# The Mechanics of Tractor - Implement Performance

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 The Mechanics of Tractor - Implement Performance Theory and Worked Examples R.H. Macmillan CHAPTER 3 TRACTOR PERFORMANCE ON FIRM SURFACE Printed from: CONTENTS 3.1 INTRODUCTION ENGINE PERFORMANCE General 3.3 (a) Output 3.3 (b) Input Output 3.3 (a) Torque speed 3.3 (b) Power - speed 3.5 (c) Summary Input 3.7 (a) Fuel consumption 3.7 (b) Specific fuel consumption TRACTOR DRAWBAR PERFORMANCE Output 3.11 (a) Travel speed - drawbar pull 3.11 (b) Drawbar power - drawbar pull Input 3.13 (a) Fuel consumption - drawbar power 3.13 (b) Specific fuel consumption - drawbar power Other measures of tractor performance 3.14 (a) Wheelslip - drawbar pull 3.14 (b) Tractive efficiency 3.14 (c) Tractive coefficient REFERENCES 3.16 Note: The Title Page, Preface, Table of Contents, Index, Appendices and details of the Farmland tractor can be found with Chapter 1.

2 INTRODUCTION CHAPTER 3 TRACTOR PERFORMANCE ON A FIRM SURFACE We begin the study of tractor performance in detail by considering the performance of a conventional two-wheel drive tractor when operating on a firm surface. As shown in Chapter 2 the ideal performance of a tractor reflects the performance of the engine and the transmission. (i) (ii) The travel speed depends directly on the engine speed, inversely on the transmission ratio and,when speed losses are considered, on the wheelslip. The drawbar pull depends directly on the engine torque, on the transmission ratio and, when force losses are considered, on the rolling resistance. (iii) The drawbar power directly on the engine power and the losses through the transmission and at the wheel / ground surface as in (i) and (ii) above. The actual performance of tractors has traditionally been determined by measurement during practical / experimental tests of their engines and the complete tractor operating under controlled and repeatable conditions as discussed in Section (b) above. In Chapter 3 we consider a conventional rear wheel drive tractor driven by a diesel engine through a transmission with discrete gears. The tractor was set up with tyres (size and weight) and other conditions as recommended by the manufacturer. It was then operated to explore the two variables that are open to choice by the operator, viz, governor setting and gear selected. The testing is done: (i) (ii) with the engine driving a rotary dynamometer or brake. Here the speed of the engine varies with the torque load on it for various settings of the governor as determined by the operator. The fuel consumption and efficiency of the engine are also measures of its performance. with the tractor being operated on a firm surface. Here the travel speed varies as the drawbar load is varied. The transmission ratio (the gear), as selected by the operator, influences the performance because it determines the condition under which the draught load is matched to the output of the engine. The efficiency of the transmission which is high and nearly constant is not a significant variable. The example given is for the hypothetical 'Farmland' tractor based on a selection of results from an Australian Tractor Test Report No 78 (Brown and Baillie, 1973). Other data which are used in this book, have been extracted and are presented in Table 1, Appendix II. The performance of the tractor is presented in graphical form. A detailed discussion of this technique is presented in Vasey and Baillie (1969). The following discussion is generally applicable to tractors with governed diesel engines (since these are now most commonly used) although most of the principles would apply to the performance of tractors with other forms of engine. Also, while the discussion is given mainly in terms of a four-wheel tractor, the same principles would generally apply to a two-wheel tractor (Pudjiono and Macmillan, 1995).

3 Torque Power Air charge Air consumption Engine speed, rpm Figure 3.1: Variation in air charge and torque also air consumption rate and power with engine speed. Reproduced from data in Goulburn and Brown (1993) with permission by Mechanical Engineering Publications / Professional Engineering Publishing Ltd. Engine torque, Nm Power PTO 5 Torque Engine speed, rpm Engine power, kw Figure 3.2: Variation of engine torque and power with speed for the Farmland tractor engine at maximum governor setting; data from Figure 2.2.

4 ENGINE PERFORMANCE General The detailed operation and performance of the diesel engine is presented in many text books, hence the discussion here will be limited to its input and output performance characteristics. (a) Output This is transmitted from the crankshaft in a rotational form, hence it is measured in terms of: (i) torque - rotational effort, Nm (ii) speed - rotational motion, rad/sec or rpm The output will be represented by the way in which the torque developed by the engine (equals torque load applied to the engine) varies with its (rotational) speed. (b) Input This is in the form of: (i) air drawn into the engine acting as a pump (air charge) (ii) fuel metered into the air: * already in the cylinders for diesel engine * by the carburetor during its passage to cylinders for a spark ignition engine The maximum output of the engine is effectively determined by the maximum input, the limiting factor being the quantity of air (charge) drawn into the cylinder on each stroke (Goulburn and Brown, 1993). This in turn will depend on: (i) the size of the cylinders (ii) the restriction offered by the air passages, valves, etc (iii) the time available for the air to be drawn in For a given engine: (i) at high speed, the time available for the air to enter the cylinders is so short that the air charge is reduced; (ii) at low speed, the time available for the air to enter the cylinders is longer but heating of the air in the cylinder reduces the charge Hence, for a given engine, there is an optimum speed at which most air is drawn in; at both higher and lower speeds, less air enters (Figure 3.1). Because the output (torque) from the engine depends on input (air), the maximum output (torque) coincides approximately with maximum air charge. Strictly, this statement is only true for a fixed air / fuel ratio, as determined by the amount of fuel which can be effectively burnt in the air available. More fuel will give slightly greater output torque, but most of the extra fuel will be wasted and will appear as black, un-burnt carbon in the exhaust gas Output (a) Torque - speed The torque output represents the magnitude of the rotational effort developed by the engine against a torque load applied to it. The torque-speed graph for an un-governed engine shows a very wide range of speed as the torque load is varied; see Figure 3.1. In operation the load on a tractor and hence the torque on the engine varies widely and in an unpredictable way, which would cause the tractor to slow down and speed up according to the load. This would be unsuitable, particularly for many PTO driven machines such as cereal harvesters or forage mowers where a constant PTO speed is needed. To overcome this problem and to reduce the speed variation with load, the engine is fitted with a governor. This is a device which: (i) can be set by the operator to give different engine speeds (ii) automatically increases the fuel to the engine as the load on it increases, to keep its speed approximately constant

5 Fuel consumption Specific fuel consumption Engine power, kw Figure 3.3 Variation of fuel consumption and specific fuel consumption with engine power for the Farmland tractor engine at maximum governor setting.

