CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY

Size: px
Start display at page:

Download "CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY"

Transcription

1 135 CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY 6.1 INTRODUCTION Shock is often defined as a rapid transfer of energy to a mechanical system, which results in a significant increase in the stress, velocity, acceleration, or displacement within the system. The time in which the energy transfer takes place is usually related to the resonant frequency, or to the natural period of the system. Shock loads often excite many of the natural frequencies in a complex structure, which can produce four basic types of failures in electronic systems. These failures are due to (1) high stresses, which can cause fractures or permanent deformations in the structure; (2) high acceleration levels, which can cause relays to chatter, potentiometers to slip, and bolts to loosen; (3) high displacements, which can cause impact between adjacent circuit boards- cracking components and solder joints, breaking cables and harnesses; and (4) electrical malfunctions that occur during the shock but disappear when shock energy dissipates. Fatigue is usually not an important consideration in shock, unless a million or more stress cycles are involved. When less than a few thousand stress cycles are expected, fatigue stress concentrations are ignored because they do not have a great influence on how or when the structure will fail (Steinberg 2001). Isolation systems are often used to protect sensitive electronic equipment in severe shock environments. Care must be exercised to

2 136 allow sufficient sway space around the equipment to prevent impact against other surrounding structures. The objective of this chapter is to investigate the suitability of rubber spacers and rubber pads as vibration isolators to reduce the peak acceleration levels experienced by the PCB assemblies in a mechanical shock environment. 6.2 SPECIFYING THE SHOCK ENVIRONMENT Many different methods have been used to specify shock motion or its effects. The three most popular methods are (1) pulse shock, (2) velocity shock, and (3) shock response spectrum. Pulse shock deals with accelerations or displacements in the form of well-known shapes such as half sine wave, square wave, triangular wave and others (Figure 6.1). Pulse shocks are easy to work with because the mathematics is simple and convenient. However, pulse shocks do not represent the real world. The true shock environment is seldom a simple pulse. Figure 6.1 Shock pulse types

3 137 Velocity pulse is concerned with systems that experience a sudden velocity change, such as a falling package whose velocity abruptly goes to zero when the package strikes the ground. This is a common test called drop shock. Sometimes an inclined plane is used, where a package gains velocity as it slides down the plane and hits a rigid wall. The shock response spectrum deals with the way in which a structure responds to shock motions, rather than trying to describe the shock motion itself. The spectrum is a plot of peak acceleration response of an infinite number of single-degree-of-freedom systems to a complex transient wave form. The individual single-degree-of-freedom masses are usually specified as having a transmissibility of 10 when excited at their resonant frequency with a sinusoidal vibration. This method of analysis is more representative of a real world, but the mathematics is far more complex than the mathematics of the simple pulse. 6.3 RESPONSE OF PCBs TO SHOCK PULSES When PCBs are excited by shock pulses, they will respond by bending initially in the same direction as the pulse. When the pulse diminishes, the PCBs will then resonate at their own resonant frequencies, of which the fundamental, or lowest, resonant frequency is usually the most prominent. Sufficient clearances must be provided to account for tolerance accumulations in the thickness of the PCBs, the component sizes, component lead wire protrusions on the back side of PCBs, location tolerances, and possible displacement amplitudes of adjacent PCBs moving in opposite directions at the same time. It is important to keep the dynamic displacements low, so the dynamic stresses will be low and the chances for impact between adjacent PCBs will also be low.

4 138 Experience has shown that high shock acceleration levels can result in cracked solder joints and fracture lead wires on large or heavy electronic components. Large components such as transformers, DIPs, capacitors, and motors must be mounted very carefully to avoid failures in the support structures or in the mounting hardware. When large components are mounted on PCBs that exhibit large displacement amplitudes, the relative motion between the component body and the PCB can often produce high forces and stresses. The dynamic displacement Z 0 ( meters) of the PCB assembly due to shock loads may determined by using the Equation (6.1) Z * G f 2 n out (6.1) where, G out - Output acceleration f n - Natural frequency of the PCB assembly (Hz) Mechanical shock tests are usually conducted by using a free fall shock equipment, where the test vehicle is subjected to a very high acceleration level ( G). Usually the mechanical shock tests are conducted on free fall shock equipment, where the drop table carrying the test vehicle will be dropped from a certain height on to a strike surface and the response of the test vehicle is measured. But, quite often the electronic equipment are also subjected to a lower magnitudes of mechanical shock loads (up to 50G) when a vehicle moves over a small ditch or pot hole on the road. Therefore, in this thesis efforts are made to conduct mechanical shock tests on PCB assemblies using an electrodynamic shaker and classical shock software. The experimental procedure followed to conduct mechanical shock tests on DIP-PCB assembly using an electrodynamic shaker is explained in the following sections.

5 EXPERIMENTAL PROCEDURE Shock Tests on DIP-PCB Assembly Mounted on Plastic Spacers The printed circuit board many times experience light and moderate shock loads during transportation, handling, and accidental drops. The objective of the mechanical shock tests is to determine the response of PCB assembly when subjected to different magnitude of shock loads by mounting the PCB on plastic spacers, rubber spacers and rubber pads. An electrodynamic shaker is used to excite the PCB at desired shock loads. The overall size of the PCB used for the shock tests is 240 mm x 210 mm x 1.6 mm. A 16 pin DIP, is mounted at the centre of the PCB. The experimental setup for conducting the mechanical shock test is shown in Figure 6.2. The PCB assembly to be tested is mounted on an aluminum fixture using four plastic spacers placed at the corners of the PCB (encircled in Figure 6.2). The shock pulse used for the test is a half sine pulse which is mathematically defined by: G( t) Gin sin t T (6.2) where G(t) = Output acceleration at any instant of time t G in T = Input acceleration = Pulse duration (milliseconds) The half sine shock pulse was programmed using the classical shock software. The shock in terms of gravity units (G) is monitored and controlled by an accelerometer placed on the aluminum fixture in a closed loop. The response of the PCB assembly due to shock load is monitored using another accelerometer placed on the PCB (near the component). The

6 140 response of the PCB due to shock load is captured using the NI PXI-4472 data acquisition card and LabVIEW 8.2. The shock tests were conducted with peak acceleration levels of 20G, 25G, and 30G. The reason for not going beyond 30G of load is the limitations of the electrodynamic shaker. Accelerometers Fixture PCB Shaker Power Amplifier 4-Channel Signal Conditioner PC and Vibration Control Software Figure 6.2 Setup for conducting shock tests As mentioned earlier the shock pulse used for the shock tests is a half sine having pulse duration of 5 milliseconds and delay between two consecutive pulses was 800 milliseconds. A typical half-sine shock pulse as programmed using classical shock software is shown in Figure 6.3.

