Lunar Robotics. Dr. Rob Ambrose, NASA JSC December Dr. Robert O. Ambrose

Size: px
Start display at page:

Download "Lunar Robotics. Dr. Rob Ambrose, NASA JSC December Dr. Robert O. Ambrose"

Transcription

1 Lunar Robotics Dr. Rob Ambrose, NASA JSC December 27 Dr. Robert O. Ambrose NASA Johnson Space Center Houston Texas April 27 R. Ambrose, (281) December 27 Pg. 1 Outline A look at the Constellation Lunar Architecture Where can Robotics Play a Role? Turning those Concepts into Reality NASA s ETDP Human Robotics Systems Program R. Ambrose, (281) December 27 Pg. 2 1

2 Lunar Architecture Campaign Level View (Trade Set 1 ICP with integrated ATHLETE legs) 25 Lab-1 & ICP/LA Hab-1 & ICP/LA # # - Crew Size - Mission Duration Cumulative Days on Surface CCK MCT Solar Array MC CT Lab-1 SPR & ICP /LA Solar Array 1 UTSE ICP/SA 28 Hab-1 & ICP /LA 5 UTSE ICP/SA SPR MCT OPS ISRU 9 ICP /SA ICP/SA 18 ICP /SA ICP /SA 18 ICP /SA 18 ICP /SA total surface days Notes: Unpressurized, Liquid, & Gas carriers not shown Each Crewed Lander & Flight 1 has 5 kg of Science ICP/SA includes 2 kw of net power generation ICP/LA includes 1 kw of net power generation R. Ambrose, (281) FY19 FY2 FY21 FY22 FY23 FY2 FY25 FY26 FY27 FY28 FY29 December 27 Pg. 3 Outpost Phases A1 Test & Reconnaissance Minimum Habitation Capability & Human Return to the Moon Enhanced Mobility Extended Mobility Long Duration Outpost Capability R. Ambrose, (281) December 27 Pg. 2

3 Outpost Phases A2 Test & Reconnaissance Minimum Habitation Capability & Human Return to the Moon Enhanced Mobility Extended Mobility Long Duration Outpost Capability R. Ambrose, (281) December 27 Pg. 5 Lunar Outpost Surface Systems 2 kw Array (net) 1 kw Array (net) Integrated Cargo Pallet (ICP) ( Supports / scavenges from crewed landers ) Logistics Pantry Habitation Element Habitation Element ICP (Facilitates SPR docking & charging) Small Pressurized Rover (SPR) ATHLETE Mobility System (2) Common Airlock With Lander ISRU Oxygen Production Plant Unpressurized Rover R. Ambrose, (281) December 27 Pg. 6 3

4 Architecture Concept Mobile Habitat <2, Kg Payload Integrated Power Docking Together 1+ Km Range R. Ambrose, (281) December 27 Pg. 7 Architecture Concept Small Pressurized Rover Fast Out the Door Radiation Protection Hatch Docking 1+ Km Range R. Ambrose, (281) December 27 Pg. 8

5 Architecture Concepts R. Ambrose, (281) December 27 Pg. 9 NASA s Exploration Technology OutlineDevelopment Program Turning the Cartoons into Reality R. Ambrose, (281) December 27 Pg. 1 5

6 The Players R. Ambrose, (281) December 27 Pg. 11 HRS Technology Description (ATHLETE) Leadership NASA JPL B. Wilcox Technologies Wheel-on-limb Mobility Mobility & manipulation Active suspension Payload offloading Habitat docking Hatch mating Collaborations Stanford (Latome) Michelin (Switzerland) R. Ambrose, (281) December 27 Pg. 12 6

7 HRS Technology Description (Chariot) Leadership NASA JSC Ambrose, Bluethmann, Junkin Technologies Novel chassis kinematics Active/Passive suspension Upright crew accomodations Chassis leveling Small Pressurized Rover Ops Collaborations ETDP Advanced Suits ETDP Thermal Control ETDP ISRU ETDP Power R. Ambrose, (281) December 27 Pg. 13 HRS Technology Description (Centaur) Leadership NASA JSC Ambrose, Diftler, Bluethmann Technologies Autonomous Manipulation Dexterity Mobile Manipulation Time Delayed Supervision Astronaut Assistance Surface Science Collaborations UMass (Grupen) MIT (Brooks) Vanderbilt (Peters) Many earlier grants R. Ambrose, (281) December 27 Pg. 1 7

8 HRS Technology Description (K-1) Leadership NASA ARC Fong, Deans Technologies Site survey sensing Remote supervision Mapping & prospecting video Collaborations Ball Aerospace CMU R. Ambrose, (281) December 27 Pg. 15 HRS Technology Description (Scarab) Leadership NASA GRC & CMU Whittaker, Caruso Technologies Novel chassis kinematics Integrated drill Wheel spikes for drilling Dark navigation Collaborations CMU NorCat ETDP ISRU R. Ambrose, (281) December 27 Pg. 16 8

9 Surface Scenario Video (2 minute) R. Ambrose, (281) December 27 Pg. 17 Plans for FY8 June 28 Field Test Desert West Nevada, Washington, California Architecture Landings Landers 1, 2, 3 & 6 October 28 Field Test Desert West Architecture Landings Landers & 5 Long Range Excursion w/ Crew November 28 Hawaii ISRU Evaluations O2 Production from Regolith Prospecting R. Ambrose, (281) December 27 Pg. 18 9

