PERFORMANCE ANALYSIS OF DIFFERENT HEAT EXCHANGER DESIGN USING CFD SIMULATION 1 KVENUMADHAV 2 SUDHANSHU KUMAR

Size: px
Start display at page:

Download "PERFORMANCE ANALYSIS OF DIFFERENT HEAT EXCHANGER DESIGN USING CFD SIMULATION 1 KVENUMADHAV 2 SUDHANSHU KUMAR"

Transcription

1 PERFORMANCE ANALYSIS OF DIFFERENT HEAT EXCHANGER DESIGN USING CFD SIMULATION 1 KVENUMADHAV 2 SUDHANSHU KUMAR 3 CHANDRASHEKAR GOUD.V 1 PG Scholar, Department of MECH, Aurora s Scientific, Technological and Research Academy madhav.venu564@gmail.com 2 Assistant Professor, Department of MECH, Aurora s Scientific, Technological and Research Academy sudhanshuk27@gmail.com 3 Associate Professor, Department of MECH, Aurora s Scientific, Technological and Research Academy csgoud10@gmail.com ABSTRACT A heat exchanger is a device used to transfer energyfrom two or more fluids, from a solid surface and a fluid, or from solid particulates and a fluid, at distinctive temperatures and which are in thermal contact. Heat exchangers are one of the important engineering devices in process industries since the efficiency and economy of the process largely depend on the performance of the heat exchangers. In the present study, Double Helical Circular Pipe Heat Exchanger has been designed and analyzed to get maximum Effectiveness. Further, materials of this design have also been varied and analyzed. The materials are considered as Steel, Aluminium, and Copper. The design Double Helical Circular Pipe Heat Exchanger has been done using SolidWorks software. Then analysis is carried out using ANSYS software. After doing analysis in ANSYS software, it has been observed that, (i) Counterflow Heat Exchanger has greater Effectiveness than Parallel flow for all materials, (ii) Copper is best suited material for the heat exchanger as it is giving more effectiveness than Aluminium and Steel, (iii) And Steel is giving less effectiveness than Aluminium. 1.0 Introduction A heat exchanger is a device used to transfer heat between one or more fluids. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, naturalgas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. 1.1 Classification of Heat Exchangers There are many types of heat exchangers. Some of them are. Shell and Tube Heat Exchanger Plate Heat Exchangers Plate and Shell Heat Exchanger Pillow Plate Heat Exchanger Fluid Heat Exchangers

2 Dynamic Scraped Surface Heat Exchanger Plate and Fin Heat Exchanger Spiral Heat Exchanger Concentric Tube Heat Exchangers (i) Classification of Heat Exchangers According to the Flow Direction a) parallel flow b) Cross flow c) Counter flow (ii) Classification of Heat Exchangers According to the construction Tubular Heat Exchangers Tubular heat exchangers are built of mainly of circular tubes there are some other geometry has also been used in different applications. Double Pipe Helical Heat Exchanger The double pipe or the tube in tube type heat exchanger consists of one pipe placed concentrically inside another pipe having a greater diameter. The flow in this configuration can be of two types: parallel flow and counter-flow. It can be arranged in a lot of series and parallel configurations to meet the different heat transfer requirements. Double coil heat exchanger is widely used; knowledge about the heat transfer coefficient, pressure drop, and different flow patterns has been of much importance. Fig: Double Pipe Helical Heat Exchanger Advantages of Coils 1. Helical coils give better heat transfer characteristics, since they have lower wall resistance & higher process side coefficient. 2. The whole surface area of the curved pipe is exposed to the moving fluid, which eliminates the dead-zones that are a common drawback in the shell and tube type heat exchanger. 3. A helical coil offers a larger surface area in a relatively smaller reactor volume and a lesser floor area. 4. The spring-like coil of the helical coil heat exchanger eliminates thermal expansion and thermal shock problems, which helps in high pressure operations. 5. Fouling is comparatively less in helical coil type than shell and tube type because of greater turbulence created inside the curved pipes. (ii) Disadvantages of coils 1. For highly reactive fluids or highly corrosive fluid coils cannot be used, instead jackets are used. 2. Cleaning of vessels with coils is more difficult than the cleaning of shells and jackets. 3. Coils play a major role in selection of agitation system. Sometimes the densely packed coils can create unmixed regions by interfering with fluid flow. 4. The design of the helical tube in tube type heat exchanger is also a bit complex and challenging. (iii) Applications of Helical coils Use of helical coil heat exchangers in different heat transfer applications: 1. Helical coils are used for transferring heat in chemical reactors because the heat transfer coefficients are greater in helical coils as compared to other configurations. 2. The helical coils have a compact configuration, and because of that they can be readily used in heat transfer application with space limitations, for example, marine cooling systems, central cooling,

3 cooling of lubrication oil, steam generations in marine and industrial applications. 3. The helical coiled heat exchangers are used widely in food and beverage industries 4. Helical coil heat exchangers are often used as condensers in used in HVACs due to their greater heat transfer rate and compact structure. 5. Helical coiled tubes are used extensively in cryogenic industry for the liquefaction of gases. 6. Used in hydro carbon processing, recovery of CO2, cooling of liquid hydrocarbons, also used in polymer industries for cooling purposes. 1.2 Materials Used For Heat Exchangers A variety of materials are used in the design of tube heat exchangers, including carbon steel, stainless steel, copper, bronze, brass, titanium and various alloys. Generally, the outer shell is made of a durable, high strength metal, such as carbon steel or stainless steel. Inner tubes require an effective combination of durability, corrosion resistance and thermal conductivity. Regular materials used in their construction are copper, stainless steel, and copper/nickel alloy. Other metals are used in device fittings, end bonnets and heads. 1.3 Computational Fluid Dynamics Usually abbreviated as CFD, is a branch of fluid mechanics that uses numerical analyze and algorithms to solve and analyze problems that involve fluid flows. The fundamental basis of almost all CFD problems are the Navier Stokes equations which define any single-phase (gas or liquid, but not both) fluid flow. 1.4 Introductions to ANSYS ANSYS delivers innovative, dramatic simulation technology advances in every major Physics discipline, along with improvements in computing speed and enhancements to enabling technologies such as geometry handling, meshing and postprocessing. 1.5Introduction to SolidWorks SolidWorks is mechanical design automation software that takes advantage of the familiar Microsoft Windows graphical user interface. It is an easy-to-learn tool which makes it possible for mechanical designers to quickly sketch ideas, experiment with features and dimensions, and produce models and detailed drawings. 1.6 Literature Review In this chapter, some important research work has been surveyed on Heat Exchanger. This chapter helps to find the recent development in the area of heat exchanger. This also helps to find out the gap in research work on heat exchanger. Daniel Flórez-Orrego, Walter Arias, Diego Lopez and Hector Velasquez have worked on the single phase cone shaped helical coil heat exchanger. The study showed the flow and the heat transfer in the heat exchanger. An empirical correlation was proposed from the experimental data for the average Nusselt number and a deviation of 23% was found. For the cone shaped helical coils an appreciable inclination of the velocity vector components in the secondary flow was seen, even though the contours of velocity were similar. The study showed that some of the deviations and errors were due to the nonuniform flame radiation and condensed combustion products which modified the conditions of the constant wall heat fluxassumptions.the correlations for the Nusselt number values were not totally reliable. There was no proper data available for the effect of the taper in the local Nusselt number and