7 141 Figure 6.3 Typical half sine shock pulse The PCB assembly mounted on an aluminum fixture using plastic spacers placed at the four corners is excited in Z direction (perpendicular to the plane of PCB) at 20G shock. The output acceleration is measured by an accelerometer placed at the centre of the PCB. The response of the PCB assembly due to 20G shock load is as shown in Figure 6.4. From this Figure 6.4 it is seen that, the response acceleration (peak) experienced by the PCB assembly is 30G. The response also shows some disturbance at the peaks and this may be due to high transmissibility ratio. The response takes about 0.47 seconds to settle completely. The dynamic displacement of the PCB assembly determined by using Equation (6.1) is found to be 3.5 mm.

8 142 Figure 6.4 Response of the PCB mounted on plastic spacers due to 20G Similarly, the PCB responses due to 25G and 30G shock loads are shown in Figure 6.5 and 6.6 respectively. From Figure 6.6 it is seen that the peak output acceleration is 43G and it takes about 0.47 seconds to settle (oscillations to die out) completely. The peak response acceleration due to 30G load is found to be 60G and the PCB assembly takes about 0.46 seconds to settle completely. So, when PCB assembly is mounted on plastic spacers, the average time taken to settle is about 0.47 seconds. From the responses of the PCB assembly due to 20G, 25G and 30G shock loads it is observed that, the transmissibility ratio varies between 1.5 and 2. The shock transmissibility ratio will be reduced by making use of rubber spacers and their suitability as shock isolators will also be tested.

9 143 Figure 6.5 Response of the PCB mounted on plastic spacers due to 25G Figure 6.6 Response of the PCB mounted on plastic spacers due to 30G

10 Shock Tests on DIP-PCB Assembly Mounted on Rubber Spacers Form previous section it is seen that, the PCB assembly when mounted on plastic spacers experienced high transmissibility ratios. The electronic assemblies may fail early due to high transmissibility ratios and therefore it is necessary to reduce the transmissibility ratios using shock isolators. In this work, rubber spacers and rubber pads are used as shock isolators and their effectiveness to isolate shock loads is investigated. The shock tests were repeated by mounting the PCB assembly on rubber spacers (Figure 4.6, chapter 4) instead of plastic spacers. The peak acceleration response obtained due to an shock load of 20G, is shown in Figure 6.7. The response peak acceleration experienced by the PCB assembly is about 24G and the response dies out in 0.39 seconds. It may also be observed that the response of the PCB assembly is quite smooth compared to the response of PCB assembly to 20G and mounted on plastic spacers. This fact may be attributed to the damping mechanism introduced by the rubber spacers. The PCB assembly responses to the shock loads of 25G and 30G are shown in Figures 6.8 and 6.9 respectively. From these figures also it is observed that the PCB assembly response dies out in 0.38 seconds (average) which is 20% less than the time taken by the PCB assembly when mounted on plastic spacers. By mounting the PCB assembly on rubber spacers, the shock transmissibility due to different loads now lies between 1.2 and 1.5. The amplitudes of the peak response accelerations are also reduced due to the damping mechanism introduced by rubber spacers.

11 145 Figure 6.7 Response of the PCB mounted on rubber spacers due to 20G Figure 6.8 Response of the PCB mounted on rubber spacers due to 25G

12 146 Figure 6.9 Response of the PCB mounted on rubber spacers due to 30G The shock test results obtained by using plastic and rubber spacers are tabulated in Table 6.1 for comparison. From the responses of the PCB when mounted on rubber spacers, it is observed that, the peak response is smooth and the peak acceleration is reduced by 20% and displacement by 23% due to an acceleration of 20G. Similarly, the response accelerations (peak) due to higher shock loads are reduced to the tune of 33%. Thus, from the above data it is seen that, the rubber spacers may be effectively used as shock isolators to reduce the shock amplification, PCB deflection and improve the life of electronic assemblies.

13 147 Table 6.1 Comparison of shock test results Input Shock Level (G) Shock Response (G) Plastic Rubber Spacer Spacer PCB Displacement (mm) Plastic Rubber Spacer Spacer (20)* (23)* (33) (35) (35) (37) * Figures given within the bracket indicate percentage of reduction Shock Tests on DIP-PCB Assembly Mounted on Rubber Pads Now the DIP-PCB assembly is mounted on two rubber pads as shown in Figure 4.14 (chapter 4). The longer edges of the PCB are made to rest on the top faces of the two rubber pads and fastened to the fixture plate using fastening screws. Now the PCB assembly is subjected to mechanical shock loads of 20G, 25G and 30G. The response due to an of 20G is shown in Figure 6.10, and the peak output acceleration experienced by the PCB is 22.44G and it takes about 0.28 seconds to settle completely. Similarly, the peak output accelerations due to 25G and 30G are 25.52G (Figure 6.11) and 36.97G (Figure 6.12) respectively and again the time taken by the PCB to settle completely is found to be 0.28 seconds which is 26% less than the PCB mounted on rubber spacers. Decrease in the time taken by the PCB to come to equilibrium position indicates an increase in the damping ratio due to rubber pads. From these responses it is observed that, the peak output acceleration experienced

14 148 by the PCB is reduced by about 34% compared to the peak acceleration experienced when PCB was mounted on plastic spacers. Figure 6.10 Response of the PCB mounted on rubber pads due to 20G Figure 6.11 Response of the PCB mounted on rubber pads due to 25G