6 For any given governor setting, there are two ranges in which the engine can operate (Figure 3.2). (i) (ii) 3.5 In the "governed range(s)", where the engine runs under control of the governor. As the torque load varies, so fuel is varied to keep the speed approximately constant as shown by the near vertical line. Only the maximum governor setting is shown in Figure 3.2; lines for other governor settings are shown in Figure 3.4. In the full-fuel range, where the governor is not controlling the fuel supply. The fuel system supplies a fixed maximum quantity of fuel per stroke (as set by the manufacturer); the speed varies widely (from 225 to 1 rpm) as shown by the dotted line in Figure 3.2. The governed range is where the tractor is normally operated; the load and, as shown later, particularly the gear ratio are chosen to cause the engine to operate in this range. Thus the speed range is determined by the setting of the governor by the operator; within that range, the speed is automatically set by the governor. Maximum torque for a diesel engine is reached at quite a low speed. The increase in torque as the engine slows down in the full fuel range (sometimes called "torque back-up") is a reserve of effort; it indicates the ability of the engine to increase its torque output, above that at maximum power, prior to stalling (stopping). This feature appears in the drawbar characteristics of the tractor as discussed in Section and following. (b) Power - speed While the torque represents a fundamental performance parameter for the engine, the operator is usually more interested in the rate at which that torque effort will do work, ie, the power of the engine. From Equation 2.3 Engine power ( 1), Q e = 2π. Engine torque Te. Engine speed Ne For each point on and under the torque - speed curve, there is a corresponding point on and under the power - speed curve (Fig. 3.2). As the load on the engine is increased, the condition where the governor first provides the maximum fuel rate, gives maximum power for that governor setting. At higher torques and lower speeds in the full fuel range the power is less. The output from the PTO also reflects that of the engine. However Figure 3.2 shows only one value of the power output from the PTO when it is operating at the (arbitrarily) defined `standard PTO speed of 54 rpm. At this speed the engine in the Farmland tractor is rotating at 181 rpm. From this it will be seen that greater (or lesser) maximum power can be taken from the PTO but they will be at a speed greater (or less) than 54 rpm. (c) Summary As we increase the torque load on the engine: (i) in the governed ranges, the torque and power increase and the speed decreases slightly until the power reaches a maximum (ii) in the full-fuel range, any further increase in the torque load causes: * a small increase in the torque * a large decrease in the speed * a resultant decrease in the power (iii) at maximum torque the engine will stall. Varying the governor setting: (i) varies the governed range of speed in which the engine runs (ii) varies the maximum power developed by the engine (iii) does not vary the maximum torque developed by the engine The governed ranges are of most interest to the operator because it is in these that the engine operates most of the time. (1) Engine power is often termed `brake power (measured by a `brake or dynamometer) or `shaft power (available at the output `shaft ).

7 3.6 Engine power, kw 4 Drawbar 35 PTO SFC=35g/kWhr 5 Gov. setting Low Mid High Max Engine speed, rpm (a) Figure 3.4: (a) Specific fuel consumption plotted on an engine power / engine speed base for the Farmland tractor engine at various governor settings. (b) Model showing specific fuel consumption plotted on an engine torque / engine speed base for the International 434 tractor engine at various governor settings.

8 Input (a) Fuel consumption The other factor of interest in engine performance is the input as represented by the fuel consumption (strictly fuel consumption rate) and how this varies with the output as represented by the power in the governed range. Fuel consumption (FC) = Fuel used F Time taken t (3.1) It is quoted in kg/hr or L/hr and is usually plotted against power. As seen in Figure 3.3 the fuel consumption (above that required to keep the engine running at zero power) is approximately proportional to power. The graph shown applies to maximum governor setting; lower governor settings would give similar, but slightly lower fuel consumption - power graphs. (b) Specific fuel consumption rate The fuel consumption is a suitable parameter for representing the input performance of one engine but does not allow a comparison of engines of different size. To do that, it is convenient to calculate the fuel consumption (rate) per kw of power developed by the engine. Hence we define: Specific fuel consumption (SFC) = Fuel consumption FC Engine power Qe g/kwhr (3.2) Specific fuel consumption (sometimes termed fuel economy) is also usually plotted against engine power as also shown in Figure 3.3; low values signify good economy, ie, low rate of fuel consumption per unit power developed. Figure 3.3 gives the specific fuel consumption at maximum governor setting; lower governor settings would give similar, but usually slightly lower, specific fuel consumption - power graphs. At each point on and under the power-speed graph, we can calculate a specific fuel consumption; if this is plotted perpendicular to the page we obtain a surface representing the three important aspects of the engine performance on one graph, viz, speed, power and specific fuel consumption. Lines of equal specific fuel consumption are shown as contours on Figure 3.4 (a). A model of the specific fuel consumption, here plotted on a torque - speed base, is shown (for a different tractor) in Figure 3.4(b). The specific fuel consumption is generally lowest at 8-9% of maximum power at any governor setting. Hence, leaving aside other considerations discussed later, it would be desirable, from an economic point of view, to load the engine so that its operating point was in this region. The absolute lowest specific fuel consumption usually occurs at an intermediate governor setting. Problem 3.1 An engine rotates at 21 rpm and develops a torque of 79 Nm; it uses 1.17 kg of fuel in 15 min. Calculate the power it develops, its fuel consumption and specific fuel consumption. Answer: Q = 2πNT = FC = F t 2π x 21 x 79 = 17.4 kw 6 = SFC = FC Q = = 4.68 kg/hr = 269 g/kwhr

