Figure 2: (b) Two mating involute spur gears with module pitch of 8 mm have 23 and 57 teeth of 20 0 pressure angle. The addenda on pinion and gear are equal to one module. Find: i. number of pairs of teeth in contact, ii. angle turned through by pinion and gear wheels, and iii. ratio of sliding velocity to rolling velocity at the beginning of the contact, at the pitch point and at the end of contact. [6+10] 8. An epicyclic gear train, as shown in Figure 3 is composed of a fixed annular wheel A having 150 teeth. The wheel A is meshing with wheel B which drives wheel D through an idle wheel C,D being concentric with A. The wheels B and C are carried on an arm which revolves clockwise at 100 rp.m. about the axis of A and D. If the wheels B and D have 25 teeth and 40 teeth respectively, find the number of teeth and C and the speed and sense of rotation of C. [16] Figure 3: 3 of 3

10 Code No: RR Set No. 4 III B.Tech I Semester Supplementary Examinations, February 2007 KINEMATICS OF MACHINERY ( Common to Mechanical Engineering, Mechatronics and Production Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1. (a) Show that the locus of the mid-point of the link connecting to the two slides in an elliptical trammel is a circle. (b) Define frame of a machine? Which link of the machine is known as frame? [10+6] 2. Two points P and Q, 4 cm apart are to be connected by a pantograph. The motion of P to the motion of P Q is 13 : 7. Fine the distance of Q from the fixed point O of the pantograph such that the point P moves at least 12.7 cm in either direction of live O Q P when it is horizontal. Find also the main dimensions of the pantograph. [16] 3. Explain how the velocity and acceleration in the following mechanisms are calculated by relative velocity method: (a) Four bar chain (b) Single slider crank chain. [8+8] 4. (a) Define the term instantaneous centre of rotation. (b) Sketch a quick return motion of the crank and slotted lever type and explain the procedure of drawing the velocity and acceleration diagram, for any given configuration of the mechanism by instantaneous centre method. [4+12] 5. (a) Derive an expression for the ratio of the shaft velocities for Hooke s joint and draw the polar diagram depicting the salient features of driven shaft speed. (b) Two shafts with an included angle of connected by a Hooke s Joint. The driving shaft runs at a uniform speed of 1500 R.P.M. The driven shaft carries a fly wheel of mass 12kg and 100 m.m radius of gyration. Find the maximum angular acceleration of the driven shaft and the maximum torque required. [10+6] 6. A flat ended valve tappet is operated by a symmetrical cam with circular arcs for flank and nose profiles. The total angle of action is base circle diameter 125 mm and the lift 25 mm. During the lift, the period of acceleration is half that of the retardation. Speed of cam shaft is 1250 r.p.m. The straight line path of the tapper passes through the cam axis. Find (a) Radii of the nose and flank, and 1 of 2

11 Code No: RR Set No. 4 (b) Maximum acceleration and retardation during the lift. [16] 7. (a) State and prove the law of gearing for constant velocity ratio and show how the involute profile satisfies the condition? (b) A pair of spur wheels with involute teeth is to give a gear ratio 3:1. The arc of approach is not being less than the circular pitch and the smaller wheel is the driver. Pressure angle is What is the least number of teeth that can be used on each wheel and find the addendum of the wheel in terms of the circular pitch? [8+8] 8. (a) Explain the difference between a compound gear train and an epicyclic gear train. (b) In an epicyclic gear train, as shown in Figure 1, the number of teeth on wheels A,B and C are 48, 24 and 50 respectively. If the arm rotates at 400 r.p.m., clockwise, find: i. Speed of wheel C when A is fixed and ii. Speed of wheel A when C is fixed. [4+12] Figure 1: 2 of 2

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: Kinematics of Machines Class : MECH-II Group A (Short Answer Questions) UNIT-I 1 Define link, kinematic pair. 2 Define mechanism

More information

2. a) What is pantograph? What are its uses? b) Prove that the peaucellier mechanism generates a straight-line motion. (5M+10M)

2. a) What is pantograph? What are its uses? b) Prove that the peaucellier mechanism generates a straight-line motion. (5M+10M) Code No: R22032 R10 SET - 1 1. a) Define the following terms? i) Link ii) Kinematic pair iii) Degrees of freedom b) What are the inversions of double slider crank chain? Describe any two with neat sketches.

More information

FIRSTRANKER. 2. (a) Distinguish (by neat sketches) betweenpeaucellier mechanism and Hart mechanism.