15 149 Figure 6.12 Response of the PCB mounted on rubber pads due to 30G A comparative statement of the shock test results conducted on DIP-PCB assembly using plastic spacers, rubber spacers and rubber pads is given in Table 6.2 and the same is represented with the help of the bar chart (Figure 6.13). Table 6.2 Comparison of shock test results of all PCB mounting methods Input Shock Level (G) Plastic Spacer Shock Response (G) Rubber Spacer Rubber pads (20)* (25)* (33) (41) (35) (38) * figures within bracket indicate percent of reduction with respect to plastic spacer data

16 150 Figure 6.13 Comparison of PCB responses 6.5 RESULTS AND DISCUSSIONS Mechanical shock tests were conducted on DIP-PCB assembly at shock loads of 20G, 25G, and 30G using an electrodynamic shaker. The half-sine pulse having pulse duration of 5 milliseconds was programmed using classical shock software. Experiments were conducted by mounting the PCB on four rubber spacers and the results are compared with the experimental results obtained by mounting PCB assembly on plastic spacers. Also, the longer edges of the PCB assembly were mounted on rubber pads and the responses were compared with those obtained by mounting PCB on rubber and plastic spacers. The peak acceleration experienced by the PCB mounted on rubber spacers due to 20G shock load was 24G, which is 20% less than the peak acceleration experienced by the PCB mounted on plastic spacers.

17 151 Similarly, the reduction in peak acceleration levels due to higher acceleration levels was found to be about 34% with the PCB mounted on rubber spacers (Table 6.1). The response of the PCB mounted on rubber pads showed that, the peak acceleration levels are reduced by 25%, 41% and 38% respectively due to 20G 25G, and 30G loads as shown in Table 6.2. The response of the PCB mounted on plastic spacers took 0.47 seconds to decay, whereas the responses of the PCB mounted on rubber spacers and rubber pads respectively took 0.38 seconds and 0.28 seconds indicating that, there is increase in the damping ratio of the system. Thus, from above discussion it can be concluded that the PCB assembly mounted on rubber spacers or rubber pads reduced the shock transmissibility due to which the system will experience less peak accelerations in a shock environment. Due to reduction in peak acceleration levels, the corresponding PCB deflection is reduced which will improve the life of the PCBs and components mounted on it.

Experimental Investigations on Board Level Electronic Packages Subjected to Sinusoidal Vibration Loads

Experimental Investigations on Board Level Electronic Packages Subjected to Sinusoidal Vibration Loads Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Experimental

More information

Chapter 4. Vehicle Testing

Chapter 4. Vehicle Testing Chapter 4 Vehicle Testing The purpose of this chapter is to describe the field testing of the controllable dampers on a Volvo VN heavy truck. The first part of this chapter describes the test vehicle used

More information

MECHANICAL EQUIPMENT. Engineering. Theory & Practice. Vibration & Rubber Engineering Solutions

MECHANICAL EQUIPMENT. Engineering. Theory & Practice. Vibration & Rubber Engineering Solutions MECHANICAL EQUIPMENT Engineering Theory & Practice Vibration & Rubber Engineering Solutions The characteristic of an anti-vibration mounting that mainly determines its efficiency as a device for storing

More information

CHAPTER 4: EXPERIMENTAL WORK 4-1

CHAPTER 4: EXPERIMENTAL WORK 4-1 CHAPTER 4: EXPERIMENTAL WORK 4-1 EXPERIMENTAL WORK 4.1 Preamble 4-2 4.2 Test setup 4-2 4.2.1 Experimental setup 4-2 4.2.2 Instrumentation, control and data acquisition 4-4 4.3 Hydro-pneumatic spring characterisation

More information

APS 420 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5

APS 420 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5 Long Stroke Shaker with Linear Ball Bearings Page 1 of 5 The APS 420 ELECTRO-SEIS shaker is a long stroke, electrodynamic force generator specifically designed to be used alone or in arrays for studying

More information

APS 400 ELECTRO-SEIS. Long Stroke Shaker Page 1 of 5. Applications. Features

APS 400 ELECTRO-SEIS. Long Stroke Shaker Page 1 of 5. Applications. Features Long Stroke Shaker Page 1 of 5 The APS 400 ELECTRO-SEIS is a force generator specifically designed to be used alone or in arrays for studying dynamic response characteristics of various structures. It

More information

APS 113 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5

APS 113 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5 Long Stroke Shaker with Linear Ball Bearings Page 1 of 5 The ELECTRO-SEIS shaker is a long stroke, electrodynamic force generator specifically designed to be used alone or in arrays for studying dynamic

More information

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF Sujithkumar M Sc C, V V Jagirdar Sc D and MW Trikande Sc G VRDE, Ahmednagar Maharashtra-414006,

More information

2. Write the expression for estimation of the natural frequency of free torsional vibration of a shaft. (N/D 15)

2. Write the expression for estimation of the natural frequency of free torsional vibration of a shaft. (N/D 15) ME 6505 DYNAMICS OF MACHINES Fifth Semester Mechanical Engineering (Regulations 2013) Unit III PART A 1. Write the mathematical expression for a free vibration system with viscous damping. (N/D 15) Viscous

More information

EFFECTIVE SOLUTIONS FOR SHOCK AND VIBRATION CONTROL

EFFECTIVE SOLUTIONS FOR SHOCK AND VIBRATION CONTROL EFFECTIVE SOLUTIONS FOR SHOCK AND VIBRATION CONTROL Part 1 Alan Klembczyk TAYLOR DEVICES, INC. North Tonawanda, NY Part 2 Herb LeKuch Shocktech / 901D Monsey, NY SAVIAC Tutorial 2009 Part 1 OUTLINE Introduction

More information

Appendix A: Motion Control Theory

Appendix A: Motion Control Theory Appendix A: Motion Control Theory Objectives The objectives for this appendix are as follows: Learn about valve step response. Show examples and terminology related to valve and system damping. Gain an

More information

Sulastic Rubber Springs

Sulastic Rubber Springs Sulastic Rubber Springs 2007 Toyota Tundra Sulastic Isolator Evaluation October 13, 2007 SPECTRUM Technologies, Inc. 12245 Wormer, Redford, MI 48239 Phone: 313-387-3000, Fax: 313-387-3095 Engineering Report

