International Journal of Engineering & Science Research

Size: px
Start display at page:

Download "International Journal of Engineering & Science Research"

Transcription

1 International Journal of Engineering & Science Research CFD ANALYSIS AND EXPERIMENTAL VERIFICATION OF EFFECT OF MANIFOLD GEOMETRY ON VOLUMETRIC EFFICIENCY AND BACK PRESSURE FOR MULTI- CYLINDER SI ENGINE ABSTRACT KS Umesh* 1, VK Pravin 2, K Rajagopal 3 1 Dept. of Mech. Engg, Thadomal Shahani Engineering College, Mumbai, Maharastra, India 2 Dept. of Mech. Engg, P.D.A. College of Engg., Gulbarga, Karnataka, India. 3 Former Vice Chancellor, JNT University, Hyderabad (AP), India. In internal combustion engines, volumetric efficiency is one of the prime factors in determining how much power output an engine can generate as compared to its capacity. The purpose of this research work is to investigate using CFD whether design of exhaust manifold has any impact on volumetric efficiency of the multi-cylinder SI engine and if any verify those results obtained through CFD analysis via actual experiments. The scope of the research is further stretched to investigate whether exhaust geometry has any impact on mechanical efficiency of the multi-cylinder SI engine. Flow of the exhaust gases through exhaust manifold is simulated using ANSYS FLUENT V12.0 using pressure and velocity parameters as boundary condition. The analysis has been carried out on two designs an existing one and a modified one and results are subsequently compared. It was observed that the volumetric efficiency improved drastically upon modification in exhaust geometry. Physical models of the same these two systems were subsequently manufactured and exhaustive experiments were carried out on them. The results obtained through CFD analysis were experimentally confirmed. Keywords: Manifold, Volumetric Efficiency, Multi-cylinder Engine, ANSYS FLUENT, Existing model. 1. INTRODUCTION In any multi-cylinder IC engine, an exhaust manifold (also known as a header) collects the exhaust gases from multiple cylinders into one pipe. It is attached downstream of the engine and is major part in multi cylinder engines where there are multiple exhaust streams that have to be collected into a single pipe. When an engine starts its exhaust stroke, the piston moves up the cylinder bore, increasing the pressure. When the exhaust valve opens, the high pressure exhaust gas enters into the exhaust manifold or header, creating an exhaust pulse comprising three main parts: The high pressure head is created by the large pressure difference between the exhaust in the combustion chamber and the atmospheric pressure outside of the exhaust system. As the exhaust gases equalize between the combustion chamber and the atmosphere, the difference in pressure decreases and the exhaust velocity decreases. This forms the medium pressure body component of the exhaust pulse. The remaining exhaust gas forms the low pressure tail component. This tail component may initially match ambient atmospheric pressure, but the momentum of the high and medium pressure components reduces the pressure in the combustion chamber to a lower than atmospheric level. This relatively low pressure (known as back pressure) helps to extract all the combustion products from the cylinder. Thus back pressure is one of the most critical parameter for exhaust system. Also lower back pressure helps to induct the intake charge during the overlap period when both intake and exhaust valves are partially open. The effect is known as scavenging. Scavenging efficiency is function of Length of the exhaust manifold, cross sectional area, shaping of the exhaust ports and pipe works influences the degree of scavenging effect and the engine speed range over which scavenging occurs. The magnitude of the exhaust scavenging effect is a direct function of the velocity of the high and medium pressure components of the exhaust pulse. Headers are designed to increase the exhaust velocity as much as possible. One technique is tuned length primary tubes. This technique attempts to time the occurrence of each exhaust pulse, to occur one after the other in succession while still in the exhaust system. The lower *Corresponding Author 342

2 pressure tail of an exhaust pulse then serves to create a greater pressure difference between the high pressure head of the next exhaust pulse, thus increasing the velocity of that exhaust pulse. ive work has taken place already in this field. Scheeringa et al studied analysis of Liquid cooled exhaust manifold using CFD. Detailed information of flow property distributions and heat transfer were obtained by him to improve the fundamental understandings of manifold operation. A number of computations were performed by him to investigate the parametric effects of operating conditions and geometry on the performance of manifolds. Seenikannan et al analysed a Y section exhaust manifold system experimentally to improve engine performance. His paper investigates the effect of using various models of exhaust manifold on CI engine performance and exhaust emission. Yasar Deger et al did CFD-FE-Analysis for the Manifold of a Diesel Engine aiming to determine specific temperature and pressure distributions. The fluid flow and the heat transfer through the exhaust manifold were computed correspondingly by CFD analyses including the conjugate heat transfer. 2. DISCUSSION Model Description Two different Models considered for this research work are shown in the figure 1 & 2 respectively. Fig 1: Existing Model Fig 2: Modified Model Both existing model and modified model has header length of 335mm. ID and OD of headers is mm & 60.3 mm respectively. In existing model the bend radius is 48 mm and exhaust is on one side as shown in the figure. Modified model has bend radius of 100 mm and exhaust is at the centre of header. ID & OD of the bend & exhaust is 35.08mm and 42.2mm respectively for both models. 3. METHODOLOGY Both the models considered for this work were prepared using SOLIDWORKS. These models were imported into ANSYS CFX V12.0. The fluid body was subsequently generated from existing models using design Modular in ANSYS and subsequently meshed as shown in figures. Fig 3: Fluid Body (Existing Model) Fig 4: Existing Manifold (After Meshing) Copyright 2013 Published by IJESR. All rights reserved 343