9 3.8 CIRCULAR SAW SAW BELT PULLEY LOG BELT PTO TRACTOR BELT PULLEY Figure 3.5 Schematic of wood saw driven from PTO of Farmland tractor; refer Problem 3.4

11 3.1 Travel speed, km/hr Gear Max. engine power envelope Drawbar pull, kn Max d'bar power envelope Wheelslip Wheel slip, % Figure 3.6 Travel speed and wheelslip versus drawbar pull for the Farmland tractor at maximum governor setting in various gears

12 TRACTOR DRAWBAR PERFORMANCE Output (a) Travel speed - drawbar pull The mechanism of the tractor (the transmission and wheels) converts the rotary motion of the engine to linear motion of the drawbar. As shown in Section above, the tractor operates: (i) with an ideal travel speed: V o = π D N e q This neglects loss in travel speed due to slip of the driving wheels. (ii) with an ideal drawbar pull: P = 2 q T e D This neglects loss in drawbar pull due to rolling resistance of the wheels. Thus for the tractor in: (i) higher gears (smaller values of q, smaller speed reductions, smaller torque multiplications) will give higher travel speeds and lower maximum drawbar pulls (ii) lower gears (larger values of q, larger speed reductions, larger torque multiplications) will give lower travel speeds and higher maximum drawbar pulls The actual travel speed - drawbar pull graphs for the Farmland tractor when tested on a test track at maximum governed speed are shown in Figure 3.6. Consideration of the above equations and Figure 3.2 will show that: (i) travel speed at zero drawbar pull is determined by gear ratio, q (ii) travel speed decreases as drawbar pull is increased because of decreasing engine speed and increasing wheelslip Comparison of these with the ideal graphs in Figure 2.2(c) shows that they are similar in form but the: (i) actual travel speeds are less than the ideal, particularly at higher drawbar pulls (ii) actual drawbar pulls are less than the ideal Increasing the drawbar pull of the tractor in the three highest gears will eventually bring the engine to its maximum torque condition at which forward motion will cease; the engine will stall. In the four lowest gears, the torque multiplication (q) is so great that, instead of stalling the engine as in the higher gears, the engine can make the wheels slip completely and hence the drawbar pull is effectively limited by wheelslip. In these gears, the engine does not reach full power; all such gears have the same maximum pull (Figure. 3.6). Plotting the maximum engine power envelope from Section and a maximum drawbar power envelope on these axes shows how the actual performance falls short of the maximum, particularly at large drawbar pulls. The above graphs are shown for maximum governor settings: lower settings will give lower travel speeds but approximately the same maximum drawbar pull in any gear corresponding to maximum torque, which is independent of the governor setting. Note the small, 'triangular' shaped areas between the performance lines for the gears and the maximum drawbar power envelope. These are areas in which the engine could operate the tractor but which are unavailable because of the discrete values of the gear ratios. More gears would reduce the size of these; in the limit a continuously variable transmission (as in a hydrostatic drive) would allow the tractor to operate at all points on or under the maximum drawbar power envelope.

13 Maximum engine power envelope 3 Maximum drawbar power envelope Gear Drawbar pull, kn Figure 3.7 Drawbar power versus drawbar pull for the Farmland tractor at maximum governor setting in various gears F C SFC Drawbar power, kw Figure 3.8: Drawbar fuel consumption and specific fuel consumption versus drawbar power for the Farmland tractor in 6th gear at maximum governor setting

14 3.13 (b) Drawbar power - drawbar pull Given the drawbar pull - travel speed characteristics of the tractor shown above, the drawbar power - drawbar pull characteristic will be determined from Equation 2.4: Drawbar power Q = Drawbar pull P. Travel speed V It is usual to plot drawbar power against drawbar pull as shown in Figure Consideration of the above equation and Figure 3.6 will show that: (i) at zero drawbar pull, the drawbar power will be zero (ii) the maximum drawbar power (shown with 'x' for the three higher gears) will correspond to maximum engine power (iii) for the lower gears, in which wheelslip is limiting, drawbar power will not reach the value corresponding to maximum engine power We can also identify the ideal power `envelope from Section which the drawbar power curves approach in the higher gears. In the lower gears, where drawbar pull is limited by wheelslip, they fall far short; the difference represents mainly the power losses because of wheelslip and, to a lesser extent, rolling resistance. This matter is discussed further in Section Input (a) Fuel consumption - drawbar power The fuel consumption characteristics of the tractor shown in Figure 3.8 for 6th gear and for the maximum governor setting will reflect the fuel consumption characteristics of the engine. Again the fuel consumption (rate) (above that required to keep the tractor moving with no drawbar pull) is approximately proportional to the drawbar power being developed. (b) Specific fuel consumption - drawbar power The specific fuel consumption (rate) for the tractor is defined as: SFC = Fuel consumption FC (tractor) Drawbar power Q The graph of specific fuel consumption versus drawbar power at maximum governor setting is also shown in Figure For a given engine power the tractor SFC will be higher than for the engine alone since the drawbar power will be less than the engine power due to power loss in the transmission and wheels. Conditions of efficient fuel use (good economy, low SFC) by the tractor will correspond to governor setting (hence engine speed), gear selected (hence travel speed) and drawbar pull (determined by the load) that will bring the engine to work in an area of low engine SFC as shown in Figure 3.4.