FIRSTRANKER. 2. (a) Distinguish (by neat sketches) betweenpeaucellier mechanism and Hart mechanism. Code No: 07A51404 R07 Set No. 2 IIIB.Tech I Semester Examinations,May 2011 KINEMATICS OF MACHINERY Mechatronics Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1.

More information

ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism)

ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism) ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism) 1) Define resistant body. 2) Define Link or Element 3) Differentiate Machine and Structure 4) Define Kinematic Pair. 5) Define Kinematic Chain.

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05310304 Set No. 1 III B.Tech I Semester Regular Examinations, November 2007 KINEMATICS OF MACHINERY ( Common to Mechanical Engineering, Mechatronics, Production Engineering and Automobile Engineering)

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05222106 Set No. 1 II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2007 MECHANISMS AND MECHANICAL DESIGN (Aeronautical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A

KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A 1. Define the term Kinematic link. 2. Classify kinematic links. 3. What is Mechanism? 4. Define the terms Kinematic pair.

More information

Subject with Code: Kinematic of Machinery (16ME304)Course & Branch: B. Tech - ME Year &Sem : II-B. Tech &I-Sem Regulation: R16

Subject with Code: Kinematic of Machinery (16ME304)Course & Branch: B. Tech - ME Year &Sem : II-B. Tech &I-Sem Regulation: R16 SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY:: PUTTUR (Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu) (Accredited by NBA & Accredited by NAAC with A Grade) (An ISO 9001:2008 Certified

More information

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK IV SEMESTER

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK IV SEMESTER CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK IV SEMESTER Sub Code: ME 6401 KINEMATICS OF MACHINERY UNIT-I PART-A 1. Sketch and define Transmission angle

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME6401- KINEMATICS OF MACHINERY QUESTION BANK PART-A Unit 1-BASICS OF MECHANISMS 1. Define degrees of freedom. BT1 2. Describe spatial

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 Course Name Course Code Class Branch MECHANICAL ENGINEERING TUTORIAL QUESTION BANK 2015 2016 : KINEMATICS OF MACHINES : A40309

More information

DEPARTMENT OF MECHANICAL ENGINEERING ME6401- KINEMATICS OF MACHINERY QUESTION BANK Part-A Unit 1-BASICS OF MECHANISMS 1. Define degrees of freedom. 2. What is meant by spatial mechanism? 3. Classify the

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING QUESTION BANK : KINEMATICS OF MACHINERY : A40309 : II B. Tech II Semester : Mechanical Engineering

More information

Theory of Machines. CH-1: Fundamentals and type of Mechanisms

Theory of Machines. CH-1: Fundamentals and type of Mechanisms CH-1: Fundamentals and type of Mechanisms 1. Define kinematic link and kinematic chain. 2. Enlist the types of constrained motion. Draw a label sketch of any one. 3. Define (1) Mechanism (2) Inversion

More information

FIRSTRANKER. Code No: R R09 Set No. 2

FIRSTRANKER.   Code No: R R09 Set No. 2 Code No: R09220302 R09 Set No. 2 IIB.Tech IISemester Examinations,APRIL 2011 KINEMATICS OF MACHINERY Common to Mechanical Engineering, Mechatronics, Production Engineering, Automobile Engineering Time:

More information

BHARATHIDASAN ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME6401- KINEMATICS OF MACHINERY QUESTION BANK

BHARATHIDASAN ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME6401- KINEMATICS OF MACHINERY QUESTION BANK 1 BHARATHIDASAN ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME6401- KINEMATICS OF MACHINERY QUESTION BANK Unit 1-BASICS OF MECHANISMS PART-A 1) Differentiate between a machine and a structure?

More information

Instantaneous Centre Method

Instantaneous Centre Method Instantaneous Centre Method The combined motion of rotation and translation of the link AB may be assumed to be a motion of pure rotation about some centre I, known as the instantaneous centre of rotation.

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17412 16117 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

III B.Tech I Semester Supplementary Examinations, May/June

III B.Tech I Semester Supplementary Examinations, May/June Set No. 1 III B.Tech I Semester Supplementary Examinations, May/June - 2015 1 a) Derive the expression for Gyroscopic Couple? b) A disc with radius of gyration of 60mm and a mass of 4kg is mounted centrally

More information

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY 1 B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions

More information

12/25/2015. Chapter 20. Cams. Mohammad Suliman Abuhiba, Ph.D., PE

12/25/2015. Chapter 20. Cams. Mohammad Suliman Abuhiba, Ph.D., PE Chapter 20 Cams 1 2 Introduction A cam: a rotating machine element which gives reciprocating or oscillating motion to another element (follower) Cam & follower have a line constitute a higher pair. of