3 Fig 5: Fluid Body (Modified Model) Fig 6: Modified Manifold (After Meshing) A steady state single species simulation will be carried out under isothermal conditions for exhaust gas. Turbulence will be modeled by k-ε RNG turbulence model appropriate to account for high velocities and strong streamline curvature in the flow domain. The reference pressure will be set at 1 atm and all pressure inputs and outputs will be obtained as gauge values with respect to this. 4. MATERIAL FLUID PROPERTIES gas will be considered as an incompressible fluid operating at C. The material properties under these conditions are Table 1: Material Fluid Properties Boundary Conditions Material Air + Gasoline Density (kg/m3) Viscosity (Pa-s) x 10 5 Specific heat (J/kg-K) Thermal conductivity (W/m-K) The engine speed was maintained at 1500 RPM and results were obtained at different load Conditions viz. 2kg, 4kg, 6k, 8kg and 12 kg. The atmospheric gauge pressure was set at 0. And pressure distribution was obtained. 5. EXPERIMENTAL SET-UP Two models considered for the work were manufactured. The material used for pipe was SA106 (Grade B). Flange Material was IS 2062 (Grade B). Elbows were manufactured using SA 234 WPB. Fig 7: Existing model (left) and Modified Model (Right) Copyright 2013 Published by IJESR. All rights reserved 344

4 The test was conducted on 4 stroke 4 cylinder Engine of Maruti-Suzuki make. Experimental set up consisted of: (1) The engine & dynamometer fitted together on common channel frame (2) Fuel Consumption measuring unit & temperature measuring units (3) gas Calorimeter (4) Orifice Meter The experimental set up is shown in the figure. Fig 8: Experimental set up (a) s were measured at (b) Gas inlet to the calorimeter (c) gas outlet to calorimeter (d) Water inlet to calorimeter (e) Water outlet from Calorimeter (f) Water outlet from Engine Also pressure and temperatures were measured in header at points where bends are attached and in the exhaust. Engine Specifications Copyright 2013 Published by IJESR. All rights reserved 345

5 Table 2: Engine Specification 6. RESULTS Engine 4 Stroke 4 Cylinder SI engine Make Maruti-Suzuki Wagon-R Calorific Value of Fuel (Gasoline) KJ/Kg-K Specific Gravity of Fuel 0.7 gm/cc Bore and Stroke mm X mm Swept Volume 1100 cc Compression Ratio 7.2 :1 Dynamometer Constant 2000 Diameter of Orifice 29 mm Coefficient of Discharge of orifice 0.65 CFD analysis was carried out on both the models at 6 different loads. 2kg, 4kg, 6kg, 8kg, 10kg and 12 kg. The resulting pressure contour for 4 kg loading is shown in the figure for both the models. The experiments were conducted with same loading conditions on same two models and results obtained after the calculation are enlisted in following table Fig 9: contours for existing and Modified Models The experiments were conducted with same loading conditions on same two models and results obtained after the calculations are enlisted in following tables. Qs and Qa specify swept volume and air intake respectively. Thus their ratio gives volumetric efficiency. Also morse test was conducted on engines to evaluate their Indicated power (I.P.). Brake power (B.P.) was experimentally determined using dynamometer. Thus Mechanical efficiency was also evaluated as ratio of B.P. to I.P. The pressures P1, P2, P3, P4, P5 and temperatures T1, T2, T3, T4, T5 were measured at exhaust manifold and points where 4 inlet bends are attached to header. was calculated using ideal gas equation. These are instantaneous velocities of exhaust gas at above mentioned points. Table 3: Results of experiments conducted on existing Model Unit 2 KG 4 KG 6 KG 8 KG 10 KG 12 KG Column1 B.P. (kw) KW Heat Equivalent Kj/min Fuel Consumption cc/min gm/min Heat Supplied Kj/min Heat Carried By water Kj/min Copyright 2013 Published by IJESR. All rights reserved 346

6 MgCpg Kj/Kg C Heat Carried by Kj/min Unaccounted Heat Loss Kj/min Qs *10-3 m Qa *10-3 m Volumetric Efficiency Air : Fuel Ratio B.S.F.C. Kg-Hr/ KW p1 mm of water p2 mm of water p3 mm of water p4 mm of water p5 mm of water t1 Celsius t2 Celsius t3 Celsius t4 Celsius t5 Celsius v1 m/s v2 m/s v3 m/s v4 m/s v5 m/s ma + mf (Kg/s) *10-3 kg/s Morse test(all Cylinder) Kg Morse test (1 st cylinder) Kg Morse test(2 nd cylinder) Kg Morse test (3 rd cylinder) Kg Morse test (4 th cylinder) Kg I.P. (1st) Kw I.P. (2nd) Kw I.P. (3rd) I.P. (4th) Kw IP Kw Mechanical Efficiency Percentage Frictional Power Kw Table 4: Results of experiments conducted on modified Model Column1 Unit 2 KG 4 KG 6 KG 8 KG 10 KG 12 KG B.P. (kw) KW Heat Equivalent Kj/min Fuel Consumption cc/min Copyright 2013 Published by IJESR. All rights reserved 347

7 gm/min Heat Supplied Kj/min Heat Carried By Water Kj/min MgCpg Kj/Kg C Heat Carried by Kj/min Unaccounted Heat Loss Kj/min Qs *10-3 m Qa *10-3 m Volumetric Efficiency Air : Fuel Ratio B.S.F.C. Kg-Hr/ KW p1 mm of water p2 mm of water p3 mm of water p4 mm of water p5 mm of water t1 Celsius t2 Celsius t3 Celsius t4 Celsius t5 Celsius v1 m/s v2 m/s v3 m/s v4 m/s v5 m/s ma + mf (Kg/s) *10-3 kg/s Morse test(all Cylinder) Kg Morse test (1 st cylinder) Kg Morse test(2 nd cylinder) Kg Morse test (3 rd cylinder) Kg Morse test (4 th cylinder) Kg I.P. (1st) Kw I.P. (2nd) Kw I.P. (3rd) I.P. (4th) Kw IP Kw Mechanical Efficiency Percentage Frictional Power Kw Aim of the work was to verify all the results obtained through CFD analysis by experimentation. Thus the results obtained through CFD analysis and experiments have been compared in following two tables for both the models at all load conditions. Copyright 2013 Published by IJESR. All rights reserved 348