15 Other measures of tractor performance (a) Wheelslip - drawbar pull Wheelslip (usually abbreviated slip) represents a loss of forward motion by the tractor and an associated loss of power as discussed in Section 2.3 above. It arises because the force at the wheel / surface causes a loss of motion, ie, the tractor does not move forward an amount equal to the amount that the wheel rotates. (See also the more detailed discussion in Section 4.1 below). The definition of slip given in Section is equivalent to: Slip i = m o - m mo where: m = distance traveled for given number of revolutions with drawbar pull m o = distance traveled for given number of revolutions with zero drawbar pull Because it is closely related to the wheel / surface reaction (parallel to the surface), which depends on the drawbar pull, it is usual to plot slip against this variable, as also shown in Fig Slip does not depend to a significant extent on speed, hence a single slip - drawbar pull graph is shown for all gears ( travel speeds). Slip is an important dependent variable in showing the `state of the traction process and will be used in Chapter 4 to define the drawbar pull for one optimum condition, that is, maximum drawbar power. (b) Tractive efficiency Tractive efficiency was defined in Section as: ηt = Drawbar power Q d Wheel power Qw If we assume power losses in the transmission from engine to the wheels of, say 1%, we can write: ηt = Qd.9 x Qe Thus for the higher gears, for which we know both maximum engine power and maximum drawbar power (under the same conditions), we can calculate tractive efficiency as shown in Problems 3.5 and 3.9 below. (c) Tractive coefficient Tractive coefficient was defined in Section as: Drawbar pull P Tractive coefficient ψ = Weight on driving wheels W The tractive coefficient can be used to estimate the maximum drawbar pull for the tractor with other weights on the wheels or for other tractors with similar tyres, etc; see Problem 3.1 below.

16 3.15 Problem 3.5 A tractor was tested on a firm surface and gave the following data. Rear wheel weight Wr = 39 kg Engine power Q e = 62.1 kw Drawbar pull P = 26.2 kn Fuel consumed F = 176 g Distance, no-load m o = 55.8 m Time t = 25.8 s Distance, load m = 46.2 m Determine the wheelslip, travel speed, drawbar power, tractive efficiency, fuel consumption and specific fuel consumption. Answers: Wheelslip, i = (m o -m) m o = ( ) 55.8 = 17% Travel speed, V = m t = = 1.79 m/s Drawbar power, Q d = PV = 26.2 x 1.79 = 47 kw Assuming transmission efficiency η r =.9 Wheel power, Q w =.9 x 62.1 = 55.9 kw Tractive efficiency, η t = Q d = 46.9 Q w 55.9 = 84 % Fuel consumption rate, FC = F t = = 6.8 g/sec = 24.5 kg/hr Specific fuel consumption, SFC = FC Qd = 6.8 x = 52 g/kwhr Problem 3.6 For the Farmland tractor operating in 5th gear at maximum governor setting, use data from Figures 3.6 and 3.7 to determine: (i) the travel speed, drawbar power and the wheel slip if the drawbar pull is 1kN? Answers: 6 km/hr, 17 kw, 7.5 % (ii) what is the maximum drawbar pull in the governed range and the wheelslip under these conditions? Answers: 18 kn, 15 % Problem 3.7 For the Farmland tractor operating at maximum governor setting with a drawbar pull of 15 kn use data from Figure 3.6 and 3.7 to determine, for gears 1, 3 and 5, at what speeds it will travel, what drawbar powers will be developed and what will be the wheelslip? Answers: Gear 1, 2.3 km/hr, 9 kw, 11 %; gear 3, 3.6 km/hr, 15 kw,11 %; gear 5, 5.7 km/hr, 23 kw, 11 %.

17 3.16 Problem 3.8 For the Farmland tractor operating at maximum governor setting, and developing 2 kw at the drawbar, use data from Figure 3.6 and 3.7 to determine, for gears 4, 5 and 6, what drawbar pulls it will develop, at what speeds it will travel and what will be the wheel slips? Answers: Gear 4, 16.5 kn, 3.5 km/hr,12 %; gear 5, 12.5 kn, 5.9 km/hr, 9%; gear 6, 9.5 kn, 7.6 km/hr, 7 % Problem 3.9 For the Farmland tractor operating in 6th gear at maximum governor setting, use data from Figure 3.6 and 3.7 to determine: (i) what are the maximum drawbar power and the corresponding engine power? Answers: 26.2 kw, 33.5 kw. (ii) an estimate of the tractive efficiency: Answers: Tractive efficiency ηt = Drawbar power Qd.9 x Engine power Qe = x 33.5 = 87 % Problem 3.1 For the Farmland tractor use data from Figure 3.6 and 3.7 to determine: (i) What are the maximum drawbar pull and the maximum tractive coefficient if the weight on the rear wheels is 257kg. Answer: 21.5 kn Tractive coefficient = Maximum drawbar pull Pmax Weight on driving wheels W = 21.5 x x 9.8 =.85 at 1% wheelslip (ii) What weight would have to be added to the rear wheels of the tractor for it to have a maximum pull of 24kN? Answer: Assuming the same tractive coefficient at 1 % wheelslip: Maximum drawbar pull, P Weight on rear wheels W = max Maximum tractive coefficient, ψ max = 24 = 28.2 kn = 288 kg.85 Weight to be added = = 31 kg Note: A large increase in the weight on the rear wheels will give a proportional increase in the drawbar pull but may overload the transmission components and / or cause the tractor to tip over rearwards. 3.4 REFERENCES Brown, W.T. and Baillie, W.F. (1973) Australian Tractor Test Report No 78, Leyland 253. Australian Tractor Testing Committee, University of Melbourne. Goulburn, J.R. and Brown, D.G. (1993) Engine testing under transient conditions - accuracy and limitations Proceedings of Institution of Mechanical Engineers, published by Mechanical Engineering Publishers / Professional Engineering Publishing C465/6, Vasey, G.H. and Baillie, W.F. (1969) Graphical representation of tractor performance. Journal of Institution of Engineers, Australia. 41 (6) Pudjiono, E. and Macmillan, R.H. (1995) Measuring the drawbar performance of animals and small tractors; (ii) small tractors. Agricultural Mechanisation in Asia, Africa and Latin America, 26(1)

### Control System Instrumentation

Control System Instrumentation Chapter 9 Figure 9.3 A typical process transducer. Transducers and Transmitters Figure 9.3 illustrates the general configuration of a measurement transducer; it typically

### Control System Instrumentation

Control System Instrumentation Feedback control of composition for a stirred-tank blending system. Four components: sensors, controllers, actuators, transmission lines 1 Figure 9.3 A typical process transducer.

### Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset

Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset Vikas Kumar Agarwal Deputy Manager Mahindra Two Wheelers Ltd. MIDC Chinchwad Pune 411019 India Abbreviations:

### Components of Hydronic Systems

Valve and Actuator Manual 977 Hydronic System Basics Section Engineering Bulletin H111 Issue Date 0789 Components of Hydronic Systems The performance of a hydronic system depends upon many factors. Because

### Armature Reaction and Saturation Effect

Exercise 3-1 Armature Reaction and Saturation Effect EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate some of the effects of armature reaction and saturation in

### a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m.

Problem 3.1 The rolling resistance force is reduced on a slope by a cosine factor ( cos ). On the other hand, on a slope the gravitational force is added to the resistive forces. Assume a constant rolling

### Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers U. Bin-Nun FLIR Systems Inc. Boston, MA 01862 ABSTRACT Cryocooler self induced vibration is a major consideration in the design of IR

### Hoof type lug cage wheel for wetland traction

Chapter 3 Hoof type lug cage wheel for wetland traction The engine power of agricultural tractor (riding tractor) and power tiller (walking tractor) is transmitted to useful work in three ways, viz., power

### Heat Engines Lab 12 SAFETY

HB 1-05-09 Heat Engines 1 Lab 12 1 i Heat Engines Lab 12 Equipment SWS, 600 ml pyrex beaker with handle for ice water, 350 ml pyrex beaker with handle for boiling water, 11x14x3 in tray, pressure sensor,

### Technical Report Lotus Elan Rear Suspension The Effect of Halfshaft Rubber Couplings. T. L. Duell. Prepared for The Elan Factory.

Technical Report - 9 Lotus Elan Rear Suspension The Effect of Halfshaft Rubber Couplings by T. L. Duell Prepared for The Elan Factory May 24 Terry Duell consulting 19 Rylandes Drive, Gladstone Park Victoria

### Permanent Magnet DC Motor

Renewable Energy Permanent Magnet DC Motor Courseware Sample 86357-F0 A RENEWABLE ENERGY PERMANENT MAGNET DC MOTOR Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2011 Lab-Volt Ltd. All rights

### ELECTRIC DRIVES N.K. DE P.K. SEN

ELECTRIC DRIVES N.K. DE P.K. SEN Electric Drives NISIT K. DE Associate Professor Department of Electrical Engineering Indian Institute of Technology Kharagpur and PRASANTA K. SEN Assistant Professor Department

### FLUID POWER FLUID POWER EQUIPMENT TUTORIAL HYDRAULIC AND PNEUMATIC MOTORS. This work covers part of outcome 2 of the Edexcel standard module:

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL HYDRAULIC AND PNEUMATIC MOTORS This work covers part of outcome 2 of the Edexcel standard module: UNIT 21746P APPLIED PNEUMATICS AND HYDRAULICS The material needed

### Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV

Chapter 4 Lecture 16 Engine characteristics 4 Topics 4.3.3 Characteristics of a typical turboprop engine 4.3.4 Characteristics of a typical turbofan engine 4.3.5 Characteristics of a typical turbojet engines

### PREDICTION OF FUEL CONSUMPTION

PREDICTION OF FUEL CONSUMPTION OF AGRICULTURAL TRACTORS S. C. Kim, K. U. Kim, D. C. Kim ABSTRACT. A mathematical model was developed to predict fuel consumption of agricultural tractors using their official

### Design, fabrication and performance evaluation of tractor drawn trailer for PV powered rice threshing machine

Design, fabrication and performance evaluation of tractor drawn trailer for PV powered rice threshing machine Aju Adonis E. S. 1, Ibrahim Shuaibu 1, Mbonu Chukwuemeka G. 1, Uzoghelu Innocent T. 1, Agbomabinu

### Demonstration with optical fibres by Smart Fibres Ltd. Task 15

Demonstration with optical fibres by Smart Fibres Ltd. Task 15 Dutch Offshore Wind Energy Converter project DOWEC 10021 rev1 Name: Signature: Date: Written by: J.F. Kooij (LMGH) 30-09-03 version Date No

### Module 9. DC Machines. Version 2 EE IIT, Kharagpur

Module 9 DC Machines Lesson 38 D.C Generators Contents 38 D.C Generators (Lesson-38) 4 38.1 Goals of the lesson.. 4 38.2 Generator types & characteristics.... 4 38.2.1 Characteristics of a separately excited

### Overcoming Motor Driver Heat-Transfer Challenges in Robotic Applications

Overcoming Motor Driver Heat-Transfer Challenges in Robotic Applications Jason D. Carr, M.S. and David W. Sundin, Ph.D. Page 1 This paper is protected by copyright law. Individuals may reproduce and distribute

### Development of Power-head Based Fan Airflow Station

ESL-IC-5-1- Development of Power-head Based Fan Airflow Station Gang ang Research associate University of Nebraska, Lincoln Mingsheng Liu Professor University of Nebraska, Lincoln Abstract Fan airflow

### ISSN: SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS S.

Journal of Chemical and Pharmaceutical Sciences www.jchps.com ISSN: 974-2115 SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS

### 2 Principles of d.c. machines

2 Principles of d.c. machines D.C. machines are the electro mechanical energy converters which work from a d.c. source and generate mechanical power or convert mechanical power into a d.c. power. These

### TITLE: EVALUATING SHEAR FORCES ALONG HIGHWAY BRIDGES DUE TO TRUCKS, USING INFLUENCE LINES

EGS 2310 Engineering Analysis Statics Mock Term Project Report TITLE: EVALUATING SHEAR FORCES ALONG HIGHWAY RIDGES DUE TO TRUCKS, USING INFLUENCE LINES y Kwabena Ofosu Introduction The impact of trucks

### Chapter 4 Engine characteristics (Lectures 13 to 16)

Chapter 4 Engine characteristics (Lectures 13 to 16) Keywords: Engines for airplane applications; piston engine; propeller characteristics; turbo-prop, turbofan and turbojet engines; choice of engine for