More information

10/29/2013. Chapter 9. Mechanisms with Lower Pairs. Dr. Mohammad Abuhiba, PE

10/29/2013. Chapter 9. Mechanisms with Lower Pairs. Dr. Mohammad Abuhiba, PE Chapter 9 Mechanisms with Lower Pairs 1 2 9.1. Introduction When the two elements of a pair have a surface contact and a relative motion takes place, the surface of one element slides over the surface

More information

R10 Set No: 1 ''' ' '' '' '' Code No: R31033

R10 Set No: 1 ''' ' '' '' '' Code No: R31033 R10 Set No: 1 III B.Tech. I Semester Regular and Supplementary Examinations, December - 2013 DYNAMICS OF MACHINERY (Common to Mechanical Engineering and Automobile Engineering) Time: 3 Hours Max Marks:

More information

B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination December, 2012 BIMEE-007 : ADVANCED DYNAMICS OF MACHINE

B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination December, 2012 BIMEE-007 : ADVANCED DYNAMICS OF MACHINE No. of Printed Pages : 5 BIMEE-007 B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination 01601 December, 2012 BIMEE-007 : ADVANCED DYNAMICS OF MACHINE Time : 3 hours Maximum Marks : 70 Note : Attempt

More information

SYED AMMAL ENGINEERING COLLEGE

SYED AMMAL ENGINEERING COLLEGE SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2000 Certified Institution Dr. E.M.Abdullah

More information

(POWER TRANSMISSION Methods)

(POWER TRANSMISSION Methods) UNIT-5 (POWER TRANSMISSION Methods) It is a method by which you can transfer cyclic motion from one place to another or one pulley to another pulley. The ways by which we can transfer cyclic motion are:-

More information

What are the functions of gears? What is gear?

What are the functions of gears? What is gear? 8//0 hapter seven Laith atarseh are very important in power transmission between a drive rotor and driven rotor What are the functions of gears? - Transmit motion and torque (power) between shafts - Maintain

More information

Lecture plan UNIT I Basics of Mechanisms SYLLABUS Introduction: Definitions : Link or Element, Pairing of Elements with degrees of freedom, Grubler s criterion (without derivation), Kinematic chain, Mechanism,

More information

11/23/2013. Chapter 13. Gear Trains. Dr. Mohammad Suliman Abuhiba, PE

11/23/2013. Chapter 13. Gear Trains. Dr. Mohammad Suliman Abuhiba, PE Chapter 13 Gear Trains 1 2 13.2. Types of Gear Trains 1. Simple gear train 2. Compound gear train 3. Reverted gear train 4. Epicyclic gear train: axes of shafts on which the gears are mounted may move

More information

BRCM COLLEGE OF ENGINEERING & TECHNOLOGY BAHAL, BHIWANI Practical Experiment Instructions Sheet

BRCM COLLEGE OF ENGINEERING & TECHNOLOGY BAHAL, BHIWANI Practical Experiment Instructions Sheet BRCM COLLEGE OF KOM ME- 212 F KINEMATICS OF MACHINES LAB BRANCH-ME List of Experiments : 1. To study various types of Kinematic links, pairs, chains and Mechanisms. 2. To study inversions of 4 Bar Mechanisms,

More information

Introduction. Kinematics and Dynamics of Machines. Involute profile. 7. Gears

Introduction. Kinematics and Dynamics of Machines. Involute profile. 7. Gears Introduction The kinematic function of gears is to transfer rotational motion from one shaft to another Kinematics and Dynamics of Machines 7. Gears Since these shafts may be parallel, perpendicular, or

More information

Chapter seven. Gears. Laith Batarseh

Chapter seven. Gears. Laith Batarseh Chapter seven Gears Laith Batarseh Gears are very important in power transmission between a drive rotor and driven rotor What are the functions of gears? - Transmit motion and torque (power) between shafts

More information

GEAR CONTENTS POWER TRANSMISSION GEAR TYPES OF GEARS NOMENCLATURE APPLICATIONS OF GEARS VELOCITY RATIO GEAR TRAINS EXAMPLE PROBLEMS AND QUESTIONS

GEAR CONTENTS POWER TRANSMISSION GEAR TYPES OF GEARS NOMENCLATURE APPLICATIONS OF GEARS VELOCITY RATIO GEAR TRAINS EXAMPLE PROBLEMS AND QUESTIONS GEAR CONTENTS POWER TRANSMISSION GEAR TYPES OF GEARS NOMENCLATURE APPLICATIONS OF GEARS VELOCITY RATIO GEAR TRAINS EXAMPLE PROBLEMS AND QUESTIONS GEAR.. Power transmission is the movement of energy from