8 Table 5: Comparison between theoretical results (Using CFD) and Experimental results For existing Model 2 Kg from ( Experimental) Kg from ( Experimental) Kg from ( Experimental) Kg from ( Experimental) Load: 10 Kg from Kg from ( Experimental) Copyright 2013 Published by IJESR. All rights reserved 349

9 Table 6: Comparison between theoretical results (Using CFD) and Experimental results For Modified Model Model Column1 Column2 Column3 Column4 Column5 Column6 Column7 2 Kg from ( Experimental) Kg from (Theoretical al) ( Experimental) (Experimental ) (theoretical al) (Experimental ) Temperatur e Kg from ( Experimental) Kg from ( Experimental) Kg Copyright 2013 Published by IJESR. All rights reserved 350

10 from ( Experimental) Kg from ( Experimental) OBSERVATION From table 5 and 6 it can be easily concluded that experimental results matches with the results of CFD analysis. Also pressure, velocity and temperature distribution in header is more uniform for modified design as compared to existing design. For making conclusions most important observations are enlisted below. Table 7: Results obtained for existing Model Load(kg) Volumetric Efficiency Mechanical Efficiency BSFC (Kg-hr/kW) Table 8: Results obtained for modified Model Load(kg) Volumetric Efficiency Mechanical Efficiency BSFC (Kg-hr/kW) Copyright 2013 Published by IJESR. All rights reserved 351

11 Volumetric Efficiency (Modified Model) Volumetric Efficiency (Existing Model) Volumetric Efficiency VS Load Fig 10: Comparison between Volumetric Efficiency of two Models Mechanical Efficiency (Modified Model) Mechanical Efficiency(Existing Model) Fig 11: Comparison between Mechanical Efficiency of two models 8. CONCLUSION From CFD analysis it was found that manifold geometry has a significant impact on the volumetric efficiency of the engine. It was concluded that the modified design gives better volumetric efficiency. The results of CFD analysis were subsequently proved by experimental analysis. Also more uniform pressure distribution and velocity distribution obtained in modified model eases out the design procedure for the exhaust manifold. Also even though there was slight variation in mechanical efficiency and brake specific fuel consumption (b.s.f.c.) the variation was found to be very small and thus no conclusion can be drawn regarding effect of manifold geometry on mechanical efficiency and b.s.f.c. Thus we conclude that Volumetric efficiency and thus power output of the engine can be improved significantly by deployment of suggested modified design. REFERENCES [1] Muthaiah PLS, Kumar MS, Sendilvelan S. CFD Analysis of catalytic converter to reduce particulate matter and achieve limited back pressure in diesel engine. Global journal of researches in engineering A: Classification (FOR) ,091399, 2010; 10(5). [2] Kamble PR, Ingle SS. Copper Plate Catalytic Converter: An Emission Control Technique, SAE Number Copyright 2013 Published by IJESR. All rights reserved 352

12 [3] Beardsley MB et al. Thermal Barrier Coatings for Low Emission, High Efficiency Diesel Engine Applications, SAE Technical Paper 1999; 1: [4] JacobE, Lammermann R, Pappenherimer A, Rothe D. Gas After treatment System for Euro 4: Heavy Duty Engines MTZ 6/2005. [5] Jacobs T, Chatterjee S, Conway R, Walker A, Kramer J, Mueller-Haas K. Development of a Partial Filter Technology for Hdd Retrofit, Sae Technical Paper [6] Lahousse C, Kern B, Hadrane H, Faillon L. Backpressure Characteristics of Modern Three-way Catalysts, Benefit on Engine Performance, SAE Paper No ,2006 SAE World Congress, Detroit, Michigan, April 36, [7] Muramatsu G, Abe A, Furuyama M. Catalytic Reduction of Nox in Diesel, SAE , [8] Heywood JB, Internal Combustion Engine Fundamentals (Tata McGrah Hill). [9] Labhsetwar NK, Watanabe A, Mitsuhashi T. Possibilities of the application of catalyst technologies for the control of particulate emission for diesel vehicles, SAE Transaction [10] Biniwale R, Labhsetwar NK, Kumar R, Hasan MZ. A non-noble metal based catalytic converter for two strokes, two-wheeler applications, SAE. [11] Pravin VK, Umesh KS, Rajagopal K, Veena PH. Simulative Analysis of Flow through the Manifold for Improved Volumetric Efficiency of a Multi-Cylinder Petrol Engine 2012; 4(2): Copyright 2013 Published by IJESR. All rights reserved 353

Thermal Analysis on 4 1 Tubular Type IC-Engine Exhaust Manifold through Anysis

Thermal Analysis on 4 1 Tubular Type IC-Engine Exhaust Manifold through Anysis International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 7 (2014), pp. 755-762 Research India Publications http://www.ripublication.com Thermal Analysis on 4 1 Tubular

More information

Copper Plate Catalytic Converter: An Emission Control Technique

Copper Plate Catalytic Converter: An Emission Control Technique SAE Number 2008 28 0104 Copper Plate Catalytic Converter: An Emission Control Technique Copyright 2008 SAE International P.R.Kamble and S.S. Ingle Mechanical Engineering Department, SRES s College of Engineering,

More information

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr.

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr. ISSN 2277-2685 IJESR/May 2015/ Vol-5/Issue-5/352-356 Mohammed Mohsin Shkhair et. al./ International Journal of Engineering & Science Research SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER

More information

Experimental and CFD Analysis of Exhaust Manifold to Improve Performance of IC Engine

Experimental and CFD Analysis of Exhaust Manifold to Improve Performance of IC Engine International Research Journal of Engineering and Technology (IRJET e-issn: 2395-56 Experimental and CFD Analysis of Exhaust Manifold to Improve Performance of IC Engine Mr. SACHIN G. CHAUDHARI 1, Mr.