### FLUID POWER FLUID POWER EQUIPMENT TUTORIAL HYDRAULIC AND PNEUMATIC CYLINDERS. This work covers part of outcome 2 of the Edexcel standard module:

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL HYDRAULIC AND PNEUMATIC CYLINDERS This work covers part of outcome 2 of the Edexcel standard module: UNIT 21746P APPLIED PNEUMATICS AND HYDRAULICS The material

### TKP3501 Farm Mechanization

TKP3501 Farm Mechanization Topic 8: Tractors and Power Units Ahmad Suhaizi, Mat Su Email: asuhaizi@upm.edu.my ASMS Why we need machineries? Type of machine available Filters, oil, Traditional vs modern

### Driver Driven. InputSpeed. Gears

Gears Gears are toothed wheels designed to transmit rotary motion and power from one part of a mechanism to another. They are fitted to shafts with special devices called keys (or splines) that ensure

### Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts

Chapter 7: DC Motors and Transmissions Electric motors are one of the most common types of actuators found in robotics. Using them effectively will allow your robot to take action based on the direction

### On Control Strategies for Wind Turbine Systems

On Control Strategies for Wind Turbine Systems Niall McMahon December 21, 2011 More notes to follow at: http://www.niallmcmahon.com/msc_res_notes.html 1 Calculations for Peak Tip Speed Ratio Assuming that

### Analysis of Parametric Studies on the Impact of Piston Velocity Profile On the Performance of a Single Cylinder Diesel Engine

IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 2 Ver. II (Mar - Apr. 2015), PP 81-85 www.iosrjournals.org Analysis of Parametric Studies

### FE151 Aluminum Association Inc. Impact of Vehicle Weight Reduction on a Class 8 Truck for Fuel Economy Benefits

FE151 Aluminum Association Inc. Impact of Vehicle Weight Reduction on a Class 8 Truck for Fuel Economy Benefits 08 February, 2010 www.ricardo.com Agenda Scope and Approach Vehicle Modeling in MSC.EASY5

### FLUID POWER TUTORIAL HYDRAULIC PUMPS APPLIED PNEUMATICS AND HYDRAULICS H1

FLUID POWER TUTORIAL HYDRAULIC PUMPS This work covers outcome 2 of the Edexcel standard module: APPLIED PNEUMATICS AND HYDRAULICS H1 The material needed for outcome 2 is very extensive so the tutorial

### Exercise 2-1. The Separately-Excited DC Motor N S EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Simplified equivalent circuit of a dc motor

Exercise 2-1 The Separately-Excited DC Motor EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the main operating characteristics of a separately-excited dc motor

### Technical Report Con Rod Length, Stroke, Piston Pin Offset, Piston Motion and Dwell in the Lotus-Ford Twin Cam Engine. T. L. Duell.

Technical Report - 1 Con Rod Length, Stroke, Piston Pin Offset, Piston Motion and Dwell in the Lotus-Ford Twin Cam Engine by T. L. Duell May 24 Terry Duell consulting 19 Rylandes Drive, Gladstone Park

### VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

C Electromechanical 01_1 Headline_36pt/14.4mm Cylinder EMC-HD C 01_2 Subheadline_15pt/7.2mm 2 Elektromechanischer Zylinder EMC-HD Short product name Example: EMC 085 HD 1 System = ElectroMechanical Cylinder

### Australian Standard. Wind turbines. Part 2: Design requirements for small wind turbines. AS IEC IEC , Ed.2.

AS IEC 61400.2 2013 IEC 61400-2, Ed.2.0 (2006) AS IEC 61400.2 2013 Australian Standard Wind turbines Part 2: Design requirements for small wind turbines This Australian Standard was prepared by Committee

### Chapter 3. Power Measurement Methods. Power Measurement Methods. Engine and Vehicle Testing

Chapter 3 Engine and Vehicle Testing Power Measurement Methods Power the rate of doing work. A unit of power is a newton meter per second (watt). Brake power the power output of the engine crankshaft.

### CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS Objective Describe the necessary conditions for motor and generator operation. Calculate the force on a conductor carrying current in the presence of the

### PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE V. S. Konnur Department of Mechanical Engineering, BLDEA s Engineering College, Bijapur, Karnataka, (India) ABSTRACT The automotive

### Unit V HYDROSTATIC DRIVE AND ELECTRIC DRIVE

Unit V HYDROSTATIC DRIVE AND ELECTRIC DRIVE HYDROSTATIC DRIVE In this type of drives a hydrostatic pump and a motor is used. The engine drives the pump and it generates hydrostatic pressure on the fluid.

### FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT Antti MAKELA, Jouni MATTILA, Mikko SIUKO, Matti VILENIUS Institute of Hydraulics and Automation, Tampere University of Technology P.O.Box

### Comparative Study Of Four Stroke Diesel And Petrol Engine.

Comparative Study Of Four Stroke Diesel And Petrol Engine. Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion

### Laboratory Exercise 12 THERMAL EFFICIENCY

Laboratory Exercise 12 THERMAL EFFICIENCY In part A of this experiment you will be calculating the actual efficiency of an engine and comparing the values to the Carnot efficiency (the maximum efficiency

### CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT

CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT Compass needle:- It is a small bar magnet, whose north end is pointing towards north pole and south end is pointing towards south pole of earth..hans Oersted

### THE ENGINEERING AND PROCESS EFFECTS OF CHOOSING A MOTOR DESIGN SPEED. *A.G. Doll 1 and K. Tischler 2

THE ENGINEERING AND PROCESS EFFECTS OF CHOOSING A MOTOR DESIGN SPEED *A.G. Doll 1 and K. Tischler 2 1 Alex G. Doll Consulting Ltd. PO Box 1236 Logan Lake, BC, Canada V0K1W0 (*Corresponding author: alex.doll@sagmilling.com)

### Three-Phase Induction 208V Motor with MATLAB

EXPERIMENT Induction motor with Matlab Three-Phase Induction Motors 208V LL OBJECTIVE This experiment demonstrates the performance of squirrel-cage induction motors and the method for deriving electrical