More information

Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals

Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals www.haopute.com email:info@haopute.com phone:02884625157 mobile:18982185717 An Ideal Tool for Optimizing

More information

FAILURE ANALYSIS & REDESIGN OF A BRAKE CALLIPER SUPPORT. Prof. A. Bracciali, Dr. F. Piccioli, T. De Cicco

FAILURE ANALYSIS & REDESIGN OF A BRAKE CALLIPER SUPPORT. Prof. A. Bracciali, Dr. F. Piccioli, T. De Cicco FAILURE ANALYSIS & REDESIGN OF A BRAKE CALLIPER SUPPORT Prof. A. Bracciali, Dr. F. Piccioli, T. De Cicco Dipartimento di Meccanica e Tecnologie Industriali Università di Firenze, via Santa Marta 3, 50139

More information

Rolling Element Bearing Acceptance and Life Testing (BAT) (UK Patent # GB )

Rolling Element Bearing Acceptance and Life Testing (BAT) (UK Patent # GB ) Rolling Element Bearing Acceptance and Life Testing (BAT) (UK Patent # GB 219584.) Prof. Dr. Ahmed Elkhatib Prof. of Machine Dynamics and Diagnostics Faculty of Engineering, Alexandria University, EGYPT

More information

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers U. Bin-Nun FLIR Systems Inc. Boston, MA 01862 ABSTRACT Cryocooler self induced vibration is a major consideration in the design of IR

More information

Passive Vibration Reduction with Silicone Springs and Dynamic Absorber

Passive Vibration Reduction with Silicone Springs and Dynamic Absorber Available online at www.sciencedirect.com Physics Procedia 19 (2011 ) 431 435 International Conference on Optics in Precision Engineering and Nanotechnology 2011 Passive Vibration Reduction with Silicone

More information

test with confidence HV Series TM Test Systems Hydraulic Vibration

test with confidence HV Series TM Test Systems Hydraulic Vibration test with confidence HV Series TM Test Systems Hydraulic Vibration Experience. Technology. Value. The Difference. HV Series TM. The Difference. Our philosophy is simple. Provide a system designed for optimum

More information

Linear Shaft Motors in Parallel Applications

Linear Shaft Motors in Parallel Applications Linear Shaft Motors in Parallel Applications Nippon Pulse s Linear Shaft Motor (LSM) has been successfully used in parallel motor applications. Parallel applications are ones in which there are two or

More information

IMPACT REGISTER, INC. PRECISION BUILT RECORDERS SINCE 1914

IMPACT REGISTER, INC. PRECISION BUILT RECORDERS SINCE 1914 IMPACT REGISTER, INC. PRECISION BUILT RECORDERS SINCE 1914 RM-3WE (THREE WAY) ACCELEROMETER GENERAL The RM-3WE accelerometer measures and permanently records, for periods of 30, 60, and 90 days, the magnitude,

More information

Universal Vibration Apparatus

Universal Vibration Apparatus Universal Vibration Apparatus HVT12 Modular design means additional options can be acquired as and when budgets permit Uses non-contacting devices - LVDT and a proximity sensor to minimise unnecessary

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

95/115D 65/ HSX20. Shock Test Systems

95/115D 65/ HSX20. Shock Test Systems Mechanical shock tests accurately measure the fragility of products and evaluate how they respond to particular shock inputs. Shock test data is key information to ensure any product is capable of withstanding

More information

Storvik HAL Compactor

Storvik HAL Compactor Storvik HAL Compactor Gunnar T. Gravem 1, Amund Bjerkholt 2, Dag Herman Andersen 3 1. Position, Senior Vice President, Storvik AS, Sunndalsoera, Norway 2. Position, Managing Director, Heggset Engineering

More information

Driven Damped Harmonic Oscillations

Driven Damped Harmonic Oscillations Driven Damped Harmonic Oscillations Page 1 of 8 EQUIPMENT Driven Damped Harmonic Oscillations 2 Rotary Motion Sensors CI-6538 1 Mechanical Oscillator/Driver ME-8750 1 Chaos Accessory CI-6689A 1 Large Rod

More information

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics Tanmay P. Dobhada Tushar S. Dhaspatil Prof. S S Hirmukhe Mauli P. Khapale Abstract: A shock absorber is

More information

Damping Assessment for Crankshaft Design to Reduce the High Vibrations

Damping Assessment for Crankshaft Design to Reduce the High Vibrations International Journal for Ignited Minds (IJIMIINDS) Damping Assessment for Crankshaft Design to Reduce the High Vibrations Darshak T R a, Shivappa H A b & Preethi K c a PG Student, Dept of Mechanical Engineering,

More information

Introduction to Vibration & Pulsation in Reciprocating Compressors

Introduction to Vibration & Pulsation in Reciprocating Compressors Introduction to Vibration & Pulsation in Reciprocating Compressors Shelley D. Greenfield, P.Eng. Vice President, Design Services sgreenfield@betamachinery.com Luis de la Roche Operations Manager ldelaroche@betamachinery.com

More information

GatesFacts Technical Information Library Gates Compass Power Transmission CD-ROM version 1.2 The Gates Rubber Company Denver, Colorado USA

GatesFacts Technical Information Library Gates Compass Power Transmission CD-ROM version 1.2 The Gates Rubber Company Denver, Colorado USA SELECTING SYNCHRONOUS BELTS FOR PRECISE POSITIONING A W Wallin Power Transmission Design February, 1989 Synchronous belts are well known for precise positioning. However, some precision applications require

More information

Sport Shieldz Skull Cap Evaluation EBB 4/22/2016

Sport Shieldz Skull Cap Evaluation EBB 4/22/2016 Summary A single sample of the Sport Shieldz Skull Cap was tested to determine what additional protective benefit might result from wearing it under a current motorcycle helmet. A series of impacts were

More information

Study on Mechanism of Impact Noise on Steering Gear While Turning Steering Wheel in Opposite Directions

Study on Mechanism of Impact Noise on Steering Gear While Turning Steering Wheel in Opposite Directions Study on Mechanism of Impact Noise on Steering Gear While Turning Steering Wheel in Opposite Directions Jeong-Tae Kim 1 ; Jong Wha Lee 2 ; Sun Mok Lee 3 ; Taewhwi Lee 4 ; Woong-Gi Kim 5 1 Hyundai Mobis,