More information

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2016, 8 (7):31-40 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Comparison

More information

Back pressure analysis of an engine muffler using cfd and experimental validation

Back pressure analysis of an engine muffler using cfd and experimental validation Back pressure analysis of an engine muffler using cfd and experimental validation #1 Mr. S.S. Mane, #2 S.Y.Bhosale #1 Mechanical Engineering, PES s Modern College of engineering, Pune, INDIA #2 Mechanical

More information

Design Optimization of Catalytic Converter to reduce Particulate Matter and Achieve Limited Back Pressure in Diesel Engine by CFD

Design Optimization of Catalytic Converter to reduce Particulate Matter and Achieve Limited Back Pressure in Diesel Engine by CFD Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Design

More information

Assignment-1 Air Standard Cycles

Assignment-1 Air Standard Cycles Assignment-1 Air Standard Cycles 1. What do u mean by air standard cycle? List assumptions for air standard cycle & give reasons why air standard cycle differs from actual cycle. 2. Derive an equation

More information

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD Dr.S.L.V. Prasad 1, Prof.V.Pandurangadu 2, Dr.P.Manoj Kumar 3, Dr G. Naga Malleshwara Rao 4 Dept.of Mechanical

More information

Assignment-1 Introduction

Assignment-1 Introduction Assignment-1 Introduction 1. Compare S.I. engines with C.I engines. 2. Explain with the help of neat sketch, the working of a 2-stroke petrol engine. 3. Derive an equation of efficiency, work output and

More information

NUMERICAL INVESTIGATION OF PISTON COOLING USING SINGLE CIRCULAR OIL JET IMPINGEMENT

NUMERICAL INVESTIGATION OF PISTON COOLING USING SINGLE CIRCULAR OIL JET IMPINGEMENT NUMERICAL INVESTIGATION OF PISTON COOLING USING SINGLE CIRCULAR OIL JET IMPINGEMENT BALAKRISHNAN RAJU, CFD ANALYSIS ENGINEER, TATA CONSULTANCY SERVICES LTD., BANGALORE ABSTRACT Thermal loading of piston

More information

Investigation of Diffuser Concept for Four Strokes C.I. Engine Exhaust System Development

Investigation of Diffuser Concept for Four Strokes C.I. Engine Exhaust System Development Investigation of Diffuser Concept for Four Strokes C.I. Engine Exhaust System Development #1 Gaurav Tiwari, #2 Riyaz Kazi #1 PG Student,Heat Power Engg.,MCOERC,Nashik, SPPU,India #2 Asst. Professor, Head

More information

IJESR/Oct 2012/ Volume-2/Issue-10/Article No-12/ ISSN International Journal of Engineering & Science Research

IJESR/Oct 2012/ Volume-2/Issue-10/Article No-12/ ISSN International Journal of Engineering & Science Research International Journal of Engineering & Science Research DESIGN AND CFD ANALYSIS OF U TUBE HEAT EXCHANGER P.B. Borade* 1, K.V.Mali 2 1 P.G. Student, Mechanical Department, Sinhgad College of Engineering,

More information

AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER

AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER E.Saravanapprabhu 1, M.Mahendran 2 1E.Saravanapprabhu, PG Student, Thermal Engineering, Department of Mechanical Engineering,

More information

Thermal Stress Analysis of Diesel Engine Piston

Thermal Stress Analysis of Diesel Engine Piston International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 576 Thermal Stress Analysis of Diesel Engine Piston B.R. Ramesh and Kishan

More information

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate Malatesh Barki. 1, Ganesha T. 2, Dr. M. C. Math³ 1, 2, 3, Department of Thermal Power Engineering 1, 2, 3 VTU

More information

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Simulation of Performance

More information

Computational Investigation of Normal and Hybrid Cooling Fins of Internal Combustion Engine

Computational Investigation of Normal and Hybrid Cooling Fins of Internal Combustion Engine Computational Investigation of Normal and Hybrid Cooling Fins of Internal Combustion Engine Aswin Mohan, R. Titus, Adarsh Kumar.P.S Abstract In this research work a hybrid material (Aluminium-Copper) compound

More information

CFD ANALYSIS OF EXHAUST BACKPRESSURE FOR FOUR-STROKE CI ENGINE

CFD ANALYSIS OF EXHAUST BACKPRESSURE FOR FOUR-STROKE CI ENGINE CFD ANALYSIS OF EXHAUST BACKPRESSURE FOR FOUR-STROKE CI ENGINE Nandkumar Patil 1, Dr.Sharad Chaudhary 2 1 PG Scholar, 2 Professor Mechanical Engineering Department Devi Ahilya Vishwavidyalaya, Indore,

More information

Experimental Investigation on Modification of Inlet poppet valve of single cylinder Direct Ignition Four stroke Diesel Engine

Experimental Investigation on Modification of Inlet poppet valve of single cylinder Direct Ignition Four stroke Diesel Engine Experimental Investigation on Modification of Inlet poppet valve of single cylinder Direct Ignition Four stroke Diesel Engine Dr. Hiregoudar Yerrennagoudaru 1, Shiva prasad Desai 2, Mallikarjuna. A 3 1

More information

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate Sandeep M, U Sathishkumar Abstract In this paper, a study of different cross section bundle arrangements

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DESIGN, ANALYSIS AND OPTIMIZATION OF PISTON OF 180CC ENGINE USING CAE TOOLS NIKHIL

More information

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization

More information

A Review on Additional Power Generation from Exhaust Gas of Diesel Engine using Parallel Flow Shell and Tube Heat Exchanger

A Review on Additional Power Generation from Exhaust Gas of Diesel Engine using Parallel Flow Shell and Tube Heat Exchanger GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 5 April 2016 ISSN: 2455-5703 A Review on Additional Power Generation from Exhaust Gas of Diesel Engine using Parallel

More information

2.61 Internal Combustion Engines Spring 2008

2.61 Internal Combustion Engines Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.61 Internal Combustion Engines Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Engine Heat Transfer

More information

CFD Analysis for Designing Fluid Passages of High Pressure Reciprocating Pump

CFD Analysis for Designing Fluid Passages of High Pressure Reciprocating Pump ISSN 2395-1621 CFD Analysis for Designing Fluid Passages of High Pressure Reciprocating Pump #1 SuhasThorat, #2 AnandBapat, #3 A. B. Kanase-Patil 1 suhas31190@gmail.com 2 dkolben11@gmail.com 3 abkanasepatil.scoe@sinhgadedu.in