### Inverter control of low speed Linear Induction Motors

Inverter control of low speed Linear Induction Motors Stephen Colyer, Jeff Proverbs, Alan Foster Force Engineering Ltd, Old Station Close, Shepshed, UK Tel: +44(0)1509 506 025 Fax: +44(0)1509 505 433 e-mail:

### Boiler Efficiency and Safety

Boiler Efficiency and Safety Some potential savings from following advice in this book First, enhanced safety saves life and health Savings of S to 10 per cent on fuel costs are often possible at little

### EXPERIMENTAL METHOD OF DETERMINING CHARACTERISTICS OF POWER AND TORQUE ENGINE FOR LOW-POWER UNMANNED AERIAL VEHICLES

Journal of KONES Powertrain and Transport, Vol. 18, No. 3 2011 EXPERIMENTAL METHOD OF DETERMINING CHARACTERISTICS OF POWER AND TORQUE ENGINE FOR LOW-POWER UNMANNED AERIAL VEHICLES Grzegorz Jastrz bski,

### CLOSED CIRCUIT HYDROSTATIC TRANSMISSION

Energy conservation and other advantages in Mobile Equipment Through CLOSED CIRCUIT HYDROSTATIC TRANSMISSION C. Ramakantha Murthy Technical Consultant Various features/advantages of HST Hydrostatic transmissions

### Exercises with the maxon Selection Program

Exercises with the maxon Selection Program http://www.maxonmotor.com/maxon/view/msp Purposes and Goals The participants - learn how to use the main parts of the maxon selection program. - select motor-gearhead

### Electric Motors and Drives

EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage:

### Contents. Preface... xiii Introduction... xv. Chapter 1: The Systems Approach to Control and Instrumentation... 1

Contents Preface... xiii Introduction... xv Chapter 1: The Systems Approach to Control and Instrumentation... 1 Chapter Overview...1 Concept of a System...2 Block Diagram Representation of a System...3

### EXPERIMENTAL STUDY ON DIESEL ENGINE FITTED WITH VISCO FAN DRIVE

Bulletin of the Transilvania University of Braşov Vol. 9 (58) No. 1-2016 Series I: Engineering Sciences EXERIMENTAL STUDY ON DIESEL ENGINE FITTED WITH VISCO FAN DRIVE Veneția SANDU 1 Abstract: The paper

### E-training. Positioners (Pneumatic, Electro pneumatic, I to P converters) Pneumatically actuated valves can be positioned in a number of ways.

Welcome to the K Controls e-training course designed to deliver useful Pneumatic Valve Actuation application information in small instalments. To unsubscribe or to register a colleague to receive these

### Principles of Doubly-Fed Induction Generators (DFIG)

Renewable Energy Principles of Doubly-Fed Induction Generators (DFIG) Courseware Sample 86376-F0 A RENEWABLE ENERGY PRINCIPLES OF DOUBLY-FED INDUCTION GENERATORS (DFIG) Courseware Sample by the staff

### Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model

Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model The interaction between a vehicle and the road is a very complicated dynamic process, which involves many fields such as vehicle

### Discussion Paper. Effect of Anti-Squat Adjustment in Solid Axle 4 Link Rear Suspension Systems

Discussion Paper Effect of Anti-Squat Adjustment in Solid Axle 4 Link Rear Suspension Systems Example used is Commodore 1990 VG utility fitted with Whiteline KTA103 adjustable upper trailing arms. Prepared

### White paper: Originally published in ISA InTech Magazine Page 1

Page 1 Improving Differential Pressure Diaphragm Seal System Performance and Installed Cost Tuned-Systems ; Deliver the Best Practice Diaphragm Seal Installation To Compensate Errors Caused by Temperature

### Tuning the System. I. Introduction to Tuning II. Understanding System Response III. Control Scheme Theory IV. BCU Settings and Parameter Ranges

I. Introduction to Tuning II. Understanding System Response III. Control Scheme Theory IV. BCU Settings and Parameter Ranges a. Determining Initial Settings The Basics b. Determining Initial Settings -

Application Guidance Notes: Technical Information from Cummins Generator Technologies AGN 017 - Unbalanced Loads There will inevitably be some applications where a Generating Set is supplying power to

### Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

### ) and the rotor position (f r

Microstepping This application note discusses microstepping and the increased system performance that it offers. Some of the most important factors that limit microstepping performance, as well as methods

### ECH 4224L Unit Operations Lab I Fluid Flow FLUID FLOW. Introduction. General Description

FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

### RE / STAR Tolerance Rings STAR Ball Knobs, Knob and Lever Type Handles

RE 2 970/.99 STAR Tolerance Rings STAR Ball Knobs, Knob and Lever Type Handles STAR Tolerance Rings Product Overview Tolerance rings are made of hard, embossed spring steel strip and belong to the class

### INTRODUCTION. I.1 - Historical review.

INTRODUCTION. I.1 - Historical review. The history of electrical motors goes back as far as 1820, when Hans Christian Oersted discovered the magnetic effect of an electric current. One year later, Michael

### Chapter 3.2: Electric Motors

Part I: Objective type questions and answers Chapter 3.2: Electric Motors 1. The synchronous speed of a motor with 6 poles and operating at 50 Hz frequency is. a) 1500 b) 1000 c) 3000 d) 750 2. The efficiency

DEPARTMENT OF MECHANICAL ENGINEERING Subject code: ME6601 Subject Name: DESIGN OF TRANSMISSION SYSTEMS UNIT-I DESIGN OF TRANSMISSION SYSTEMS FOR FLEXIBLE ELEMENTS 1. What is the effect of centre distance

### HYDROSTATIC TRANSMISSION AS AN ALTERNATIVE TO CONVENTIONAL GEARBOX

HYDROSTATIC TRANSMISSION AS AN ALTERNATIVE TO CONVENTIONAL GEARBOX Sumair Sunny 1, Sunny Pawar 2, Siddhesh Ozarkar 3, Sandeepan Biswas 4 1 B.E. Mechanical, Maharashtra Institute of Technology Pune, Maharashtra,