More information

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS Objective Describe the necessary conditions for motor and generator operation. Calculate the force on a conductor carrying current in the presence of the

More information

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT Antti MAKELA, Jouni MATTILA, Mikko SIUKO, Matti VILENIUS Institute of Hydraulics and Automation, Tampere University of Technology P.O.Box

More information

PRECISION BELLOWS COUPLINGS

PRECISION BELLOWS COUPLINGS PRECISION BELLOWS COUPLINGS Bellows couplings are used where precise rotation, high speeds, and dynamic motion must be transmitted. They exhibit zero backlash and a high level of torsional stiffness, offering

More information

Procedia Engineering 00 (2009) Mountain bike wheel endurance testing and modeling. Robin C. Redfield a,*, Cory Sutela b

Procedia Engineering 00 (2009) Mountain bike wheel endurance testing and modeling. Robin C. Redfield a,*, Cory Sutela b Procedia Engineering (29) Procedia Engineering www.elsevier.com/locate/procedia 9 th Conference of the International Sports Engineering Association (ISEA) Mountain bike wheel endurance testing and modeling

More information

Air Bearing Shaker for Precision Calibration of Accelerometers

Air Bearing Shaker for Precision Calibration of Accelerometers Air Bearing Shaker for Precision Calibration of Accelerometers NOMENCLATURE Jeffrey Dosch PCB Piezotronics 3425 Walden Avenue, Depew NY DUT Device Under Test S B DUT sensitivity to magnetic field [(m/sec

More information

Damping Loss Factor for Damping Materials for Continuous Structures

Damping Loss Factor for Damping Materials for Continuous Structures Damping Loss Factor for Damping Materials for Continuous Structures P. H. Mathuria and U. P. Kulkarni mathuria@usa.net unmeshkulkarni@mailcity.com ABSTRACT The half power bandwidth method is used for measuring

More information

CHAPTER 1 BALANCING BALANCING OF ROTATING MASSES

CHAPTER 1 BALANCING BALANCING OF ROTATING MASSES CHAPTER 1 BALANCING Dynamics of Machinery ( 2161901) 1. Attempt the following questions. I. Need of balancing II. Primary unbalanced force in reciprocating engine. III. Explain clearly the terms static

More information

Semi-Active Suspension for an Automobile

Semi-Active Suspension for an Automobile Semi-Active Suspension for an Automobile Pavan Kumar.G 1 Mechanical Engineering PESIT Bangalore, India M. Sambasiva Rao 2 Mechanical Engineering PESIT Bangalore, India Abstract Handling characteristics

More information

Dynamic Modeling of a Poppet Valve for use in a Rotating Spool Compressor

Dynamic Modeling of a Poppet Valve for use in a Rotating Spool Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Dynamic Modeling of a Poppet Valve for use in a Rotating Spool Compressor Nathaniel

More information

1) The locomotives are distributed, but the power is not distributed independently.

1) The locomotives are distributed, but the power is not distributed independently. Chapter 1 Introduction 1.1 Background The railway is believed to be the most economical among all transportation means, especially for the transportation of mineral resources. In South Africa, most mines

More information

Active Control of Sheet Motion for a Hot-Dip Galvanizing Line. Dr. Stuart J. Shelley Dr. Thomas D. Sharp Mr. Ronald C. Merkel

Active Control of Sheet Motion for a Hot-Dip Galvanizing Line. Dr. Stuart J. Shelley Dr. Thomas D. Sharp Mr. Ronald C. Merkel Active Control of Sheet Motion for a Hot-Dip Galvanizing Line Dr. Stuart J. Shelley Dr. Thomas D. Sharp Mr. Ronald C. Merkel Sheet Dynamics, Ltd. 1776 Mentor Avenue, Suite 17 Cincinnati, Ohio 45242 Active

More information

VALMONT MITIGATOR TR1

VALMONT MITIGATOR TR1 VALMONT MITIGATOR TR1 Research Verification of the Valmont TR1 Damper Performance MITIGATOR TR1 VIBRATION DAMPER The Valmont TR1 damper has been specifically designed using vibration theory and innovative

More information

Design and Analysis of suspension system components

Design and Analysis of suspension system components Design and Analysis of suspension system components Manohar Gade 1, Rayees Shaikh 2, Deepak Bijamwar 3, Shubham Jambale 4, Vikram Kulkarni 5 1 Student, Department of Mechanical Engineering, D Y Patil college

More information

Application of Steering Robot in the Test of Vehicle Dynamic Characteristics

Application of Steering Robot in the Test of Vehicle Dynamic Characteristics 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2) Application of Steering Robot in the Test of Vehicle Dynamic Characteristics Runqing Guo,a *, Zhaojuan Jiang 2,b and Lin

More information

An Introduction to Fatigue Testing Equipment, Test Setup & Data Collection

An Introduction to Fatigue Testing Equipment, Test Setup & Data Collection An Introduction to Fatigue Testing Equipment, Test Setup & Data Collection Lisa Goodwin Servohydraulic Sales Specialist & Market Manager - Instron The difference is measurable 1 Themes.. Certainty of Measurement

More information

Review on Handling Characteristics of Road Vehicles

Review on Handling Characteristics of Road Vehicles RESEARCH ARTICLE OPEN ACCESS Review on Handling Characteristics of Road Vehicles D. A. Panke 1*, N. H. Ambhore 2, R. N. Marathe 3 1 Post Graduate Student, Department of Mechanical Engineering, Vishwakarma

More information

A Comparison of the Effectiveness of Elastomeric Tuned Mass Dampers and Particle Dampers

A Comparison of the Effectiveness of Elastomeric Tuned Mass Dampers and Particle Dampers 003-01-1419 A Comparison of the Effectiveness of Elastomeric Tuned Mass Dampers and Particle Dampers Copyright 001 Society of Automotive Engineers, Inc. Allan C. Aubert Edward R. Green, Ph.D. Gregory Z.