More information

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST Sagar.A.Patil 1, Priyanka.V.Kadam 2, Mangesh.S.Yeolekar 3, Sandip.B.Sonawane 4 1 Student (Final Year), Department

More information

CFD ANALYSIS ON LOUVERED FIN

CFD ANALYSIS ON LOUVERED FIN CFD ANALYSIS ON LOUVERED FIN P.Prasad 1, L.S.V Prasad 2 1Student, M. Tech Thermal Engineering, Andhra University, Visakhapatnam, India 2Professor, Dept. of Mechanical Engineering, Andhra University, Visakhapatnam,

More information

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System P.Muni Raja Chandra 1, Ayaz Ahmed 2,

More information

Vol-3 Issue India 2 Assistant Professor, Mechanical Engineering Dept., Hansaba College of Engineering & Technology, Gujarat, India

Vol-3 Issue India 2 Assistant Professor, Mechanical Engineering Dept., Hansaba College of Engineering & Technology, Gujarat, India Review Paper on Effect of Variable Thermal Properties of Working Fluid on Performance of an IC Engine Cycle Desai Rahulkumar Mohanbhai 1, Kiran D. Parmar 2 1 P. G. Student, Mechanical Engineering Dept.,

More information

Effect of Helix Parameter Modification on Flow Characteristics of CIDI Diesel Engine Helical Intake Port

Effect of Helix Parameter Modification on Flow Characteristics of CIDI Diesel Engine Helical Intake Port Effect of Helix Parameter Modification on Flow Characteristics of CIDI Diesel Engine Helical Intake Port Kunjan Sanadhya, N. P. Gokhale, B.S. Deshmukh, M.N. Kumar, D.B. Hulwan Kirloskar Oil Engines Ltd.,

More information

DESIGN OF A NEW IMPROVED INTAKE MANIFOLD FOR F-SAE CAR Abhishek Raj 1, J.C. Mohanta 2, Bireswar Paul 3, Mohd. Nayab Zafar 4 1

DESIGN OF A NEW IMPROVED INTAKE MANIFOLD FOR F-SAE CAR Abhishek Raj 1, J.C. Mohanta 2, Bireswar Paul 3, Mohd. Nayab Zafar 4 1 DESIGN OF A NEW IMPROVED INTAKE MANIFOLD FOR F-SAE CAR Abhishek Raj 1, J.C. Mohanta 2, Bireswar Paul 3, Mohd. Nayab Zafar 4 1 pg Scholar, 2 assistant Professor, 3 assistant Professor, 4 research Scholar

More information

Experimental Verification and CFD Analysis of Single Cylinder Four Strokes C.I. Engine Exhaust System

Experimental Verification and CFD Analysis of Single Cylinder Four Strokes C.I. Engine Exhaust System Experimental Verification and CFD Analysis of Single Cylinder Four Strokes C.I. Engine Exhaust System Atul A. Patil 1,L.G. Navale 2,V.S. Patil 3 1 (Research student, North Maharashtra University, Umavi

More information

CFD Flow Analysis and Optimization of Exhaust Muffler

CFD Flow Analysis and Optimization of Exhaust Muffler CFD Flow Analysis and Optimization of Exhaust Muffler Saumil Mahesh Trivedi 1, Sangita Bansode 2, Pankaj Pawar 3 1 Mtech CAD-CAM & Robotics Student Somaiya college of engineering 2 Professor, Department

More information

Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhance Performance on Diesel Engine

Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhance Performance on Diesel Engine IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 6 Ver. VI (Nov. - Dec. 2015), PP 55-65 www.iosrjournals.org Generation of Air Swirl through

More information

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE V. S. Konnur Department of Mechanical Engineering, BLDEA s Engineering College, Bijapur, Karnataka, (India) ABSTRACT The automotive

More information

Single Cylinder 4 Stroke VCR Diesel Engine Performance And Analysis At Various Blends Of Fuels Under Various Cooling Rates

Single Cylinder 4 Stroke VCR Diesel Engine Performance And Analysis At Various Blends Of Fuels Under Various Cooling Rates ISSN: 2278 0211 (Online) Single Cylinder 4 Stroke VCR Diesel Engine Performance And Analysis At Various Blends Of Fuels Under Various Cooling Rates B Lakshmana Swamy Associate Professor, Mechanical Engineering

More information

Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler

Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler S. Hassan *,a, M. K. Roslim b and R. M. Zain c Mechanical Engineering Department,

More information

Design & Thermal Analysis of I.C. Engine Poppet Valves using Solidworks and FEA

Design & Thermal Analysis of I.C. Engine Poppet Valves using Solidworks and FEA Design & Thermal Analysis of I.C. Engine Poppet Valves using Solidworks and FEA Ch. Mani Kumar 1 P. Rajendra Babu 2 1,2Asst. Professor, Dept. of Mechanical Engineering, Sasi Institute of Technology and

More information

NUMERICAL INVESTIGATION OF EFFECT OF EXHAUST GAS RECIRCULATION ON COMPRESSIONIGNITION ENGINE EMISSIONS

NUMERICAL INVESTIGATION OF EFFECT OF EXHAUST GAS RECIRCULATION ON COMPRESSIONIGNITION ENGINE EMISSIONS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts

Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts Deepali Gaikwad 1, Kundlik Mali 2 Assistant Professor, Department of Mechanical Engineering, Sinhgad College of

More information

Investigation for Flow of Cooling Air through the Ventilated Disc Brake Rotor using CFD

Investigation for Flow of Cooling Air through the Ventilated Disc Brake Rotor using CFD International Journal of Thermal Technologies E-ISSN 2277 4114 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijtt/ Research Article Investigation for Flow of Cooling Air

More information

CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD

CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD Rudragouda R Patil 1, V Santosh Kumar 2, R Harish 3, Santosh S Ghorpade 4 1,3,4 Assistant Professor, Mechanical Department, Jayamukhi