4 also the effect of curvature ratio, vertical position and the pitch of the heat exchanger. Timothy J. Rennie studied the heat transfer characteristics of a double pipe helical heat exchanger for both counter and parallel flow.both the boundary conditions of constant heat flux and constant wall temperature were taken. The study showed that the results from the simulations were within the range of the pre-obtained results. For dean numbers ranging from 38 to 350 the overall heat transfer coefficients were determined. The results showed that the overall heat transfer coefficients varied directly with the inner dean number but the fluid flow conditions in the outer pipe had a major contribution on the overall heat transfer coefficient. The study showed that during the design of a double pipe helical heat exchanger the design of the outré pipe should get the highest priority in order to get a higher overall heat transfer coefficient. Jayakumar J.S observed that the use of constant values for the transfer and thermal properties of the fluid resulted in inaccurate heat transfer coefficients. Based on the CFD analysis results a correlation was developed in order to evaluate the heat transfer coefficient of the coil. In this study, analysis was done for both the constant wall temperature and constant wall heat flux boundary conditions. The Nusselt numbers that were obtained were found to be highest on the outer coil and lowest in the inner side. Various numerical analyses were done so as to relate the coil parameters to heat transfer. The coil parameters like the diameters of the pipes, the Pitch Circle Diameters have significant effect on the heat transfer and the effect of the pitch is negligible. Patel H. S. ** Makadia R. N.[1] A Review on Performance Evaluation and CFD Analysis of Double Pipe Heat Exchanger Double pipe heat exchanger is one of simplest type of heat exchanger, generally used for the purpose of sensible heating or cooling. In this paper it describes the different techniques which may help to enhance the heat transfer rate. Heat exchangers are modified in space of annular, also using Nano particle in water and compared with the conventional heat exchanger. Double pipe heat exchanger is practically investigated and results are validated with ANSYS CFX software. Results shows that heat transfer rate of modified heat exchanger are higher than the conventional heat exchanger. As Nano particles dispersed in water can significantly enhance heat transfer rate and also heat transfer rate increase with increase of mass flow rate. From the above literature survey it may conclude that heat transfer augmentation techniques is successful to increase heat transfer performance of double pipe heat exchanger. Heat exchanger with the modification of extended surfaces, twisted tape, and louvered strips are resulted greater heat transfer rate as compared to heat exchanger without modification. As Nanoparticles water can significantly enhance the convective heat transfer and heat transfer rate increases with the increase of mass flow rate. Antony luki.a, Ganesan.M [2] Flow Analysis and Characteristics Comparison of Double Pipe Heat Exchanger Using Enhanced Tubes In this investigation, augmented surface has been achieved with dimples strategically located in a pattern along the tube of a concentric tube heat exchanger with the increased area on the tube side. Augmented surfaces to increasing the heat transfer coefficient with a

5 consequent increase in the friction factor. In this analysis to modify the inner tube of double pipe heat exchanger using dimpled tube. The concentric tube heat exchanger is design from Juin Chen a.et.al. Correlation. In this design the inner tubes consider as the hot flue gas and outer tube is nano fluid. Here In this study the properties of nano fluid from the alumina as the nano fluid with ethyl glycol as the base fluid. a. From this design calculation the heat transfer co efficient is increased compared to plain concentric tube heat exchanger. Similarly the effectiveness is 8% increased compared to plain concentric tube heat exchanger. The theoretical results show that the using dimpled tube in concentric tube heat exchanger gives better performance. The modeling and analysis is carried out to vary the dimple tube cross sections, ellipsoidal and spherical shapes using CFD. Finally the enhanced dimple tube is compare with the theoretical, analytical and analysis the results. From the above literature survey it may conclude that Augmented surfaces to increasing the heat transfer coefficient with a consequent increase in the friction factor. Here investigation dimpled tube is used. From theoretical calculation the overall heat transfer coefficient is increased and also effectiveness of the dimpled tube with concentric tube heat exchanger is increased 8% compare to plain tube concentric tube heat exchanger. Usman Ur Rehman studied the heat transfer and flow distribution in a shell and tube heat exchanger and compared them with the experimental results. The model showed an average error of around 20% in the heat transfer and the pressure difference. The study showed that the symmetry of the plane assumption worked well for the length of the heat exchanger but not in the outlet and inlet regions. The model could be improved by using Reynolds Stress models instead of k-ε models. The heat transfer was found to be on the lower side as there was not much interaction between the fluids. The design could be improved by improving the cross flow regions instead of the parallel flow. 2.0Modeling and Designing of Heat Exchanger Modeling of Double Helical Circular Pipe Heat Exchanger Fig: Profile of Helix Fig: Using Sweep command, Inner Pipe Fig : Generation of Outer Pipe, Double Helical Circular Pipe 3.0 SIMULATION Analysis of Heat Exchangers

6 Analysis has been carried out using ANSYS software considering four different cross-sectional pipes under similar boundary conditions. The different crosssection Heat exchangers are Double Helical Circular Pipe, Double Rectangular Pipe, Double Straight Circular Pipe, and Double Straight Rectangular Pipe. Steel, Copper and Aluminum are used as pipe material. Boundary conditions used for analysis are shown in table 1 Table.1: Boundary Conditions 3.1 Analysis of Double Helical Circular Pipe Heat Exchangerusing Steel under Parallel flow (i) Geometry tool features and outer wall is named as adiabatic wall as shown in fig Fig: Name selection for Parallel flow (iv)model: Viscous model is selected as k-epsilon (2 equations). (v) Materials: Materials are edited/created as per boundary conditions from fluent database. (vi)boundary Condition: The inlet and outlet conditions are defined as velocity inlet and pressure outlet. The walls are separately specified by respective boundary conditions. No slip condition is considered for each wall. Except for tube walls, each wall is set to zero heat flux condition. (vii) Run Calculation: The number of iterations has been set to 500. Simulation results of Temperature, Pressure, and Velocity are shown in table no 2. Table 2: Simulation Results (ii)meshing Fig: Geometry for Meshing (viii) Vectors: The vectors give an idea of flow separation at several parts of the heat exchanger. Fig: Meshing Operation (iii)name selection: The names for walls, inlets, outlets, and fluids are assigned using face and body

7 Table 3: Simulation Results Vectors: (c) Fig: Double Helical Circular Pipe Parallel flow-vector View Temperature, Pressure, (c) Velocity 3.2 Analysis of Double Helical Circular Pipe using Steel under Counterflow The only change in the analysis of Counterflow is name selection. As the two streams flow in opposite directions in Counterflow, the inlets and outlets of hot and cold fluids are interchanged. The remaining steps like Meshing, Models, Material selection, Cell zone conditions, Boundary conditions, Solution initialization, and Run calculation are same as done in case of Parallel flow. Simulation results of Temperature, Pressure, and Velocity are shown in table no 3. (c) Fig: Double Helical Circular Pipe Counter flow-vector View Temperature, Pressure, (c) Velocity 3.3 Analysis of Double Helical Circular Pipe Heat Exchanger using Aluminium under Parallel flow

8 Simulation results of Temperature, Pressure, and Velocity are shown in table no4. Table 4: Simulation Results The only change in the analysis of Counterflow is name selection Simulation results of Temperature, Pressure, and Velocity are shown in table no.5. Table 5: Simulation Results Vectors: Vectors: (c) Fig: Double Helical Circular Pipe Parallel flow-vector View Temperature, Pressure, (c) Velocity 3.4 Analysis of Double Helical Circular Pipe Heat Exchanger using Aluminium under Counterflow Fig: Double Helical Circular Pipe Counterflow-Vector View Temperature, Pressure, (c) Velocity