More information

STRUCTURAL BEHAVIOUR OF 5000 kn DAMPER

STRUCTURAL BEHAVIOUR OF 5000 kn DAMPER STRUCTURAL BEHAVIOUR OF 5000 kn DAMPER I.H. Mualla Dr. Eng. CTO of DAMPTECH A/S E.D. Jakupsson Dept. of Civil Engineering, Technical University of Denmark L.O. Nielsen Professor, Dept. of Civil Engineering,

More information

Dynamics of Machines. Prof. Amitabha Ghosh. Department of Mechanical Engineering. Indian Institute of Technology, Kanpur. Module No.

Dynamics of Machines. Prof. Amitabha Ghosh. Department of Mechanical Engineering. Indian Institute of Technology, Kanpur. Module No. Dynamics of Machines Prof. Amitabha Ghosh Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module No. # 04 Lecture No. # 03 In-Line Engine Balancing In the last session, you

More information

IDENTIFYING DISC COUPLING FAILURES COUPLING FUNDAMENTALS

IDENTIFYING DISC COUPLING FAILURES COUPLING FUNDAMENTALS IDENTIFYING DISC COUPLING FAILURES While couplings are designed for infinite life, they must be operated within their intended design limits in order to achieve optimal performance. Due to installation

More information

R35 GTR VR38 ALPHA DAMPER

R35 GTR VR38 ALPHA DAMPER R35 GTR VR38 ALPHA DAMPER a single piece damper moving the overhung weight of the rubber absorber behind and inside the OEM sized belt ribs. The Fluidampr design is approximately 9.75lbs., The OEM part

More information

SHOCK ABSORBER/DAMPER TESTING MACHINE

SHOCK ABSORBER/DAMPER TESTING MACHINE SHOCK ABSORBER/DAMPER TESTING MACHINE Dampening force of a shock absorber is directly proportional to velocity and this parameter needs to be precisely controlled. A small variation of 1mm in a stroke

More information

Dynamic Response Assessment and Design Optimization of Aircraft Tyre Pressure Monitoring Unit (TPMU) Akshay B G 1 Dr. B M Nandeeshaiah 2

Dynamic Response Assessment and Design Optimization of Aircraft Tyre Pressure Monitoring Unit (TPMU) Akshay B G 1 Dr. B M Nandeeshaiah 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 09, 2015 ISSN (online): 2321-0613 Dynamic Response Assessment and Design Optimization of Aircraft Tyre Pressure Monitoring

More information

USING STANDARD ISOLATORS TO CONTROL UNWANTED MACHINE VIBRATION

USING STANDARD ISOLATORS TO CONTROL UNWANTED MACHINE VIBRATION USING STANDARD ISOLATORS TO CONTROL UNWANTED MACHINE VIBRATION From small medical pumps to large diesel engines, vibration is unavoidable and dangerous if left unchecked in rotating and oscillating machinery.

More information

Chapter 2. Background

Chapter 2. Background Chapter 2 Background The purpose of this chapter is to provide the necessary background for this research. This chapter will first discuss the tradeoffs associated with typical passive single-degreeof-freedom

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer

More information

Chapter 15. Inertia Forces in Reciprocating Parts

Chapter 15. Inertia Forces in Reciprocating Parts Chapter 15 Inertia Forces in Reciprocating Parts 2 Approximate Analytical Method for Velocity & Acceleration of the Piston n = Ratio of length of ConRod to radius of crank = l/r 3 Approximate Analytical

More information

Non-Contact Sensor Performance Report

Non-Contact Sensor Performance Report Non-Contact Sensor Performance Report Abstract The 30mm non-contact sensor (Encoder) was subjected to a variety of tests outside of the recommended usage parameters. The separation distance, planar tilt,

More information

A CASE STUDY OF A FLOW-INDUCED TORSIONAL RESONANCE

A CASE STUDY OF A FLOW-INDUCED TORSIONAL RESONANCE A CASE STUDY OF A FLOW-INDUCED TORSIONAL RESONANCE William F. Eckert, P.Eng., Ph.D. Field Services Manager Brian C. Howes, M.Sc., P.Eng. Chief Engineer Beta Machinery Analysis Ltd., Calgary, AB, Canada,

More information

Seismic-upgrading of Existing Stacks of Nuclear Power Station using Structural Control Oil Dampers

Seismic-upgrading of Existing Stacks of Nuclear Power Station using Structural Control Oil Dampers October 12-17, 28, Beijing, China ABSTRACT : Seismic-upgrading of Existing Stacks of Nuclear Power Station using Structural Control Oil Dampers Ryu Shimamoto 1, Fukashi Mori 2, Tomonori Kitaori 2, Satoru

More information

Test report No.: VU

Test report No.: VU Department of Environmental / Vibration Engineering Test report No.: 2017-0277-VU Date of test: June - July 2017 Testers: No. of pages: 13 Applicant/ manufacturer: Test specimens: Test procedures / bases:

More information

a. Open the Lab 2 VI file in Labview. Make sure the Graph Type is set to Displacement (one of the 3 tabs in the graphing window).

a. Open the Lab 2 VI file in Labview. Make sure the Graph Type is set to Displacement (one of the 3 tabs in the graphing window). Lab #2 Free Vibration (Experiment) Name: Date: Section / Group: Part I. Displacement Preliminaries: a. Open the Lab 2 VI file in Labview. Make sure the Graph Type is set to Displacement (one of the 3 tabs

More information

NVH ANALYSIS AND MEASUREMENT CORRELATION OF ELECTRICAL STARTER MOTOR FOR AUTOMOTIVE VEHICLES

NVH ANALYSIS AND MEASUREMENT CORRELATION OF ELECTRICAL STARTER MOTOR FOR AUTOMOTIVE VEHICLES NVH ANALYSIS AND MEASUREMENT CORRELATION OF ELECTRICAL STARTER MOTOR FOR AUTOMOTIVE VEHICLES 1 VARATHARAJ NEELAKANDAN, 2 THULASIRAJAN GNAESAN, 3 PRAVEEN CHACKRAPANI RAO 1,2,3 Comstar Automotive Technologies

More information

Dynamic characteristics of railway concrete sleepers using impact excitation techniques and model analysis