More information

UNIT - III GYROSCOPE

UNIT - III GYROSCOPE UNIT - III GYROSCOPE Introduction 1When a body moves along a curved path, a force in the direction of centripetal acceleration (centripetal force ) has to be applied externally This external force is known

More information

Machines and mechanisms

Machines and mechanisms Machines and mechanisms Contents: 1. Basics and Kinematics of Mechanism 2. Cam and Follower 3. Governor 4. Gear and Gear Train 5. Inertia Force Analysis Basics and Kinematics Mechanism: 1. A rigid body

More information

CHAPTER 1 BALANCING BALANCING OF ROTATING MASSES

CHAPTER 1 BALANCING BALANCING OF ROTATING MASSES CHAPTER 1 BALANCING Dynamics of Machinery ( 2161901) 1. Attempt the following questions. I. Need of balancing II. Primary unbalanced force in reciprocating engine. III. Explain clearly the terms static

More information

BIMEE-007 B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination December, 2013

BIMEE-007 B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination December, 2013 No. of Printed Pages : 5 BIMEE-007 B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination December, 2013 0 0 9 0 9 BIMEE-007 : ADVANCED DYNAMICS OF MACHINE Time : 3 hours Maximum Marks : 70 Note

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub Code/Name: ME 1352 DESIGN OF TRANSMISSION SYSTEMS Year/Sem: III / VI UNIT-I (Design of transmission systems for flexible

More information

CH#13 Gears-General. Drive and Driven Gears 3/13/2018

CH#13 Gears-General. Drive and Driven Gears 3/13/2018 CH#13 Gears-General A toothed wheel that engages another toothed mechanism in order to change the speed or direction of transmitted motion The gear set transmits rotary motion and force. Gears are used

More information

Gear Tooth Geometry - This is determined primarily by pitch, depth and pressure angle

Gear Tooth Geometry - This is determined primarily by pitch, depth and pressure angle Gear Tooth Geometry - This is determined primarily by pitch, depth and pressure angle Addendum: The radial distance between the top land and the pitch circle. Addendum Circle: The circle defining the outer

More information

Theory of Mechanisms and Machines

Theory of Mechanisms and Machines Theory of Mechanisms and Machines Theory of Mechanisms and Machines C.S. SHARMA Formerly Professor Department of Mechanical Engineering Jai Narain Vyas University Jodhpur KAMLESH PUROHIT Professor Department

More information

UNIT -I. Ans: They are specified by the no. of strands & the no. of wires in each strand.

UNIT -I. Ans: They are specified by the no. of strands & the no. of wires in each strand. VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY, THOTTIAM, NAMAKKAL-621215. DEPARTMENT OF MECHANICAL ENGINEERING SIXTH SEMESTER / III YEAR ME6601 DESIGN OF TRANSMISSION SYSTEM (Regulation-2013) UNIT

More information

'' ''' '' ''' Code No: R R16 SET - 1

'' ''' '' ''' Code No: R R16 SET - 1 Code No: R161232 R16 SET - 1 1. a) List the Primary requirements of a Steam Boiler. (2M) b) What are the distinguishing features between a Casting and a Pattern? (2M) c) Define (i) Brake Power; (ii) Indicated

More information

1.1 : Kinematics of Machines

1.1 : Kinematics of Machines 1.1 : Kinematics of Machines ---------------------------------------------------------------------------------- Q.1.Define Statics, Dynamics, Kinetics and kinematics. Ans: Statics :- It is the branch of

More information

Chapter 15. Inertia Forces in Reciprocating Parts

Chapter 15. Inertia Forces in Reciprocating Parts Chapter 15 Inertia Forces in Reciprocating Parts 2 Approximate Analytical Method for Velocity & Acceleration of the Piston n = Ratio of length of ConRod to radius of crank = l/r 3 Approximate Analytical

More information

TECHNOLOGY MECHANISMS

TECHNOLOGY MECHANISMS TECHNOLOGY MECHANISMS 3º ESO IES CHAN DO MONTE URTAZA 1 WHAT IS A MECHANISM? Mechanism are devices that have been designed to make jobs easier. They all have certain things in common: They involve some

More information

Chapter 15. Inertia Forces in Reciprocating Parts

Chapter 15. Inertia Forces in Reciprocating Parts Chapter 15 Inertia Forces in Reciprocating Parts 2 Approximate Analytical Method for Velocity and Acceleration of the Piston n = Ratio of length of ConRod to radius of crank = l/r 3 Approximate Analytical