9 3.5 Analysis of Double Helical Circular Pipe Heat Exchanger using Copper under Parallel flow Materials of inner and outer pipes are changed from Steel to Copper. Simulation results of Temperature, Pressure, and Velocity are shown in table no Analysis of Double Helical Circular pipe Heat Exchanger using Copper under Counterflow The only change in the analysis of Counterflow is name selection. Simulation results of Temperature, Pressure, and Velocity are shown in table no7. Table 7: Simulation Results Vectors: Vectors: (c) Fig: Double Helical Circular Pipe Parallel flow-vector View Temperature, Pressure, (c) Velocity (c)

10 Fig: Double Helical Circular Pipe Counter flow-vector View Temperature, Pressure, (c) Velocity 4.0 Results and Discussion In the present study, Modeling and Analysis has been carried out on Double Helical Circular Pipe Heat Exchanger. Further materials of this design have also been varied and analyzed. ANSYS Fluent software is used to analyze the Effectiveness of heat exchanger and calculated. Effectiveness Calculations: (i) Analysis of Double Helical Circular Pipe Heat Exchangerusing Steel under Parallel flow A h = πr i 2 = m 2 A c = π(r o 2 - r i 2 ) = m 2 Mass flow rate M h = ρa h V = = kg/s M C = ρa c V = = kg/s Heat Capacity rates C h = (C p ) h M h = w/k C c = (C p ) c M c = w/k Heat capacity Ratio R = C min / C max = C h / C c = As, Q = UAθ m Finding UA from the above equation, first Calculated Q and θ m values and substituted. Actual Heat Transfer rate, Q = C min (T h1 - T h2) = ( ) = watts θ 1 - θ 2 θ m = ln(θ 1 /θ 2 ) θ 1 = (T h1 - T c1 ) = = 50 K θ 2 = (T h2 - T c2 ) = = K θ m = 35.80, UA = Q / θ m = NTU = UA / C min = Effectiveness: {-NTU (1+R)} 1 e ε = 1+R ε = Heat capacity, Q = ε C min (T h1 - T c1 ) = ( ) = watts (ii) Analysis of Double Helical Circular Pipe Heat Exchanger using Steel under Counterflow Cross-sectional areas of each fluid flow A h = πr i 2 = m 2 A c = π(r o 2 - r i 2 ) = m 2 Mass flow rate M h = ρa h V = = kg/s M C = ρa c V = = kg/s Heat Capacity rates C h = (C p ) h M h = w/k C c = (C p ) c M c = w/k Heat capacity Ratio R = C min / C max = C h / C c = As, Q = UAθ m Finding UA from the above equation, first Calculated Q and θ m values and substituted. Actual Heat Transfer rate, Q = C min (T h1 - T h2) = ( ) = watts θ 1 - θ 2 θ m = ln(θ 1 /θ 2 ) θ 1 = (T h1 - T c2 ) = = K θ 2 = (T h2 - T c1 ) = = K θ m = 35.82, UA = Q / θ m = NTU = UA / C min = Effectiveness

11 {-NTU (1-R)} 1 e ε = {-NTU (1-R)} 1-R e ε = Heat capacity, Q = ε C min (T h1 - T c1 ) = ( ) Effectiveness PF-[Y VALUE] CF-[Y VALUE] = watts The Effectiveness value for Aluminium and Copper also calculated in the same manner as calculated for Steel. The following table shows Effectiveness values of Double Helical Circular Pipe Heat Exchanger using different materials. Table 8: Effectiveness values of Double Helical Circular Pipe Heat Exchanger Geometry Material Effectiveness Parallel Counterflow flow Helical Circular Pipe Steel Aluminium Copper On the basis of Table no 1, the plots has beenplotted for Effectiveness as shown below Effectiveness CF-[Y VALUE] PF-[Y VALUE ] Steel Effectiveness (c) Fig: Plots showing Effectiveness for Different Materials 5.0 Conclusions 1. It has been observed that, Counterflow Heat Exchanger has greater Effectiveness than Parallel flow for three materials. 2. It has been observed that, Copper is best suited material for the heat exchanger, as it is giving more effectiveness than Aluminium and Steel. 3. And Steel is giving less effectiveness than Aluminium and Copper. 6.0 References 1. Experimental and CFD study of a single phase cone-shaped helical coiled heat exchanger: an empirical correlation. By Daniel Flórez-Orrego, ECOSJune 26-29, Helically Coiled Heat Exchangers by J.S.Jayakumar. Aluminium PF-[Y VALUE] CF-[Y VALUE] Copper

12 3. Numerical and Experimental Studies of a Double pipe Helical Heat Exchanger by Timothy John Rennie, Dept. of Bio-resource Engg. McGill University, Montreal August Experimental and CFD estimation of heat transfer in helically coiled heat exchangers by J.S. Jayakumar, S.M. Mahajani, J.C. Mandal, P.K. Vijayan, and Rohidas Bhoi, 2008, Chemical Engg Research and Design Heat Transfer Optimization of Shell-and-Tube Heat Exchanger through CFD Studies by Usman Ur Rehman, 2011, Chalmers University of Technology. 6. Structural and Thermal Analysis of Heat Exchanger with Tubes of Elliptical Shape by Nawras H. Mostafa Qusay R. Al-Hagag, IASJ, 2012,Vol-8 Issue Numerical analysis of forced convection heat transfer through helical channels Dr. K. E. Reby Roy, IJEST, and July-2012 vol Minton P.E., Designing Spiral Tube Heat Exchangers, Chemical Engineering, May 1970, p Noble, M.A., Kamlani, J.S., and McKetta, J.J., Heat Transfer in Spiral Coils, Petroleum Engineer, April 1952, p Heat Transfer Analysis of Helical Coil Heat Exchanger with Circular and Square Coiled Pattern by Ashok B. Korane, P.S. Purandare, K.V. Mali, IJESR, June 2012, vol-2, issue-6.

CFD ANALYSIS OF DOUBLE HELICAL PIPE PARALLEL& COUNTER FLOW HEAT EXCHANGER

CFD ANALYSIS OF DOUBLE HELICAL PIPE PARALLEL& COUNTER FLOW HEAT EXCHANGER CFD ANALYSIS OF DOUBLE HELICAL PIPE PARALLEL& COUNTER FLOW Abstract HEAT EXCHANGER 1 Hepsiba Sudarsanam, 2 Dvsrbm Subhramanyam 1 PG Scholar, Department of MECH, Nalanda Institute of Technology, Kantepudi,Sattenapalli

More information

CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix angle

CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix angle CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix 1 Saket A Patel, 2 Hiren T Patel 1 M.E. Student, 2 Assistant Professor 1 Mechanical Engineering Department, 1 Mahatma

More information

THERMAL ANALYSIS OF HELICALLY GROOVED COIL IN A CONCENTRIC TUBE HEAT EXCHANGER

THERMAL ANALYSIS OF HELICALLY GROOVED COIL IN A CONCENTRIC TUBE HEAT EXCHANGER THERMAL ANALYSIS OF HELICALLY GROOVED COIL IN A CONCENTRIC TUBE HEAT EXCHANGER A. RESHMA P.G Scholar, Thermal Engineering, Aditya Engineering College, Surampalem M.SREENIVASA REDDY Professor, Mechanical