Dynamic characteristics of railway concrete sleepers using impact excitation techniques and model analysis Dynamic characteristics of railway concrete sleepers using impact excitation techniques and model analysis Akira Aikawa *, Fumihiro Urakawa *, Kazuhisa Abe **, Akira Namura * * Railway Technical Research

More information

Modeling of Engine Block and Driveline Vibration as Affected by Combustion

Modeling of Engine Block and Driveline Vibration as Affected by Combustion Modeling of Engine Block and Driveline Vibration as Affected by Combustion Gamma Technologies, Inc 2002 GT-SUITE User Conference October 2002 Introduction Engine is suspended in the vehicle frame on several

More information

Metal forming machines: a new market for laser interferometers O. Beltrami STANIMUC Ente Federate UNI, via A. Vespucci 8, Tbrmo,

Metal forming machines: a new market for laser interferometers O. Beltrami STANIMUC Ente Federate UNI, via A. Vespucci 8, Tbrmo, Metal forming machines: a new market for laser interferometers O. Beltrami STANIMUC Ente Federate UNI, via A. Vespucci 8, Tbrmo, Abstract Laser interferometers have traditionally been a synonymous of very

More information

Chapter 15. Inertia Forces in Reciprocating Parts

Chapter 15. Inertia Forces in Reciprocating Parts Chapter 15 Inertia Forces in Reciprocating Parts 2 Approximate Analytical Method for Velocity and Acceleration of the Piston n = Ratio of length of ConRod to radius of crank = l/r 3 Approximate Analytical

More information

Comparing different vibration tests proposed for li-ion batteries with vibration measurement in an electric vehicle

Comparing different vibration tests proposed for li-ion batteries with vibration measurement in an electric vehicle Comparing different vibration tests proposed for li-ion batteries with vibration measurement in an electric vehicle Presentation at EVS27 Barcelona, Spain, November 19, 2013 Gunnar Kjell 1, Jenny Frodelius

More information

TECHNICAL GUIDE FOR PROXIMITY SENSORS DEFINITIONS YAMATAKE PROXIMITY SENSOR CATEGORIES

TECHNICAL GUIDE FOR PROXIMITY SENSORS DEFINITIONS YAMATAKE PROXIMITY SENSOR CATEGORIES TECHNICAL GUIDE FOR PROXIMITY SENSORS DEFINITIONS "" includes all sensors that detect the presence of a metallic object approaching the sensing face or near the sensing face without mechanical contact.

More information

Driven Damped Harmonic Oscillations

Driven Damped Harmonic Oscillations Driven Damped Harmonic Oscillations EQUIPMENT INCLUDED: Rotary Motion Sensors CI-6538 1 Mechanical Oscillator/Driver ME-8750 1 Chaos Accessory CI-6689A 1 Large Rod Stand ME-8735 10-cm Long Steel Rods ME-8741

More information

INSTRUCTION MANUAL ELECTRO-SEIS MODEL 113 SHAKER. Serial Number. Systems for Generating Controlled Vibration

INSTRUCTION MANUAL ELECTRO-SEIS MODEL 113 SHAKER. Serial Number. Systems for Generating Controlled Vibration APS INSTRUCTION MANUAL ELECTRO-SEIS MODEL 113 SHAKER Serial Number Systems for Generating Controlled Vibration 5731 Palmer Way, Suite A, Carlsbad, CA 92008 USA (760) 438-4848 FAX (760) 438-8845 apsdynamics@att.net

More information

25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD

25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD 25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD OBJECT The object of this experiment is to use the Bainbridge method to determine the electron chargeto-mass ratio. DESCRIPTION OF APPARATUS

More information

The Mark Ortiz Automotive

The Mark Ortiz Automotive July 2004 WELCOME Mark Ortiz Automotive is a chassis consulting service primarily serving oval track and road racers. This newsletter is a free service intended to benefit racers and enthusiasts by offering

More information

ME scope Application Note 29 FEA Model Updating of an Aluminum Plate

ME scope Application Note 29 FEA Model Updating of an Aluminum Plate ME scope Application Note 29 FEA Model Updating of an Aluminum Plate NOTE: You must have a package with the VES-4500 Multi-Reference Modal Analysis and VES-8000 FEA Model Updating options enabled to reproduce

More information

CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM

CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM 61 CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM 3.1 INTRODUCTION The modeling of the real time system with STATCOM using MiPower simulation software is presented in this

More information

PULSE ROAD TEST FOR EVALUATING HANDLING CHARACTERISTICS OF A THREE-WHEELED MOTOR VEHICLE

PULSE ROAD TEST FOR EVALUATING HANDLING CHARACTERISTICS OF A THREE-WHEELED MOTOR VEHICLE Int. J. Mech. Eng. & Rob. Res. 2014 Sudheer Kumar and V K Goel, 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Special Issue, Vol. 1, No. 1, January 2014 National Conference on Recent Advances in Mechanical

More information

EMaSM. Analysis of system response

EMaSM. Analysis of system response EMaSM Analysis of system response Introduction: Analyse engineering system responses and corrective actions required to allow an engineering system to operate within its normal range. Control principles

More information

Friction and Vibration Characteristics of Pneumatic Cylinder

Friction and Vibration Characteristics of Pneumatic Cylinder The 3rd International Conference on Design Engineering and Science, ICDES 214 Pilsen, Czech Republic, August 31 September 3, 214 Friction and Vibration Characteristics of Pneumatic Cylinder Yasunori WAKASAWA*

More information

BELT-DRIVEN ALTERNATORS

BELT-DRIVEN ALTERNATORS CHAPTER 13 BELT-DRIVEN ALTERNATORS INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy using the principle of magnetic induction. This principle is based on the

More information

A Grinding Solution. By John Donkers

A Grinding Solution. By John Donkers A Grinding Solution A customer had a problem using their existing gears in a new application. Ontario Drive & Gear provided the solution. Here s how they did it. By John Donkers A company approached Ontario

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 4, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 4, 2011 Numerical modal analysis of Howell Bunger valve using FEM method Farid Vakili Tahami, Mohammad Zehsaz, Mohammad Ali Saeimi Sadigh, Amin Paykani Department of Mechanical Engineering, University of Tabriz,

More information

BY: Paul Behnke ITT Industries, Industrial Process. Juan Gamarra Mechanical Solutions, Inc.