More information

Basic Fundamentals of Gear Drives

Basic Fundamentals of Gear Drives Basic Fundamentals of Gear Drives Course No: M06-031 Credit: 6 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774

More information

Mechanics and Mechanisms. What is do you think about when you hear the word mechanics? Mechanics. Is this a mechanism? 2/17/2011

Mechanics and Mechanisms. What is do you think about when you hear the word mechanics? Mechanics. Is this a mechanism? 2/17/2011 Mechanics and Mechanisms What is do you think about when you hear the word mechanics? Mechanics Mechanics is the study of how things move Is this a mechanism? Concerned with creating useful movement through

More information

Moments. It doesn t fall because of the presence of a counter balance weight on the right-hand side. The boom is therefore balanced.

Moments. It doesn t fall because of the presence of a counter balance weight on the right-hand side. The boom is therefore balanced. Moments The crane in the image below looks unstable, as though it should topple over. There appears to be too much of the boom on the left-hand side of the tower. It doesn t fall because of the presence

More information

DEPARTMENT OF MECHANICAL ENGINEERING Subject code: ME6601 Subject Name: DESIGN OF TRANSMISSION SYSTEMS UNIT-I DESIGN OF TRANSMISSION SYSTEMS FOR FLEXIBLE ELEMENTS 1. What is the effect of centre distance

More information

Graphical representation of a gear

Graphical representation of a gear Homework 4 Gears Gears are designed to transmit rotary motion. Often they are arranged in a gear train (meshed together). Gear trains provide a change in speed, torque (turning force) and direction (clockwise

More information

Driver Driven. InputSpeed. Gears

Driver Driven. InputSpeed. Gears Gears Gears are toothed wheels designed to transmit rotary motion and power from one part of a mechanism to another. They are fitted to shafts with special devices called keys (or splines) that ensure

More information

ME6601 DESIGN OF TRANSMISSION SYSTEMS

ME6601 DESIGN OF TRANSMISSION SYSTEMS SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

Part VII: Gear Systems: Analysis

Part VII: Gear Systems: Analysis Part VII: Gear Systems: Analysis This section will review standard gear systems and will provide the basic tools to perform analysis on these systems. The areas covered in this section are: 1) Gears 101:

More information

Lecture (7) on. Gear Measurement. By Dr. Emad M. Saad. Industrial Engineering Dept. Faculty of Engineering. Fayoum University.

Lecture (7) on. Gear Measurement. By Dr. Emad M. Saad. Industrial Engineering Dept. Faculty of Engineering. Fayoum University. 1 Lecture (7) on Gear Measurement Fayoum University By Dr. Emad M. Saad Industrial Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Industrial Engineering Dept. 2015-2016

More information

All levers are one of three types, usually called classes. The class of a lever depends on the relative position of the load, effort and fulcrum:

All levers are one of three types, usually called classes. The class of a lever depends on the relative position of the load, effort and fulcrum: Página 66 de 232 Mechanisms A mechanism is simply a device which takes an input motion and force, and outputs a different motion and force. The point of a mechanism is to make the job easier to do. The

More information

12/6/2013 9:09 PM. Chapter 13. Gears General. Dr. Mohammad Suliman Abuhaiba, PE

12/6/2013 9:09 PM. Chapter 13. Gears General. Dr. Mohammad Suliman Abuhaiba, PE Chapter 13 Gears General 1 2 Chapter Outline 1. Types of Gears 2. Nomenclature 3. Conjugate Action 4. Involute Properties 5. Fundamentals 6. Contact Ratio 7. Interference 8. The Forming of Gear Teeth 9.

More information

Analytical method of finding velocity and acceleration in slider crank mechanism

Analytical method of finding velocity and acceleration in slider crank mechanism Analytical method of finding velocity and acceleration in slider crank mechanism Formulae for Analytical method of finding velocity and acceleration in slider crank mechanism Ratio n = connecting rod length

More information

FRICTION DEVICES: DYNAMOMETER. Presented by: RONAK D. SONI Assistant Professor Parul Institute of Technology, Parul University

FRICTION DEVICES: DYNAMOMETER. Presented by: RONAK D. SONI Assistant Professor Parul Institute of Technology, Parul University FRICTION DEVICES: DYNAMOMETER Presented by: RONAK D. SONI Assistant Professor Parul Institute of Technology, Parul University DYNAMOMETER A dynamometer is a brake but in addition it has a device to measure

More information

DHANALAKSHMI COLLEGE OF ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING (Dr.VPR Nagar, Manimangalam, Tambaram) Chennai - 601 301 DEPARTMENT OF MECHANICAL ENGINEERING III YEAR MECHANICAL - VI SEMESTER ME 6601 DESIGN OF TRANSMISSION SYSTEMS

More information

Sheet 1 Variable loading

Sheet 1 Variable loading Sheet 1 Variable loading 1. Estimate S e for the following materials: a. AISI 1020 CD steel. b. AISI 1080 HR steel. c. 2024 T3 aluminum. d. AISI 4340 steel heat-treated to a tensile strength of 1700 MPa.