More information

CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD

CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD Rudragouda R Patil 1, V Santosh Kumar 2, R Harish 3, Santosh S Ghorpade 4 1,3,4 Assistant Professor, Mechanical Department, Jayamukhi

More information

[Vishwakarma* et al., 5(9): September, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Vishwakarma* et al., 5(9): September, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY TO DEDUCTION OF MASS FLOW RATE FOR HELICAL HEAT EXCHANGER AT MULTIPLE CROSS-SECTIONS USING CFD Surendra Kumar Vishwakarma*, Sanjay

More information

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate Sandeep M, U Sathishkumar Abstract In this paper, a study of different cross section bundle arrangements

More information

Thermal Analysis of Shell and Tube Heat Exchanger Using Different Fin Cross Section

Thermal Analysis of Shell and Tube Heat Exchanger Using Different Fin Cross Section Thermal Analysis of Shell and Tube Heat Exchanger Using Different Fin Cross Section J. Heeraman M.Tech -Thermal Engineering Department of Mechanical Engineering Ellenki College of Engineering & Technology

More information

ABSTRACT I. INTRODUCTION III. GEOMETRIC MODELING II. LITERATURE REVIW

ABSTRACT I. INTRODUCTION III. GEOMETRIC MODELING II. LITERATURE REVIW 2017 IJSRSET Volume 3 Issue 5 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Performance Analysis of Helical Coil Heat Exchanger Using Numerical Technique Abhishek

More information

A REVIEW ON INVESTIGATION OF HELICAL COIL HEAT EXCHANGER

A REVIEW ON INVESTIGATION OF HELICAL COIL HEAT EXCHANGER A REVIEW ON INVESTIGATION OF HELICAL COIL HEAT EXCHANGER Umang K Patel 1, Prof. Krunal Patel 2 1 ME scholar, Mechanical Department, LDRP-ITR, Gandhinagar, India 2 Professor, Mechanical Department, LDRP-ITR,

More information

A Review on Experimental Investigation of U-Tube Heat Exchanger using Plain Tube and Corrugated Tube

A Review on Experimental Investigation of U-Tube Heat Exchanger using Plain Tube and Corrugated Tube A Review on Experimental Investigation of U-Tube Heat Exchanger using Plain Tube and Corrugated Tube 1 Dhavalkumar A. Maheshwari, 2 Kartik M. Trivedi 1 ME Student, 2 Assistant Professor 1 Mechanical Engineering

More information

Design and Performance Analysis of Louvered Fin Automotive Radiator using CAE Tools

Design and Performance Analysis of Louvered Fin Automotive Radiator using CAE Tools Design and Performance Analysis of Louvered Fin Automotive Radiator using CAE Tools Vishwa Deepak Dwivedi Scholar of Master of Technology, Mechanical Engineering Department, UCER, Allahabad, India Ranjeet

More information

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces 511 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

Design, Fabrication and Testing of helical tube in tube coil heat exachanger

Design, Fabrication and Testing of helical tube in tube coil heat exachanger Design, Fabrication and Testing of helical tube in tube coil heat exachanger #1 Sachin Meshram, #2 Prof.P.T.Nitnaware, #3 M.R.Jagdale ABSTRACT Helical coil heat exchangers are one of the most common equipment

More information

Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler

Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler S. Hassan *,a, M. K. Roslim b and R. M. Zain c Mechanical Engineering Department,

More information

Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator

Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator RESEARCH ARTICLE OPEN ACCESS Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator Vishwa Deepak Dwivedi, Ranjeet Rai Scholar of Master of Technology, Mechanical Engineering Department,

More information

EXPERIMENTAL INVESTIGATIONS OF DOUBLE PIPE HEAT EXCHANGER WITH TRIANGULAR BAFFLES

EXPERIMENTAL INVESTIGATIONS OF DOUBLE PIPE HEAT EXCHANGER WITH TRIANGULAR BAFFLES International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 8 Aug-216 www.irjet.net p-issn: 2395-72 EXPERIMENTAL INVESTIGATIONS OF DOUBLE PIPE HEAT EXCHANGER WITH

More information

ENHANCEMENT OF HEAT TRANSFER COEFFICIENT THROUGH HELICAL COIL

ENHANCEMENT OF HEAT TRANSFER COEFFICIENT THROUGH HELICAL COIL ENHANCEMENT OF HEAT TRANSFER COEFFICIENT THROUGH HELICAL COIL Rahul G.Karmankar Assistant Professor, Mechanical Engineering department,nagpur University, Maharashtra,India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts

Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts Deepali Gaikwad 1, Kundlik Mali 2 Assistant Professor, Department of Mechanical Engineering, Sinhgad College of

More information

CFD ANALYSIS ON LOUVERED FIN

CFD ANALYSIS ON LOUVERED FIN CFD ANALYSIS ON LOUVERED FIN P.Prasad 1, L.S.V Prasad 2 1Student, M. Tech Thermal Engineering, Andhra University, Visakhapatnam, India 2Professor, Dept. of Mechanical Engineering, Andhra University, Visakhapatnam,

More information

NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] VOLUME 1, ISSUE 1 NOV-2014

NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] VOLUME 1, ISSUE 1 NOV-2014 Review of Heat Transfer Parameters using internal threaded pipe fitted with inserts of different materials Mr. D.D.Shinde Department of Mechanical Engineering Shivaji University, PVPIT Budhagaon, Dist:

More information

Optimisation of Double Pipe Helical Tube Heat Exchanger and its Comparison with Straight Double Tube Heat Exchanger

Optimisation of Double Pipe Helical Tube Heat Exchanger and its Comparison with Straight Double Tube Heat Exchanger DOI 1.17/s432-16-261-x ORIGINAL CONTRIBUTION Optimisation of Double Pipe Helical Tube Heat Exchanger and its Comparison with Straight Double Tube Heat Exchanger Rashid Kareem 1 Received: 3 June 214 / Accepted:

More information

Design Optimization of Cross Flow Heat Exchanger

Design Optimization of Cross Flow Heat Exchanger Design Optimization of Cross Flow Heat Exchanger K. Ashok Kumar Raju 1, M. Vijay Kumar Reddy 2, A. Nagaraja 3 1,2,3 Department of Mechanical Engineering, A.I.T.S, Rajampet Abstract Heat exchangers are

More information

Review on Comparative Study between Straight Tube Heat Exchanger and Helical Coil Heat Exchanger

Review on Comparative Study between Straight Tube Heat Exchanger and Helical Coil Heat Exchanger Review on Comparative Study between Straight Tube Heat Exchanger and Helical Coil Heat Exchanger Vaibhav M. Samant 1, Jayesh V. Bute 2 1 (Student (Mechanical Engineering)/Pimpri Chinchwad College Of Engineering

More information

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2016, 8 (7):31-40 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Comparison

More information

Heat Exchangers (Chapter 5)

Heat Exchangers (Chapter 5) Heat Exchangers (Chapter 5) 2 Learning Outcomes (Chapter 5) Classification of heat exchangers Heat Exchanger Design Methods Overall heat transfer coefficient LMTD method ε-ntu method Heat Exchangers Pressure

More information

GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE PIPE HEAT EXCHANGER USING TAGUCHI METHOD D.

GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE PIPE HEAT EXCHANGER USING TAGUCHI METHOD D. ISSN 2277-2685 IJESR/March 2018/ Vol-8/Issue-3/18-24 D. Bahar et. al., / International Journal of Engineering & Science Research GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE

More information

Enhance the Performance of Heat Exchanger with Twisted Tape Insert: A Review

Enhance the Performance of Heat Exchanger with Twisted Tape Insert: A Review Enhance the Performance of Heat Exchanger with Twisted Tape Insert: A Review M.J.Patel 1, K.S.Parmar 2, Umang R. Soni 3 1,2. M.E. Student, department of mechanical engineering, SPIT,Basna, Gujarat, India,

More information

Experimental Study of Heat Transfer Augmentation in Concentric Tube Heat Exchanger with Different Twist Ratio of Perforated Twisted Tape Inserts

Experimental Study of Heat Transfer Augmentation in Concentric Tube Heat Exchanger with Different Twist Ratio of Perforated Twisted Tape Inserts International search Journal of Advanced Engineering and Science Experimental Study of Heat Transfer Augmentation in Concentric Tube Heat Exchanger with Different Twist Ratio of Perforated Twisted Tape

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 0, October-205 97 The Effect of Pitch and Fins on Enhancement of Heat Transfer in Double Pipe Helical Heat Exchanger 2 Abdulhassan

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2, Issue 12, December -2015 e-issn (O): 2348-4470 p-issn (P): 2348-6406 An

More information

Performance Evaluation Of A Helical Baffle Heat Exchanger

Performance Evaluation Of A Helical Baffle Heat Exchanger Performance Evaluation Of A Helical Baffle Heat Exchanger Mayank Vishwakarma 1, Professor. K. K. Jain 2 1 M.E IV Semester (Heat Power Engineering) Shri Ram Institute of Technology, Jabalpur 482002 (M.P)

More information

CFD analysis of triple concentric tube heat exchanger

CFD analysis of triple concentric tube heat exchanger Available online at www.ganpatuniversity.ac.in University Journal of Research ISSN (Online) 0000 0000, ISSN (Print) 0000 0000 CFD analysis of triple concentric tube heat exchanger Patel Dharmik A a, V.

More information

Heat Transfer in Rectangular Duct with Inserts of Triangular Duct Plate Fin Array

Heat Transfer in Rectangular Duct with Inserts of Triangular Duct Plate Fin Array Heat Transfer in Rectangular Duct with Inserts of Triangular Duct Plate Fin Array Deepak Kumar Gupta M. E. Scholar, Raipur Institute of Technology, Raipur (C.G.) Abstract: In compact plate fin heat exchanger

More information

NUMERICAL ANALYSIS OF HELICALLY COILED HEAT EXCHANGER USING CFD TECHNIQUE

NUMERICAL ANALYSIS OF HELICALLY COILED HEAT EXCHANGER USING CFD TECHNIQUE NUMERICAL ANALYSIS OF HELICALLY COILED HEAT EXCHANGER USING CFD TECHNIQUE R. Thundil Karuppa Raj 1, Manoj Kumar S. 1, Aby Mathew C. 1 and T. Elango 2 1 School of Mechanical and Building Sciences, VIT University,

More information

Computational Investigation of Normal and Hybrid Cooling Fins of Internal Combustion Engine

Computational Investigation of Normal and Hybrid Cooling Fins of Internal Combustion Engine Computational Investigation of Normal and Hybrid Cooling Fins of Internal Combustion Engine Aswin Mohan, R. Titus, Adarsh Kumar.P.S Abstract In this research work a hybrid material (Aluminium-Copper) compound

More information

Automation of Optimal Design of Air Preheater s Corrugated Heating Elements using CFD

Automation of Optimal Design of Air Preheater s Corrugated Heating Elements using CFD Automation of Optimal Design of Air Preheater s Corrugated Heating Elements using CFD Mousumi Roy Former faculty, Department of Mechanical Engineering CVSR Engg. College, Hyderabad., Telangana state,india

More information

COMPUTATIONAL ANALYSIS TO MAXIMIZE THE HEAT TRANSFER RATE OF DOUBLE TUBE HELICAL COIL HEAT EXCHANGER

COMPUTATIONAL ANALYSIS TO MAXIMIZE THE HEAT TRANSFER RATE OF DOUBLE TUBE HELICAL COIL HEAT EXCHANGER COMPUTATIONAL ANALYSIS TO MAXIMIZE THE HEAT TRANSFER RATE OF DOUBLE TUBE HELICAL COIL HEAT EXCHANGER Ramesh Babu. T #1, Krishna Kishore.K #2, Nithin Kumar.P #3 # Mechanical Department, Narasaraopeta Engineering

More information

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine Alvin

More information

Efficiency Improvement in Shell and Tube Heat Exchanger Using CFD Tool

Efficiency Improvement in Shell and Tube Heat Exchanger Using CFD Tool Efficiency Improvement in Shell and Tube Heat Exchanger Using CFD Tool Mohan.K [1], Prakash.K [2], Sathya Samy.C [3] P.G Scholar, SNS College of Technology, Coimbatore, India [1][3] Assistant Professor,

More information

Design of Shell and Tube Type Heat Exchanger using CFD Tools

Design of Shell and Tube Type Heat Exchanger using CFD Tools IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 3 August 2017 ISSN (online): 2349-6010 Design of Shell and Tube Type Heat Exchanger using CFD Tools Devvrat Verma

More information

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate Malatesh Barki. 1, Ganesha T. 2, Dr. M. C. Math³ 1, 2, 3, Department of Thermal Power Engineering 1, 2, 3 VTU

More information

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr.

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr. ISSN 2277-2685 IJESR/May 2015/ Vol-5/Issue-5/352-356 Mohammed Mohsin Shkhair et. al./ International Journal of Engineering & Science Research SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER

More information

The Practical Uses of Computational Fluid Dynamics Not Just a Pretty Picture

The Practical Uses of Computational Fluid Dynamics Not Just a Pretty Picture The Practical Uses of Computational Fluid Dynamics Not Just a Pretty Picture Presenter: William Osley Company: CALGAVIN Ltd Email: william.osley@calgavin.com Page 1 Contents: Introduction Case Study 1:

More information

Chapter 7: Thermal Study of Transmission Gearbox

Chapter 7: Thermal Study of Transmission Gearbox Chapter 7: Thermal Study of Transmission Gearbox 7.1 Introduction The main objective of this chapter is to investigate the performance of automobile transmission gearbox under the influence of load, rotational

More information

CRITICAL ASSESSMENT OF LITERATURE IN THE FIELD OF ENHANCED HEAT TRANSFER TECHNIQUES

CRITICAL ASSESSMENT OF LITERATURE IN THE FIELD OF ENHANCED HEAT TRANSFER TECHNIQUES Int. J. Mech. Eng. & Rob. Res. 2015 Manuja Pandey, 2015 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 4, No. 2, April 2015 2015 IJMERR. All Rights Reserved CRITICAL ASSESSMENT OF LITERATURE IN THE

More information

An Experimental Study of Thermo-Hydraulic Performance of Modified Double Pipe Heat Exchanger Using Mesh Inserts