More information

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark 26 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark Hardik Bambhania, 2 Vijay Pithiya,

More information

DESIGN OF THROTTLE BODY: A COMPARATIVE STUDY OF DIFFERENT SHAFT PROFILES USING CFD ANALYSIS

DESIGN OF THROTTLE BODY: A COMPARATIVE STUDY OF DIFFERENT SHAFT PROFILES USING CFD ANALYSIS Int. J. Chem. Sci.: 14(S2), 2016, 681-686 ISSN 0972-768X www.sadgurupublications.com DESIGN OF TROTTLE BODY: A COMARATIVE STUDY OF DIFFERENT SAFT ROFILES USING CFD ANALYSIS M. BALAJI *, K. AMAL SATEES,

More information

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine T. Singha 1, S. Sakhari 1, T. Sarkar 1, P. Das 1, A. Dutta 1,

More information

Increasing Low Speed Engine Response of a Downsized CI Engine Equipped with a Twin-Entry Turbocharger

Increasing Low Speed Engine Response of a Downsized CI Engine Equipped with a Twin-Entry Turbocharger Increasing Low Speed Engine Response of a Downsized CI Engine Equipped with a Twin-Entry Turbocharger A. Kusztelan, Y. F. Yao, D. Marchant and Y. Wang Benefits of a Turbocharger Increases the volumetric

More information

Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny. Turbomachinery 2015, Design of HP and LP turbine connection

Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny. Turbomachinery 2015, Design of HP and LP turbine connection Turbostroje 2015 Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny Turbomachinery 2015, Design of HP and LP turbine connection J. Hrabovský 1, J. Klíma 2, V. Prokop 3, M. Komárek 4 Abstract:

More information

DESIGN AND ANALYSIS OF MUFFLER TO REDUCE THE BACK PRESSURE

DESIGN AND ANALYSIS OF MUFFLER TO REDUCE THE BACK PRESSURE 470 DESIGN AND ANALYSIS OF MUFFLER TO REDUCE THE BACK PRESSURE Ch.Indira Priyadarsini 1, Madhav Modali 2, Sangepu Vamshi Krishna 3, N Dinesh Reddy 4 1 Assistant Professor, Mechanical Engg. Dept., Chaitanya

More information

COMPARATIVE STUDIES ON PERFORMANCE PARAMETERS OF TWO STROKE SPARK IGNITION ENGINE WITH COPPER COATED PISTON WITH METHANOL BLENDED GASOLINE

COMPARATIVE STUDIES ON PERFORMANCE PARAMETERS OF TWO STROKE SPARK IGNITION ENGINE WITH COPPER COATED PISTON WITH METHANOL BLENDED GASOLINE International Journal of Mechanical Engineering and Technology (IJMET) Volume 5, Issue 12, Dec 2014, pp. 139-145, Article ID: 30120140512014 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=5&itype=12

More information

Effect of Stator Shape on the Performance of Torque Converter

Effect of Stator Shape on the Performance of Torque Converter 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

2013 THERMAL ENGINEERING-I

2013 THERMAL ENGINEERING-I SET - 1 II B. Tech II Semester, Regular Examinations, April/May 2013 THERMAL ENGINEERING-I (Com. to ME, AME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~

More information

Chapter 7: Thermal Study of Transmission Gearbox

Chapter 7: Thermal Study of Transmission Gearbox Chapter 7: Thermal Study of Transmission Gearbox 7.1 Introduction The main objective of this chapter is to investigate the performance of automobile transmission gearbox under the influence of load, rotational

More information

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine Alvin

More information

D.Baswaraj, 2 P.V.Krishna Murthy, 3 K.Prasanna Lakshmi 1 Jayaprakash Narayan College of Engineering, Dharmapur, Mahabubnagar.

D.Baswaraj, 2 P.V.Krishna Murthy, 3 K.Prasanna Lakshmi 1 Jayaprakash Narayan College of Engineering, Dharmapur, Mahabubnagar. International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 8, Number 1 (2018), pp. 25-38 Research India Publications http://www.ripublication.com A Review on Significant Parameters

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

Ujwal D. Patil M & M, Kandivali Mumbai

Ujwal D. Patil M & M, Kandivali Mumbai Cylinder Head Intake Port Design & In-Cylinder Air-flow Patterns, Streamlines formations, Swirl Generation Analysis to Evaluate Performance & Emissions Abstract On the verge of rapidly increasing threat

More information

DESIGN AND ANALYSIS OF CAR RADIATOR BY FINITE ELEMENT METHOD

DESIGN AND ANALYSIS OF CAR RADIATOR BY FINITE ELEMENT METHOD DESIGN AND ANALYSIS OF CAR RADIATOR BY FINITE ELEMENT METHOD Prof. V. C. Pathade 1, Sagar R. Satpute 2, Mayur G. Lajurkar 3, Gopal R. Pancheshwar 4 Tushar K. Karluke 5, Niranjan H. Singitvar 6 1 Assistant

More information

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE 1. UNIVERSITY OF RUSE, 8, STUDENTSKA STR., 7017 RUSE, BULGARIA 1. Simeon ILIEV ABSTRACT: The objective of this paper is to

More information

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

HEAT TRANSFER ANALYSIS IN A LOW HEAT REJECTION DI DIESEL ENGINE

HEAT TRANSFER ANALYSIS IN A LOW HEAT REJECTION DI DIESEL ENGINE National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October 2010 6 HEAT TRANSFER ANALYSIS IN A LOW HEAT REJECTION DI DIESEL ENGINE Abstract Pradeep Kumar A.R. 1*, Annamalai K.