More information

1/2/2015 2:04 PM. Chapter 13. Gears General. Dr. Mohammad Suliman Abuhaiba, PE

1/2/2015 2:04 PM. Chapter 13. Gears General. Dr. Mohammad Suliman Abuhaiba, PE Chapter 13 Gears General 1 2 Chapter Outline 1. Types of Gears 2. Nomenclature 3. Conjugate Action 4. Involute Properties 5. Fundamentals 6. Contact Ratio 7. Interference 8. The Forming of Gear Teeth 9.

More information

DYNAMICS LABORATORY. AIM: To apply the knowledge gained in kinematics and dynamics of machines to real system.

DYNAMICS LABORATORY. AIM: To apply the knowledge gained in kinematics and dynamics of machines to real system. DYNAMICS LABORATORY AIM: To apply the knowledge gained in kinematics and dynamics of machines to real system. OBJECTIVES: To supplement the principles learnt in kinematics and Dynamics of Machinery. To

More information

TYPICAL EXPERIMENTS Centers of gravity. Force triangle. Force polygon and Bow s Notation. Non- concurrent forces.

TYPICAL EXPERIMENTS Centers of gravity. Force triangle. Force polygon and Bow s Notation. Non- concurrent forces. MM 500-001 BASIC PANEL The panel is made from a perforated stainless steel sheet mounted on two supports with adjustable footings. The panel can be tilted, put in portrait or landscape position. Accessories

More information

DHANALAKSHMI COLLEGE OF ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING VISION Dhanalakshmi College of Engineering is committed to provide highly disciplined, conscientious and enterprising professionals conforming to global standards through

More information

428 l Theory of Machines

428 l Theory of Machines 428 l heory of Machines 13 Fea eatur tures es 1. Introduction. 2. ypes of Gear rains. 3. Simple Gear rain. 4. ompound Gear rain. 5. Design of Spur Gears. 6. Reverted Gear rain. 7. picyclic Gear rain. 8.

More information

Simple Gears and Transmission

Simple Gears and Transmission Simple Gears and Transmission Simple Gears and Transmission page: of 4 How can transmissions be designed so that they provide the force, speed and direction required and how efficient will the design be?

More information

Chapter 10 Machine elements. Bachelor Program in AUTOMATION ENGINEERING Prof. Rong-yong Zhao Second Semester,

Chapter 10 Machine elements. Bachelor Program in AUTOMATION ENGINEERING Prof. Rong-yong Zhao Second Semester, Chapter 10 Machine elements Bachelor Program in AUTOMATION ENGINEERING Prof. Rong-yong Zhao (zhaorongyong@tongji.edu.cn) Second Semester,2013-2014 Content 10.1 Cams 10.1.1- Synthesis of the mechanism 10.1.2-

More information

Simple Gears and Transmission

Simple Gears and Transmission Simple Gears and Transmission Contents How can transmissions be designed so that they provide the force, speed and direction required and how efficient will the design be? Initial Problem Statement 2 Narrative

More information

DESIGN OF MACHINE MEMBERS - I

DESIGN OF MACHINE MEMBERS - I R10 Set No: 1 III B.Tech. I Semester Regular and Supplementary Examinations, December - 2013 DESIGN OF MACHINE MEMBERS - I (Mechanical Engineering) Time: 3 Hours Max Marks: 75 Answer any FIVE Questions

More information

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub Code: ME 2342 DESIGN OF TRANSMISSION SYSTEM UNIT - I 1. How the bevel gears are classified? Explain with

More information

ICE ASSIGNMENT 1. Q.No.4. Draw the PV-diagram of 4-stroke & 2-stroke S.I. & C.I. engine & explain it. ASSIGNMENT 2

ICE ASSIGNMENT 1. Q.No.4. Draw the PV-diagram of 4-stroke & 2-stroke S.I. & C.I. engine & explain it. ASSIGNMENT 2 T.E. Sem V ICE ASSIGNMENT 1. Q.No. 1. Explain the following :- a) Assumption in Air-standered cycle b) Assumption in Fuel Air cycle c) Losses in actual cycle Q.No. 2. Differentiate beteween following :-