An Experimental Study of Thermo-Hydraulic Performance of Modified Double Pipe Heat Exchanger Using Mesh Inserts An Experimental Study of Thermo-Hydraulic Performance of Modified Double Pipe Heat Exchanger Using Mesh Inserts Prof.A.M.Patil 1, M.R.Todkar 2 Professor, Department of Mechanical Engineering, PVPIT, Budhgaon,

More information

THERMAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER

THERMAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 596 606, Article ID: IJMET_08_05_066 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtyp

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-772 Published BY AENSI Publication EISSN: 1998-19 http://www.aensiweb.com/anas 216 Special1(7): pages 69-74 Open Access Journal Enhancement Of Heat Transfer

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN ISSN 9-5518 970 College of Engineering Trivandrum Department of Mechanical Engineering arundanam@gmail.com, arjunjk91@gmail.com Abstract This paper investigates the performance of a shock tube with air

More information

CFD Analysis of Double Pipe Heat Exchanger with Twisted Tape Insert in Inner Pipe

CFD Analysis of Double Pipe Heat Exchanger with Twisted Tape Insert in Inner Pipe CFD Analysis of Double Pipe Heat Exchanger with Twisted Tape Insert in Inner Pipe 1 Hardik V Solanki, 2 Jignesh M Barot 1 M.E. Student, 2 Assistant Professor 1 Mechanical Engineering Department, 1 NMahatma

More information

Design and Fabrication of Shell and Tube Type Heat Exchanger and Performance Analysis

Design and Fabrication of Shell and Tube Type Heat Exchanger and Performance Analysis Design and Fabrication of Shell and Tube Type Heat Exchanger and Performance Analysis Tanveer Raza 1, Marooph Patel 2. 1 Student, Mechanical Engineering Department, SKN, tanveer.raza23@gmail.com 2 Student,

More information

NUMERICAL INVESTIGATION OF PISTON COOLING USING SINGLE CIRCULAR OIL JET IMPINGEMENT

NUMERICAL INVESTIGATION OF PISTON COOLING USING SINGLE CIRCULAR OIL JET IMPINGEMENT NUMERICAL INVESTIGATION OF PISTON COOLING USING SINGLE CIRCULAR OIL JET IMPINGEMENT BALAKRISHNAN RAJU, CFD ANALYSIS ENGINEER, TATA CONSULTANCY SERVICES LTD., BANGALORE ABSTRACT Thermal loading of piston

More information

Comparative Numerical Analysis of Straight and Conical Coil Heat Exchanger

Comparative Numerical Analysis of Straight and Conical Coil Heat Exchanger GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 11 October 2017 ISSN: 2455-5703 Comparative Numerical Analysis of Straight and Conical Coil Heat Exchanger Rajesh Satish

More information

EFFECT OF UNCONSTANT OVERALL HEAT TRANSFER COEFFICIENT ON THERMAL PERFORMANCES OF MULTIPLE ASSEMBLIES OF AUTOMOBILE RADIATORS

EFFECT OF UNCONSTANT OVERALL HEAT TRANSFER COEFFICIENT ON THERMAL PERFORMANCES OF MULTIPLE ASSEMBLIES OF AUTOMOBILE RADIATORS EFFECT OF UNCONSTANT OVERALL HEAT TRANSFER COEFFICIENT ON THERMAL PERFORMANCES OF MULTIPLE ASSEMBLIES OF AUTOMOBILE RADIATORS S. Vithayasai T.Kiatsiriroat Department of Mechanical Engineering, Chiang Mai

More information

REVIEW PAPER ON INVESTIGATION OF PERFOMANCE FOR SHELL AND TUBE HEAT EXCHANGER

REVIEW PAPER ON INVESTIGATION OF PERFOMANCE FOR SHELL AND TUBE HEAT EXCHANGER aerd Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 3, March -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 REVIEW

More information

Numerical Investigation of the Effect of Excess Air and Thermal Power Variation in a Liquid Fuelled Boiler

Numerical Investigation of the Effect of Excess Air and Thermal Power Variation in a Liquid Fuelled Boiler Proceedings of the World Congress on Momentum, Heat and Mass Transfer (MHMT 16) Prague, Czech Republic April 4 5, 2016 Paper No. CSP 105 DOI: 10.11159/csp16.105 Numerical Investigation of the Effect of

More information

Thermal Stress Analysis of Diesel Engine Piston

Thermal Stress Analysis of Diesel Engine Piston International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 576 Thermal Stress Analysis of Diesel Engine Piston B.R. Ramesh and Kishan

More information

Numerical Study on the Flow Characteristics of a Solenoid Valve for Industrial Applications

Numerical Study on the Flow Characteristics of a Solenoid Valve for Industrial Applications Numerical Study on the Flow Characteristics of a Solenoid Valve for Industrial Applications TAEWOO KIM 1, SULMIN YANG 2, SANGMO KANG 3 1,2,4 Mechanical Engineering Dong-A University 840 Hadan 2 Dong, Saha-Gu,

More information

CFD Integrated Optimum Design and Prototyping of Shell and Tube Heat Exchanger

CFD Integrated Optimum Design and Prototyping of Shell and Tube Heat Exchanger GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 4 March 2016 ISSN: 2455-5703 CFD Integrated Optimum Design and Prototyping of Shell and Tube Heat Exchanger S. Prabakaran

More information

Influence of Pressure Drop, Reynolds Number and Temperature in the Design of Double Pipe Heat Exchanger on Hot Fluid Side in Inner Pipe

Influence of Pressure Drop, Reynolds Number and Temperature in the Design of Double Pipe Heat Exchanger on Hot Fluid Side in Inner Pipe Influence of Pressure Drop, Reynolds Number and Temperature in the Design of Double Pipe Heat Exchanger on Hot Fluid Side in Inner Pipe V Lokesh Varma 1, Suresh Babu Koppula 2, Dr N.V.V.S.Sudheer 3 1 (Mechanical

More information

A comparative analysis to enhance the effectiveness of EGR coolers used in diesel engine

A comparative analysis to enhance the effectiveness of EGR coolers used in diesel engine A comparative analysis to enhance the effectiveness of EGR coolers used in diesel engine 1 Ibrahim Hussein Shah, 2 Bhupendra Singh, 1 Assistant Professor, 2 PG scholar, 1 Department of Mechanical Engineering,

More information

Investigation of Comparison of Three Different Tube Bundles of Heat Exchanger

Investigation of Comparison of Three Different Tube Bundles of Heat Exchanger Investigation of Comparison of Three Different Tube Bundles of Heat Exchanger D. Arun Kumar 1 R. Prabu ME. 2 1 (PG Scholar, Engineering Design of Mechanical PG department, Sri Krishna College of Technology,

More information

Thermal Analysis of Helical and Spiral Gear Train

Thermal Analysis of Helical and Spiral Gear Train International Journal for Ignited Minds (IJIMIINDS) Thermal Analysis of Helical and Spiral Gear Train Dr. D V Ghewade a, S S Nagarale b & A N Pandav c a Principal, Department of Mechanical, GENESIS, Top-Kolhapur,

More information

CONSTRUCTION AND ANALYSIS OF TUBE IN TUBE TYPE HEAT EXCHANGER

CONSTRUCTION AND ANALYSIS OF TUBE IN TUBE TYPE HEAT EXCHANGER CONSTRUCTION AND ANALYSIS OF TUBE IN TUBE TYPE HEAT EXCHANGER N. S. Panchal 1, O. V. Pathak 2, G. P. Chaudhari 3, A. H. Paulkar 4, Asst. Prof. B. M. Dusane 5 Department of mechanical engineering, Sandip