More information

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PROJECT REFERENCE NO. : 37S1036 COLLEGE BRANCH GUIDES : KS INSTITUTE OF TECHNOLOGY, BANGALORE

More information

Flow Simulation of Diesel Engine for Prolate Combustion Chamber

Flow Simulation of Diesel Engine for Prolate Combustion Chamber IJIRST National Conference on Recent Advancements in Mechanical Engineering (RAME 17) March 2017 Flow Simulation of Diesel Engine for Prolate Combustion Chamber R.Krishnakumar 1 P.Duraimurugan 2 M.Magudeswaran

More information

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank UNIT I INTRODUCTION 1. What are the design considerations of a vehicle?(jun 2013) 2..Classify the various types of vehicles.

More information

A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines

A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines Global Journal of Researches in Engineering Vol. 10 Issue 7 (Ver1.0), December 2010 P a g e 47 A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines MURUGAN. R. GJRE -A Classification

More information

Analysis of Exhaust System using AcuSolve

Analysis of Exhaust System using AcuSolve Analysis of Exhaust System using AcuSolve Abbreviations: CFD (Computational Fluid Dynamics), EBP (Exhaust Back Pressure), RANS (Reynolds Averaged Navier Stokes), Spalart Allmaras (SA), UI (Uniformity Index)

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 320 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

SET - 1 II B. Tech II Semester Regular/Supplementary Examinations, April/May-2017 THERMAL ENGINEERING-I (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts

More information

EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE

EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE Nagaprasad K. S. 1, D. Madhu 2 1 Senior Lecturer, Department of Mechanical Engineering K. S. Institute of Technology, Bangalore, India. nagaprasad_k_s@yahoo.com

More information

A Study on the Optimum Shape of Automobile Air Cleaner Diffuser

A Study on the Optimum Shape of Automobile Air Cleaner Diffuser A Study on the Optimum Shape of Automobile Air Cleaner Diffuser HoseopSong 1, Byungmo Yang 2 and Haengmuk Cho 1,* 1 Division of Mechanical and Automotive Engineering, Kongju National University, Chungnam,

More information

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 13, December 218, pp. 693 7, Article ID: IJMET_9_13_72 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=13

More information

Air Flow Analysis of Four Stroke Direct Injection Diesel Engines Based on Air Pressure Input and L/D Ratio

Air Flow Analysis of Four Stroke Direct Injection Diesel Engines Based on Air Pressure Input and L/D Ratio Research Journal of Applied Sciences (11): 1135-114, 007 ISSN: 1815-93X Medwell Journals, 007 Air Flow Analysis of Four Stroke Direct Injection Diesel Engines Based on Air Pressure Input and L/D Ratio

More information

CFD analysis of triple concentric tube heat exchanger

CFD analysis of triple concentric tube heat exchanger Available online at www.ganpatuniversity.ac.in University Journal of Research ISSN (Online) 0000 0000, ISSN (Print) 0000 0000 CFD analysis of triple concentric tube heat exchanger Patel Dharmik A a, V.

More information

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16]

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16] Code No: R05220304 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 THERMAL ENGINEERING-I ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks: 80 Answer

More information

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA 2 - TITLE: Topic: INVESTIGATION OF THE EFFECTS OF HYDROGEN ADDITION ON PERFORMANCE AND EXHAUST EMISSIONS OF

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 2900 MIXER TO BE USED BY CNRL FOR BITUMEN VISCOSITY CONTROL Report R0. By Kimbal A.

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 2900 MIXER TO BE USED BY CNRL FOR BITUMEN VISCOSITY CONTROL Report R0. By Kimbal A. COMPUTATIONAL FLOW MODEL OF WESTFALL'S 2900 MIXER TO BE USED BY CNRL FOR BITUMEN VISCOSITY CONTROL Report 412509-1R0 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY May 2012 ALDEN RESEARCH

More information

EXPERIMENTAL ANALYSIS OF THERMAL BARRIER COATING IN TWO STROKE SI ENGINE

EXPERIMENTAL ANALYSIS OF THERMAL BARRIER COATING IN TWO STROKE SI ENGINE EXPERIMENTAL ANALYSIS OF THERMAL BARRIER COATING IN TWO STROKE SI ENGINE Er. Ganesh V. Thorve, Prof. Sulas Borkar Gurunanak Institute of Engineering and Management, Nagpur ABSTRACT The demand for energy

More information

Internal Combustion Engines

Internal Combustion Engines Engine Cycles Lecture Outline In this lecture we will: Analyse actual air fuel engine cycle: -Stroke cycle -Stroke cycle Compare these cycles to air standard cycles Actual Engine Cycle Although air standard

More information

Scheme - G. Sample Test Paper-I. Course Name : Diploma in Mechanical Engineering Course Code : ME Semester : Fifth Subject Title : Power Engineering

Scheme - G. Sample Test Paper-I. Course Name : Diploma in Mechanical Engineering Course Code : ME Semester : Fifth Subject Title : Power Engineering Sample Test Paper-I Marks : 25 Time:1 hour Q1. Attempt any Three 3X3=9 a) Define i) Mean Effective Pressure ii) Piston Speed iii) Swept Volume b) Draw Carnot cycle on P-V and T-S Diagram c) State the need

More information

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 2 Ver. V (Mar - Apr. 2015), PP 37-44 www.iosrjournals.org Effect of Varying Load on Performance

More information

A REVIEW OF SCAVENGING PROCESS OF TWO STROKE ENGINE

A REVIEW OF SCAVENGING PROCESS OF TWO STROKE ENGINE A REVIEW OF SCAVENGING PROCESS OF TWO STROKE ENGINE Prakash Kumar Sen 1, Lalit Kumar 2, Shailendra Kumar Bohidar 3 1 Student of M.Tech. Manufacturing Management, BITS Pilani (India) 2 Student of Mechanical

More information

Manufacturing Elements affecting the Performance & Durability Characteristics of Catalytic Converter

Manufacturing Elements affecting the Performance & Durability Characteristics of Catalytic Converter Manufacturing Elements affecting the Performance & Durability Characteristics of Catalytic Converter Mylaudy Dr.S.Rajadurai 1, R.Somasundaram 2, P.Madhusudhanan 2, Alrin M Victor 2, J.Y. Raja Shangaravel