### Application Information

Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### The characteristics of each type of service are given in table 1 given below:

Types of Railway Services There are three types of passenger services which traction system has to cater for namely Urban, Sub-urban and Main line services. 1. Urban or city service In this type of service

### Electrical machines - generators and motors

Electrical machines - generators and motors We have seen that when a conductor is moved in a magnetic field or when a magnet is moved near a conductor, a current flows in the conductor. The amount of current

### Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator

TECHNICAL PAPER Preliminary Study on Quantitative Analysis of Steering System Using Hardware-in-the-Loop (HIL) Simulator M. SEGAWA M. HIGASHI One of the objectives in developing simulation methods is to

### Application Note CTAN #146

Application Note CTAN #146 The application note is pertinent to Unidrive in Servo Mode. Unidrive Servo Motor Thermal Protection Pertinent Servo Motor Data : 1. Torque Constant (Kt): The relationship between

### CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY

135 CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY 6.1 INTRODUCTION Shock is often defined as a rapid transfer of energy to a mechanical system, which results in a significant increase in the stress,

### ENGINE & WORKING PRINCIPLES

ENGINE & WORKING PRINCIPLES A heat engine is a machine, which converts heat energy into mechanical energy. The combustion of fuel such as coal, petrol, diesel generates heat. This heat is supplied to a

DC MOTORS DC Motors DC Motor is a Machine which converts Electrical energy into Mechanical energy. Dc motors are used in steel plants, paper mills, textile mills, cranes, printing presses, Electrical locomotives

### Using Hydraulic Systems

Lesson A6 7 Using Hydraulic Systems Unit A. Mechanical Systems and Technology Problem Area 6. Agricultural Power Systems Lesson 7. Using Hydraulic Systems New Mexico Content Standard: Pathway Strand: Power,

### ELEN 236 DC Motors 1 DC Motors

ELEN 236 DC Motors 1 DC Motors Pictures source: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html#c1 1 2 3 Some DC Motor Terms: 1. rotor: The movable part of the DC motor 2. armature: The

### Introduction to Vibration & Pulsation in Reciprocating Compressors

Introduction to Vibration & Pulsation in Reciprocating Compressors Shelley D. Greenfield, P.Eng. Vice President, Design Services sgreenfield@betamachinery.com Luis de la Roche Operations Manager ldelaroche@betamachinery.com

### FABV and Controllability impact of Autonomous Systems

FABV and Controllability impact of Autonomous Systems Introduction and future application Jim Crawley Haldex Brake Products Ltd. 1 Presentation Content Contents Introduction to the Fast Acting brake valve

### Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs

14 Special Issue Basic Analysis Towards Further Development of Continuously Variable Transmissions Research Report Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs Hiroyuki

### ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism)

ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism) 1) Define resistant body. 2) Define Link or Element 3) Differentiate Machine and Structure 4) Define Kinematic Pair. 5) Define Kinematic Chain.

### Pneumatic & Hydraulic SYSTEMS

Pneumatic & Hydraulic SYSTEMS CHAPTER EIGHT HYDRAULIC PUMPS AND ACTUATORS Dr. Ibrahim Naimi The higher the discharge pressure, the lower the volumetric efficiency because internal leakage

### In order to discuss powerplants in any depth, it is essential to understand the concepts of POWER and TORQUE.

-Power and Torque - ESSENTIAL CONCEPTS: Torque is measured; Power is calculated In order to discuss powerplants in any depth, it is essential to understand the concepts of POWER and TORQUE. HOWEVER, in

### COMPRESSIBLE FLOW ANALYSIS IN A CLUTCH PISTON CHAMBER

COMPRESSIBLE FLOW ANALYSIS IN A CLUTCH PISTON CHAMBER Masaru SHIMADA*, Hideharu YAMAMOTO* * Hardware System Development Department, R&D Division JATCO Ltd 7-1, Imaizumi, Fuji City, Shizuoka, 417-8585 Japan

### Axial Piston Fixed Motor A2FM

Axial Piston Fixed Motor A2FM RE 91001/06.2012 1/46 Replaces: 09.07 Data sheet Series 6 Size Nominal pressure/maximum pressure 5 315/350 bar 10 to 200 400/450 bar 250 to 1000 350/400 bar Open and closed

### Experiment 5 Shunt DC Motor (I)

Objective To determine the torque-speed and efficiency characteristic curves. To f out how to reverse the direction of rotation of a shunt dc motor. Introduction shunt dc motor is essentially the same

### R (a) Define (i) Mean spherical Candlepower (ii) Waste light factor

Set No: 1 1. (a) Derive the relation between the temperature of a motor at a particular time during operation and final temperature. (b) What do you understand by load equalization? 2. (a) What are the

### POWER TAKE-OFF SERIES

Kwa-Zulu Natal: 9 Clubhouse Place, Westmead, Pinetown PO Box 1076, Pinetown, 3600, South Africa Western Cape: Saxenburg Road, Blackheath, Cape Town PO Box 281 Kuilsriver, 7579, South Africa Gauteng: 48

### SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110. Aircraft and Automotive Systems

s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110 Aircraft and Automotive Systems Time allowed: TWO hours Answer TWO questions from THREE in Section A and TWO questions

### Cam Motion Case Studies #1 and # 2

Cam Motion Case Studies #1 and # 2 Problem/Opprtunity: At an operating speed of 150 to 160 rpm, Cam Motion #1 causes the cam follower to leave the cam surface unless excessive air pressure is applied to

### Comparative Field Evaluation of Three Models of a Tractor

Comparative Field Evaluation of Three Models of a Tractor Ahaneku, I. E. 1+, O. A. Oyelade 2, and T. Faleye 2 1. Department of Agricultural and Bioresources Engineering, Federal University of Technology,

### SpiritPFC Torque/Horsepower Comparison Dynamometer Test Date: 5/7/2006

SpiritPFC / Comparison Dynamometer Test Date: 5/7/2006 Dynamometer Test Outline: Contained within this document you will find data collected using a Dyno Datamite engine dynamometer hardware and software