More information

MLR Institute oftechnology

MLR Institute oftechnology MLR Institute oftechnology Dundigal, Hyderabad - 500 043 MECHANICAL ENGINEERING Assignment Questions DYNAMICS OF MACHINERY Course Title Course Code 55012 Regulation R13 Course Structure Lectures Tutorials

More information

SECTION 4 SPUR GEAR CALCULATIONS

SECTION 4 SPUR GEAR CALCULATIONS Function of α, or invα, is known as involute function. Involute function is very important in gear design. Involute function values can be obtained from appropriate tables. With the 3.1 Contact Ratio center

More information

Bevel Gears. Fig.(1) Bevel gears

Bevel Gears. Fig.(1) Bevel gears Bevel Gears Bevel gears are cut on conical blanks to be used to transmit motion between intersecting shafts. The simplest bevel gear type is the straighttooth bevel gear or straight bevel gear as can be

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Twelve General Plane Motion, Work and Energy Part A (Introductory) 1. (Problem 6/78 from Meriam and Kraige - Dynamics) Above the earth

More information

MECHANISM: TRANSMISSION THE TYPE OF INPUT MOVEMENT IS THE SAME AS THE OUTPUT TRANSFORMATION THE MECHANISM TRANSFORMS THE TYPE OF MOVEMENT

MECHANISM: TRANSMISSION THE TYPE OF INPUT MOVEMENT IS THE SAME AS THE OUTPUT TRANSFORMATION THE MECHANISM TRANSFORMS THE TYPE OF MOVEMENT MECHANISM: The mechanisms are elements intended to transmit and transform forces and movements from an INPUT element (motor) to an OUTPUT element. Types of movements: Rotary Motion -this is motion in a

More information

Theory of Machines II EngM323 Laboratory User's manual Version I

Theory of Machines II EngM323 Laboratory User's manual Version I Theory of Machines II EngM323 Laboratory User's manual Version I Table of Contents Experiment /Test No.(1)... 2 Experiment /Test No.(2)... 6 Experiment /Test No.(3)... 12 EngM323 Theory of Machines II

More information

Transmission systems: Multiple components that have the same type of movement (rotational, linear, etc)

Transmission systems: Multiple components that have the same type of movement (rotational, linear, etc) Transmission systems: Multiple components that have the same type of movement (rotational, linear, etc) Transformation systems: Different components in the system have different types of movement Ex: rotational

More information

Bevel Gears n A Textbook of Machine Design

Bevel Gears n A Textbook of Machine Design 080 n A Textbook of Machine Design C H A P T E R 30 Bevel Gears. Introduction.. Classification of Bevel Gears. 3. Terms used in Bevel Gears. 4. Determination of Pitch Angle for Bevel Gears. 5. Proportions

More information

A Literature Review and Study on 4 Wheel Steering Mechanisms

A Literature Review and Study on 4 Wheel Steering Mechanisms 2018 IJSRST Volume 4 Issue 3 Print ISSN : 2395-6011 Online ISSN: 2395-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 29 th January 2018 Organized by : Anjuman College

More information

11. GEAR TRANSMISSIONS

11. GEAR TRANSMISSIONS 11. GEAR TRANSMISSIONS 11.1. GENERAL CONSIDERATIONS Gears are one of the most important elements used in machinery. There are few mechanical devices that do not have the need to transmit power and motion

More information

Chapter 1 Gear Design

Chapter 1 Gear Design Chapter 1 Gear Design GTU Paper Analysis Sr. No. Questions Nov 16 May 17 Nov 17 May 18 Theory 1. Explain the following terms used in helical gears: (a) Helix angle; (b) Normal pitch; (c) Axial pitch; (d)

More information

MODEL QUESTION PAPER

MODEL QUESTION PAPER MODEL QUESTION PAPER B.E. AUTOMOBILE ENGINEERING SEMESTER V AT 335 - AUTOMOTIVE TRANSMISSION Time: 3 Hours Max. Marks: 100 Answer ALL Questions PART A (10 x 2 = 20 Marks) 1. What are the requirements of

More information

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank UNIT I INTRODUCTION 1. What are the design considerations of a vehicle?(jun 2013) 2..Classify the various types of vehicles.