More information

Static Stress Analysis of Piston

Static Stress Analysis of Piston Static Stress Analysis of Piston Kevin Agrawal B. E. Student, Mechanical Engineering, BITS Pilani K. K. Birla Goa Campus. AH7-352, BITS Pilani, K. K. Birla Goa Campus, NH 17B, Zuarinagar 403726. Parva

More information

CFD ANALYSIS OF PRESSURE DROP CHARACTERISTICS OF BUTTERFLY AND DUAL PLATE CHECK VALVE

CFD ANALYSIS OF PRESSURE DROP CHARACTERISTICS OF BUTTERFLY AND DUAL PLATE CHECK VALVE CFD ANALYSIS OF PRESSURE DROP CHARACTERISTICS OF BUTTERFLY AND DUAL PLATE CHECK VALVE Adarsh K M 1, Dr. V Seshadri 2 and S. Mallikarjuna 3 1 M Tech Student Mechanical, MIT-Mysore 2 Professor (Emeritus),

More information

Design and Analysis of Restricted Air Intake for Performance Optimization of Single-Cylinder Engine

Design and Analysis of Restricted Air Intake for Performance Optimization of Single-Cylinder Engine RESEARCH ARTICLE OPEN ACCESS Design and Analysis of Restricted Air Intake for Performance Optimization of Single-Cylinder Engine Darshit Jangid 1, Akshay Sharma 2, Vaibhav Dhama 3 1(Mechanical Engineering,

More information

GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE PIPE HEAT EXCHANGER USING TAGUCHI METHOD D.

GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE PIPE HEAT EXCHANGER USING TAGUCHI METHOD D. ISSN 2277-2685 IJESR/March 2018/ Vol-8/Issue-3/18-24 D. Bahar et. al., / International Journal of Engineering & Science Research GEOMETRICAL PARAMETERS BASED OPTIMIZATION OF HEAT TRANSFER RATE IN DOUBLE

More information

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM,, ABSTRACT Exhaust gas recirculation (EGR) is a way to control in-cylinder NOx and carbon production and is used on most modern high-speed direct injection

More information

Heat Exchangers (Chapter 5)

Heat Exchangers (Chapter 5) Heat Exchangers (Chapter 5) 2 Learning Outcomes (Chapter 5) Classification of heat exchangers Heat Exchanger Design Methods Overall heat transfer coefficient LMTD method ε-ntu method Heat Exchangers Pressure

More information

DISCHARGE AND FLOW COEFFICIENT ANALYSIS IN INTERNAL COMBUSTION ENGINE USING COMPUTATIONAL FLUID DYNAMICS SIMULATION

DISCHARGE AND FLOW COEFFICIENT ANALYSIS IN INTERNAL COMBUSTION ENGINE USING COMPUTATIONAL FLUID DYNAMICS SIMULATION DISCHARGE AND FLOW COEFFICIENT ANALYSIS IN INTERNAL COMBUSTION ENGINE USING COMPUTATIONAL FLUID DYNAMICS SIMULATION N. A. Mohamad Shafie 1, M. F. Muhamad Said 1, Z. Abdul Latiff 1 and S. Rajoo 2 1 Automotive

More information

CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix angle

CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix angle CFD analysis of heat transfer enhancement in helical coil heat exchanger by varying helix 1 Saket A Patel, 2 Hiren T Patel 1 M.E. Student, 2 Assistant Professor 1 Mechanical Engineering Department, 1 Mahatma

More information

ABSTRACT I. INTRODUCTION III. GEOMETRIC MODELING II. LITERATURE REVIW

ABSTRACT I. INTRODUCTION III. GEOMETRIC MODELING II. LITERATURE REVIW 2017 IJSRSET Volume 3 Issue 5 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Performance Analysis of Helical Coil Heat Exchanger Using Numerical Technique Abhishek

More information

A SIMULATION STUDY OF AIR FLOW IN DIFFERENT TYPES OF COMBUSTION CHAMBERS FOR A SINGLE CYLINDER DIESEL ENGINE

A SIMULATION STUDY OF AIR FLOW IN DIFFERENT TYPES OF COMBUSTION CHAMBERS FOR A SINGLE CYLINDER DIESEL ENGINE S1145 A SIMULATION STUDY OF AIR FLOW IN DIFFERENT TYPES OF COMBUSTION CHAMBERS FOR A SINGLE CYLINDER DIESEL ENGINE by Premnath SUNDARAMOORTHY a*, Devaradjane GOBALAKICHENIN b, Kathirvelu BASKAR c, and

More information

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines Available online at www.sciencedirect.com Energy Procedia 29 (2012 ) 455 462 World Hydrogen Energy Conference 2012 Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged,

More information

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION *P. Manoj Kumar 1, V. Pandurangadu 2, V.V. Pratibha Bharathi 3 and V.V. Naga Deepthi 4 1 Department of

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL IC Engine - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Internal Combustion Engine GATE, IES & PSUs IC Engine - ME GATE, IES, PSU 2 C O N T E N T 1.

More information

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Umesh Chandra Pandey 1, Tarun Soota 1 1 Department of Mechanical Engineering,

More information

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio International Review of Applied Engineering Research. ISSN 2248-9967 Volume 4, Number 1 (2014), pp. 39-46 Research India Publications http://www.ripublication.com/iraer.htm Combustion and Emission Characteristics

More information

Study of intake manifold for Universiti Malaysia Perlis automotive racing team formula student race car

Study of intake manifold for Universiti Malaysia Perlis automotive racing team formula student race car Journal of Physics: Conference Series PAPER OPEN ACCESS Study of intake manifold for Universiti Malaysia Perlis automotive racing team formula student race car To cite this article: A Norizan et al 2017

More information

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE G.S.Gosavi 1, R.B.Solankar 2, A.R.Kori 3, R.B.Chavan 4, S.P.Shinde 5 1,2,3,4,5 Mechanical Engineering Department, Shivaji University, (India)

More information

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 10 (January 2013), PP. 01-06 Effect of Tangential Grooves on Piston Crown

More information