More information

Analysis to Determine Heat Transfer Using Twisted Tape Inserts In a Horizontal Tube

Analysis to Determine Heat Transfer Using Twisted Tape Inserts In a Horizontal Tube Analysis to Determine Heat Transfer Using Twisted Tape Inserts In a Horizontal Tube Suraj C Belagali M.Tech Student Department of Thermal Engineering Ellenki College of Engineering and Technology Telangana,

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 5, May -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Increase

More information

Numerical and Experimental Investigations of Heat Transfer in Double Pipe Heat Exchangers with Inner and Annular Twisted Tape

Numerical and Experimental Investigations of Heat Transfer in Double Pipe Heat Exchangers with Inner and Annular Twisted Tape IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Numerical and Experimental Investigations of Heat Transfer in Double Pipe Heat Exchangers

More information

Effect of Nanofluid on Friction Factor of Pipe and Pipe Fittings: Part I - Effect of Aluminum Oxide Nanofluid

Effect of Nanofluid on Friction Factor of Pipe and Pipe Fittings: Part I - Effect of Aluminum Oxide Nanofluid Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Effect

More information

NUMERICAL SIMULATION OF HELICAL COIL TUBE IN TUBE HEAT EXCHANGER WITH BAFFLES

NUMERICAL SIMULATION OF HELICAL COIL TUBE IN TUBE HEAT EXCHANGER WITH BAFFLES M tech thesis NUMERICAL SIMULATION OF HELICAL COIL TUBE IN TUBE HEAT EXCHANGER WITH BAFFLES A REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology In Thermal

More information

Experimental Analysis and Performance Characteristic Of Heat Transfer In Shell and Twisted Tube Heat Exchanger.

Experimental Analysis and Performance Characteristic Of Heat Transfer In Shell and Twisted Tube Heat Exchanger. Experimental Analysis and Performance Characteristic Of Heat Transfer In Shell and Twisted Tube Heat Exchanger. Nitesh B. Dahare 1, Dr. M. Basavaraj 2 1 Student,M.Tech. Heat Power Engineering, Dept.of

More information

HEAT TRANSFER ENHANCEMENT BY USING TWISTED TAPE INSERTS WITH CIRCULAR HOLES IN FORCED CONVECTION

HEAT TRANSFER ENHANCEMENT BY USING TWISTED TAPE INSERTS WITH CIRCULAR HOLES IN FORCED CONVECTION HEAT TRANSFER ENHANCEMENT BY USING TWISTED TAPE INSERTS WITH CIRCULAR HOLES IN FORCED CONVECTION Prof. Kurhade Anant Sidhappa Miss. Sonal S. Hande Mr. Swarup B. Patil Mr.Vivekanand R.Maske ABSTRACT In

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 5- Heat Exchanger Design Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Heat exchanger design vs rating of heat exchanger Heat exchanger general design procedure

More information

Design and experimental analysis of pipe in pipe heat exchanger

Design and experimental analysis of pipe in pipe heat exchanger International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Design and experimental analysis of pipe in pipe heat exchanger Ojha Pramod Kailash 1, Choudhary Bishwajeet NK 2, Gajera Umang B

More information

Abstract In this study the heat transfer characteristics inside a rectangular duct with circular, rectangular, drop

Abstract In this study the heat transfer characteristics inside a rectangular duct with circular, rectangular, drop International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 25 INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS IN A RECTNAGULAR CHANNEL WITH PERFORATED DROP SHAPED PIN FINS C.

More information

COLD PLATE SOFTWARE PROGRAM ANALYZES AIRCRAFT

COLD PLATE SOFTWARE PROGRAM ANALYZES AIRCRAFT COLD PLATE SOFTWARE PROGRAM ANALYZES AIRCRAFT DISPLAY T. Renaud Sanders, a Lockheed Martin Co. Nov, 2000 Introduction Finned heat exchangers, called cold plates, have been used for many years to cool military

More information

Experimental Investigation of Heat Transfer characteristics Enhancement through Grooved Tube

Experimental Investigation of Heat Transfer characteristics Enhancement through Grooved Tube International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347 5161 216 INPRESSCO, All Rights served Available at http://inpressco.com/category/ijcet search Article Experimental

More information

Investigation of converging slot-hole geometry for film cooling of gas turbine blades

Investigation of converging slot-hole geometry for film cooling of gas turbine blades Project Report 2010 MVK160 Heat and Mass Transport May 12, 2010, Lund, Sweden Investigation of converging slot-hole geometry for film cooling of gas turbine blades Tobias Pihlstrand Dept. of Energy Sciences,

More information

EXPERIMENTAL ANALYSIS AND PERFORMANCE CHARACTERISTIC OF HEAT TRANSFER IN SHELL AND TWISTED TUBE HEAT EXCHANGER

EXPERIMENTAL ANALYSIS AND PERFORMANCE CHARACTERISTIC OF HEAT TRANSFER IN SHELL AND TWISTED TUBE HEAT EXCHANGER International Journal of Emerging Technology and Innovative Engineering Volume 1, Issue 11, November 2015 (ISSN: 2394 6598) EXPERIMENTAL ANALYSIS AND PERFORMANCE CHARACTERISTIC OF HEAT TRANSFER IN SHELL

More information

FLOW AND HEAT TRANSFER ENHANCEMENT AROUND STAGGERED TUBES USING RECTANGULAR VORTEX GENERATORS

FLOW AND HEAT TRANSFER ENHANCEMENT AROUND STAGGERED TUBES USING RECTANGULAR VORTEX GENERATORS FLOW AND HEAT TRANSFER ENHANCEMENT AROUND STAGGERED TUBES USING RECTANGULAR VORTEX GENERATORS Prabowo, Melvin Emil S., Nanang R. and Rizki Anggiansyah Department of Mechanical Engineering, ITS Surabaya,

More information

Numerical Simulation on Erosion of Drain Valve Liangliang Xu1,a, Zhengdong Wang2,b, Xinhai Yu3,c, Cong Zeng4,d

Numerical Simulation on Erosion of Drain Valve Liangliang Xu1,a, Zhengdong Wang2,b, Xinhai Yu3,c, Cong Zeng4,d 3rd International Conference on Mechatronics and Information Technology (ICMIT 2016) Numerical Simulation on Erosion of Drain Valve Liangliang Xu1,a, Zhengdong Wang2,b, Xinhai Yu3,c, Cong Zeng4,d 1 2 3

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 8, August -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 CFD ANALYSIS

More information

Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune , Savitribai Phule Pune University, India

Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune , Savitribai Phule Pune University, India International Engineering search Journal International Engineering search Journal Heat Transfer Enhancement of System with Flow Divider Type Insert in a Circular Pipe Nikhil Phalle, S. R. Deodas Department

More information

ENHANCEMENT OF HEAT TRANSFER RATE AND REDUCTION OF SHELL SIDE PRESSURE DROP IN HELIX HEAT EXCHANGER WITH CONTINUOUS HELICAL BAFFLES

ENHANCEMENT OF HEAT TRANSFER RATE AND REDUCTION OF SHELL SIDE PRESSURE DROP IN HELIX HEAT EXCHANGER WITH CONTINUOUS HELICAL BAFFLES International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN 2249-6890 Vol. 3, Issue 2, Jun 2013, 47-56 TJPRC Pvt. Ltd. ENHANCEMENT OF HEAT TRANSFER RATE AND REDUCTION