More information

ISSN: [Sheikh* et al., 6(2): February, 2017] Impact Factor: 4.116

ISSN: [Sheikh* et al., 6(2): February, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY COMPUTER AIDED MODELING AND ANALYSIS OF CRANK AND SLOTTED LEVER QUICK RETURN MECHANISM Shahbaz.M. Sheikh *, Sujata.P. Khartade,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch : DYNAMICS OF MACHINERY : A50317 : III

More information

LECTURE NOTES ENT348 MECHANICAL SYSTEM DESIGN Lecture 6 25/3/2015 CAM DESIGN

LECTURE NOTES ENT348 MECHANICAL SYSTEM DESIGN Lecture 6 25/3/2015 CAM DESIGN LECTURE NOTES ENT348 MECHANICAL SYSTEM DESIGN Lecture 6 25/3/2015 CAM DESIGN Dr. HAFTIRMAN MECHANICAL ENGINEEERING PROGRAM SCHOOL OF MECHATRONIC ENGINEERING UniMAP COPYRIGHT RESERVED 2015 ENT348 Mechanical

More information

Different types of gears. Spur gears. Idler gears. Worm gears. Bevel gears. Belts & Pulleys

Different types of gears. Spur gears. Idler gears. Worm gears. Bevel gears. Belts & Pulleys GEARS Robot Gears By using different gear diameters, you can exchange between rotational (or translation) velocity and torque. by looking at the motor datasheet you can determine the output velocity and

More information

Gear Engineering Data. Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables

Gear Engineering Data. Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables Engineering Gear Engineering Data Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables G-79 Gear Selection Stock Spur Gear Drive Selection When designing a stock gear drive using the horsepower

More information

Suspension systems and components

Suspension systems and components Suspension systems and components 2of 42 Objectives To provide good ride and handling performance vertical compliance providing chassis isolation ensuring that the wheels follow the road profile very little

More information

LABORATORY MANUAL DYNAMICS OF MACHINE LAB

LABORATORY MANUAL DYNAMICS OF MACHINE LAB LABORATORY MANUAL DYNAMICS OF MACHINE LAB Sr. No Experiment Title 1 To Perform Experiment On Watt And Porter Governors To Prepare Performance Characteristic Curves, And To Find Stability & Sensitivity

More information

Model Library Power Transmission

Model Library Power Transmission Model Library Power Transmission The Power Transmission libraries in SimulationX support the efficient modeling and analysis of mechanical powertrains as well as the simulation-based design of controlled

More information

Technical Report Con Rod Length, Stroke, Piston Pin Offset, Piston Motion and Dwell in the Lotus-Ford Twin Cam Engine. T. L. Duell.

Technical Report Con Rod Length, Stroke, Piston Pin Offset, Piston Motion and Dwell in the Lotus-Ford Twin Cam Engine. T. L. Duell. Technical Report - 1 Con Rod Length, Stroke, Piston Pin Offset, Piston Motion and Dwell in the Lotus-Ford Twin Cam Engine by T. L. Duell May 24 Terry Duell consulting 19 Rylandes Drive, Gladstone Park

More information

ME 6503 DESIGN OF MACHINE ELEMENTS Mechanical Engineering Fifth Semester UNIT - 4 Part A

ME 6503 DESIGN OF MACHINE ELEMENTS Mechanical Engineering Fifth Semester UNIT - 4 Part A ME 6503 DESIGN OF MACHINE ELEMENTS Mechanical Engineering Fifth Semester UNIT - 4 Part A 1. State any two functions of springs. (N/D 16) i) To provide cushioning effect or reduce the effect of shock or

More information

Analysis of Torsional Vibration in Elliptical Gears

Analysis of Torsional Vibration in Elliptical Gears The The rd rd International Conference on on Design Engineering and Science, ICDES Pilsen, Czech Pilsen, Republic, Czech August Republic, September -, Analysis of Torsional Vibration in Elliptical Gears

More information

Balancing of Reciprocating Parts

Balancing of Reciprocating Parts Balancing of Reciprocating Parts We had these forces: Primary and Secondary Unbalanced Forces of Reciprocating Masses m = Mass of the reciprocating parts, l = Length of the connecting rod PC, r = Radius

More information

SECTION 8 BEVEL GEARING

SECTION 8 BEVEL GEARING SECTION 8 BEVEL GEARING For intersecting shafts, bevel gears offer a good means of transmitting motion and power. Most transmissions occur at right angles, Figure 8-1, but the shaft angle can be any value.

More information

05 Marks (c) Sketch and explain Lancashire Boiler.

05 Marks (c) Sketch and explain Lancashire Boiler. Model question paper No.1 1. Answer any FIVE full questions choosing at least two questions from part A & two questions from part B 2. Use of steam tables is permitted 1. (a) Discuss briefly the different

More information