BY: Paul Behnke ITT Industries, Industrial Process. Juan Gamarra Mechanical Solutions, Inc. DRIVE SHAFT FAILURE ANALYSIS ON A MULTISTAGE VERTICAL TURBINE PUMP IN RIVER WATER SUPPLY SERVICE IN A NICKEL AND COBALT MINE IN I MADAGASCAR -BASED ON ODS AND FEA Juan Gamarra Mechanical Solutions, Inc.

More information

Development and validation of a vibration model for a complete vehicle

Development and validation of a vibration model for a complete vehicle Development and validation of a vibration for a complete vehicle J.W.L.H. Maas DCT 27.131 External Traineeship (MW Group) Supervisors: M.Sc. O. Handrick (MW Group) Dipl.-Ing. H. Schneeweiss (MW Group)

More information

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo Your name Lab section 1. What do you investigate in this lab? 2. In a dynamo, the coil is wound with N=100 turns of wire and has an area A=0.0001 m 2. The

More information

Vibration Analysis of an All-Terrain Vehicle

Vibration Analysis of an All-Terrain Vehicle Vibration Analysis of an All-Terrain Vehicle Neeraj Patel, Tarun Gupta B.Tech, Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, India. Abstract - Good NVH is

More information

ACOCAR active suspension

ACOCAR active suspension ACOCAR active suspension Bert Vandersmissen Vehicle Dynamics Expo Stuttgart, 07/05/2008 Contents Introduction Active suspension hardware Quarter car test rig Skyhook quarter car control Experimental skyhook

More information

Appendix B. Chapter 11. by Resonance

Appendix B. Chapter 11. by Resonance Appendix B. Chapter 11. Fan Housing Vibration Caused by Resonance Application of Modal & Vibration Analysis Ken Singleton KSC Consulting LLC Background Four FD fans were installed at the site to meet environmental

More information

TEST METHODS CONCERNING TRANSPORT EQUIPMENT

TEST METHODS CONCERNING TRANSPORT EQUIPMENT PART IV TEST METHODS CONCERNING TRANSPORT EQUIPMENT - 403 - CONTENTS OF PART IV Section Page 40. INTRODUCTION TO PART IV... 407 40.1 PURPOSE... 407 40.2 SCOPE... 407 41. DYNAMIC LONGITUDINAL IMPACT TEST

More information

Determination of Spring Modulus for Several Types of Elastomeric Materials (O-rings) and Establishment of an Open Database For Seals*

Determination of Spring Modulus for Several Types of Elastomeric Materials (O-rings) and Establishment of an Open Database For Seals* Determination of Spring Modulus for Several Types of Elastomeric Materials (O-rings) and Establishment of an Open Database For Seals* W. M. McMurtry and G. F. Hohnstreiter Sandia National Laboratories,

More information

GLOSSARY. Air Actuator

GLOSSARY. Air Actuator GLOSSARY A Air Actuator A device which induces action or motion with compressed air being the medium through which the power is transmitted, similar in function to a hydraulic cylinder. Air Spring Assembly

More information

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System Sensors & Transducers 204 by IFSA Publishing, S. L. http://www.sensorsportal.com The Application of Simulink for Vibration Simulation of Suspension Dual-mass System Gao Fei, 2 Qu Xiao Fei, 2 Zheng Pei

More information

Bistable Rotary Solenoid

Bistable Rotary Solenoid Bistable Rotary Solenoid The bistable rotary solenoid changes state with the application of a momentary pulse of electricity, and then remains in the changed state without power applied until a further

More information

Brüel & Kjær and LDS The Perfect Match SHORT FORM CATALOGUE

Brüel & Kjær and LDS The Perfect Match SHORT FORM CATALOGUE Brüel & Kjær and LDS The Perfect Match SHORT FORM CATALOGUE 4 Aerospace For any aircraft, helicopter, space vehicle or ballistic device, reliability is the number one priority. By using our vibration test

More information

Fault Diagnosis of Lakvijaya Power Plant: A Case Study of an Anti-Rotational Pin Failure

Fault Diagnosis of Lakvijaya Power Plant: A Case Study of an Anti-Rotational Pin Failure Journal of Engineering and Technology of the Open University of Sri Lanka (JET-OUSL), Vol. 4, No.1, 2016 Fault Diagnosis of Lakvijaya Power Plant: A Case Study of an Anti-Rotational Pin Failure N.C Tantrigoda

More information

Skid against Curb simulation using Abaqus/Explicit

Skid against Curb simulation using Abaqus/Explicit Visit the SIMULIA Resource Center for more customer examples. Skid against Curb simulation using Abaqus/Explicit Dipl.-Ing. A. Lepold (FORD), Dipl.-Ing. T. Kroschwald (TECOSIM) Abstract: Skid a full vehicle

More information

Designing for Quiet, Vibration-Free Operation

Designing for Quiet, Vibration-Free Operation Designing for Quiet, Vibration-Free Operation By Neil Plesner Market Development Manager E-A-R Indianapolis, Indiana DESIGNING FOR QUIET, VIBRATION-FREE OPERATION A common problem associated with many

More information

R10 Set No: 1 ''' ' '' '' '' Code No: R31033

R10 Set No: 1 ''' ' '' '' '' Code No: R31033 R10 Set No: 1 III B.Tech. I Semester Regular and Supplementary Examinations, December - 2013 DYNAMICS OF MACHINERY (Common to Mechanical Engineering and Automobile Engineering) Time: 3 Hours Max Marks:

More information

I. Tire Heat Generation and Transfer:

I. Tire Heat Generation and Transfer: Caleb Holloway - Owner calebh@izzeracing.com +1 (443) 765 7685 I. Tire Heat Generation and Transfer: It is important to first understand how heat is generated within a tire and how that heat is transferred

More information

Engine Mounts and its Design Considerations

Engine Mounts and its Design Considerations Engine Mounts and its Design Considerations Atul Adhau Prof V Kumar, PG Scholar, Dept of Mechanical Engineering, Prof Mech Engg AISSMSCOE Pune AISSMSCOE, Pune University... Pune University Abstract The

More information