More information

Effect of concave plug shape of a control valve on the fluid flow characteristics using computational fluid dynamics

Effect of concave plug shape of a control valve on the fluid flow characteristics using computational fluid dynamics Effect of concave plug shape of a control valve on the fluid flow characteristics using computational fluid dynamics Yasser Abdel Mohsen, Ashraf Sharara, Basiouny Elsouhily, Hassan Elgamal Mechanical Engineering

More information

CFD ANALYSIS OF FLUID FLOW AND HEAT TRANSFER IN A SINGLE TUBE-FIN ARRANGEMENT OF AN AUTOMOTIVE RADIATOR

CFD ANALYSIS OF FLUID FLOW AND HEAT TRANSFER IN A SINGLE TUBE-FIN ARRANGEMENT OF AN AUTOMOTIVE RADIATOR Proceedings of the International Conference on Mechanical Engineering 2005 (ICME2005) 28-30 December 2005, Dhaka, Bangladesh ICME05- CFD ANALYSIS OF FLUID FLOW AND HEAT TRANSFER IN A SINGLE TUBE-FIN ARRANGEMENT

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

DESIGN AND ANALYSIS OF CAR RADIATOR BY FINITE ELEMENT METHOD

DESIGN AND ANALYSIS OF CAR RADIATOR BY FINITE ELEMENT METHOD DESIGN AND ANALYSIS OF CAR RADIATOR BY FINITE ELEMENT METHOD Prof. V. C. Pathade 1, Sagar R. Satpute 2, Mayur G. Lajurkar 3, Gopal R. Pancheshwar 4 Tushar K. Karluke 5, Niranjan H. Singitvar 6 1 Assistant

More information

CFD Study to Enhance the Heat Transfer in Heat Exchanger by Change the Outer Surface of the Inner Tube and Use Nano Fluid

CFD Study to Enhance the Heat Transfer in Heat Exchanger by Change the Outer Surface of the Inner Tube and Use Nano Fluid Engineering Science 2017; 2(3): 58-68 http://www.sciencepublishinggroup.com/j/es doi: 10.11648/j.es.20170203.12 CFD Study to Enhance the Heat Transfer in Heat Exchanger by Change the Outer Surface of the

More information

DEVELOPMENT OF A 3D MODEL OF TUBE BUNDLE OF VVER REACTOR STEAM GENERATOR

DEVELOPMENT OF A 3D MODEL OF TUBE BUNDLE OF VVER REACTOR STEAM GENERATOR DEVELOPMENT OF A 3D MODEL OF TUBE BUNDLE OF VVER REACTOR STEAM GENERATOR V.F. Strizhov, M.A. Bykov, A.Ye. Kiselev A.V. Shishov, A.A. Krutikov, D.A. Posysaev, D.A. Mustafina IBRAE RAN, Moscow, Russia Abstract

More information

CFD ANALYSIS OF PRESSURE DROP CHARACTERISTICS OF BUTTERFLY AND DUAL PLATE CHECK VALVE

CFD ANALYSIS OF PRESSURE DROP CHARACTERISTICS OF BUTTERFLY AND DUAL PLATE CHECK VALVE CFD ANALYSIS OF PRESSURE DROP CHARACTERISTICS OF BUTTERFLY AND DUAL PLATE CHECK VALVE Adarsh K M 1, Dr. V Seshadri 2 and S. Mallikarjuna 3 1 M Tech Student Mechanical, MIT-Mysore 2 Professor (Emeritus),

More information

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE Chapter-5 EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE 5.1 Introduction The development of modern airfoil, for their use in wind turbines was initiated in the year 1980. The requirements

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 Special 11(6): pages 423-437 Open Access Journal Heat Transfer

More information

Performance Calculation of Vehicle Radiator Group using CFD

Performance Calculation of Vehicle Radiator Group using CFD Performance Calculation of Vehicle Radiator Group using CFD Mr.Sonu Thomas 1, Mr.V. Karthikeyan 2,Dr.G. Nallakumarasamy 3 1 PG Scholar, Department of Mechanical Engg, Excel Engineering College, Tamilnadu

More information

DESIGN OPTIMIZATION OF SHELL AND TUBE HEAT EXCHANGER FOR OIL COOLER BY COMSOL MULTIPHYSIS

DESIGN OPTIMIZATION OF SHELL AND TUBE HEAT EXCHANGER FOR OIL COOLER BY COMSOL MULTIPHYSIS DESIGN OPTIMIZATION OF SHELL AND TUBE HEAT EXCHANGER FOR OIL COOLER BY COMSOL MULTIPHYSIS 1 SU PON CHIT, 2 NYEIN AYE SAN, 3 MYAT MYAT SOE 1,2,3 Department of Mechanical Engineering, Mandalay Technological

More information

INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF CIRCULAR AND DIAMOND PILLARED VANE DISC BRAKE ROTOR USING CFD

INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF CIRCULAR AND DIAMOND PILLARED VANE DISC BRAKE ROTOR USING CFD SDRP JOURNAL OF NANOTECHNOLOGY & MATERIAL SCIENCE. INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF CIRCULAR AND DIAMOND PILLARED VANE DISC BRAKE ROTOR USING CFD Research AUTHOR: A.RAJESH JUNE 2017 1

More information

Visualization of Flow and Heat Transfer in Tube with Twisted Tape Consisting of Alternate Axis

Visualization of Flow and Heat Transfer in Tube with Twisted Tape Consisting of Alternate Axis 2012 4th International Conference on Computer Modeling and Simulation (ICCMS 2012) IPCSIT vol.22 (2012) (2012) IACSIT Press, Singapore Visualization of Flow and Heat Transfer in Tube with Twisted Tape

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 7 Heat Exchangers 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Introduction Simulation of Heat Exchangers Heat Exchanger Models

More information

Thermal Analysis Of Counter Flow Shell And Tube Heat Exchanger

Thermal Analysis Of Counter Flow Shell And Tube Heat Exchanger Thermal Analysis Of Counter Flow Shell And Tube Heat Exchanger Risal K K 1 Nikhil T C 4 Binto anto 7 Siril Sunny 2 Adarsh Shalish 5 Texo Jose 8 Assistant Professor Akshay V 3 Swamin P V 6 Abstract: Shell

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 2900 MIXER TO BE USED BY CNRL FOR BITUMEN VISCOSITY CONTROL Report R0. By Kimbal A.

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 2900 MIXER TO BE USED BY CNRL FOR BITUMEN VISCOSITY CONTROL Report R0. By Kimbal A. COMPUTATIONAL FLOW MODEL OF WESTFALL'S 2900 MIXER TO BE USED BY CNRL FOR BITUMEN VISCOSITY CONTROL Report 412509-1R0 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY May 2012 ALDEN RESEARCH

More information

International Engineering Research Journal Numerical Analysis of Heat Exchanger Tubes

International Engineering Research Journal Numerical Analysis of Heat Exchanger Tubes International Engineering Research Journal Numerical Analysis of Heat Exchanger Tubes Anita D. Patil 1, Dr. Rajendra K. Patil 2 1 Department of Mechanical Engineering,TSSM s Padmabhooshan Vasantdada Patil

More information