10 HRS Team (7 NASA Centers and 1+ Companies) R. Ambrose, (281) December 27 Pg. 19 1

Next Steps in Human Exploration: Cislunar Systems and Architectures

Next Steps in Human Exploration: Cislunar Systems and Architectures Next Steps in Human Exploration: Cislunar Systems and Architectures Matthew Duggan FISO Telecon August 9, 2017 2017 The Boeing Company Copyright 2010 Boeing. All rights reserved. Boeing Proprietary Distribution

More information

Lunar Architecture and LRO

Lunar Architecture and LRO Lunar Architecture and LRO Lunar Exploration Background Since the initial Vision for Space Exploration, NASA has spent considerable time defining architectures to meet the goals Original ESAS study focused

More information

lights on, down 2 ½ 40 feet, down 2 ½ Kickin up some dust 30 feet, 2 ½ down faint shadow

lights on, down 2 ½ 40 feet, down 2 ½ Kickin up some dust 30 feet, 2 ½ down faint shadow lights on, down 2 ½ 40 feet, down 2 ½ Kickin up some dust 30 feet, 2 ½ down faint shadow John Connolly Lunar Lander Project Office 1 Components of Program Constellation Earth Departure Stage Ares V - Heavy

More information

Exploration Architecture Update

Exploration Architecture Update Exploration Architecture Update Doug Cooke Deputy Associate Administrator Exploration Systems Mission Directorate John Connolly Vehicle Engineering and Integration Lunar Lander Project Office March 14,

More information

The Intermediate Outpost - An Alternate Concept for Human Lunar Exploration

The Intermediate Outpost - An Alternate Concept for Human Lunar Exploration AIAA SPACE 2007 Conference & Exposition 18-20 September 2007, Long Beach, California AIAA 2007-6274 The Intermediate Outpost - An Alternate Concept for Human Lunar Exploration Wilfried K. Hofstetter *,

More information

3 DESIGN. 3.1 Chassis and Locomotion

3 DESIGN. 3.1 Chassis and Locomotion A CANADIAN LUNAR EXPLORATION LIGHT ROVER PROTOTYPE *Ryan McCoubrey (1), Chris Langley (1), Laurie Chappell (1), John Ratti (1), Nadeem Ghafoor (1), Cameron Ower (1), Claude Gagnon (2), Timothy D. Barfoot

More information

Two Related Primary Challenges for Successful Renewed Lunar Exploration

Two Related Primary Challenges for Successful Renewed Lunar Exploration Two Related Primary Challenges for Successful Renewed Lunar Exploration October 10, 2017 Presented By Ron Creel Retired Apollo Lunar Roving Vehicle Team Member OUTLINE Challenge 1 Coping with Exposure

More information

LUNAR DAYLIGHT EXPLORATION Cost Constrained Human and Robotic Exploration Brand Norman Griffin 1 A.M., ASCE

LUNAR DAYLIGHT EXPLORATION Cost Constrained Human and Robotic Exploration Brand Norman Griffin 1 A.M., ASCE LUNAR DAYLIGHT EXPLORATION Cost Constrained Human and Robotic Exploration Brand Norman Griffin 1 A.M., ASCE ABSTRACT With 1 rover, 2 astronauts and 3 days, the Apollo 17 Mission covered over 30 km, setup

More information

European Lunar Lander: System Engineering Approach

European Lunar Lander: System Engineering Approach human spaceflight & operations European Lunar Lander: System Engineering Approach SECESA, 17 Oct. 2012 ESA Lunar Lander Office European Lunar Lander Mission Objectives: Preparing for Future Exploration

More information

An Overview of CSA s s Space Robotics Activities

An Overview of CSA s s Space Robotics Activities An Overview of CSA s s Space Robotics Activities Erick Dupuis, Mo Farhat ASTRA 2011 ESTEC, Noordwijk, The Netherlands Introduction Key Priority Area for CSA Recent Reorganisation Strategy Guided by Global

More information

Massachusetts Space Grant Consortium

Massachusetts Space Grant Consortium Massachusetts Space Grant Consortium Distinguished Lecturer Series NASA Administrator Dr. Michael Griffin NASA s Exploration Architecture March 8, 2006 Why We Explore Human curiosity Stimulates our imagination

More information

Analysis of Power Storage Media for the Exploration of the Moon

Analysis of Power Storage Media for the Exploration of the Moon Analysis of Power Storage Media for the Exploration of the Moon Michael Loweth, Rachel Buckle ICEUM 9 22-26 th October 2007 ABSL Space Products 2005 2007 Servicing USA and the ROW UNITED KINGDOM Culham

More information

A LEO Propellant Depot System Concept for Outgoing Exploration

A LEO Propellant Depot System Concept for Outgoing Exploration A LEO Propellant Depot System Concept for Outgoing Exploration Dallas Bienhoff The Boeing Company 703-414-6139 NSS ISDC Dallas, Texas May 25-28, 2007 First, There was the Vision... Page 1 Then, the ESAS

More information

IAC-10-A5.1.6 A POWER ARCHITECTURE FOR THE ISECG REFERENCE ARCHITECTURE FOR HUMAN LUNAR EXPLORATION. M. Haese ESA, The Netherlands,

IAC-10-A5.1.6 A POWER ARCHITECTURE FOR THE ISECG REFERENCE ARCHITECTURE FOR HUMAN LUNAR EXPLORATION. M. Haese ESA, The Netherlands, IAC-10-A5.1.6 A POWER ARCHITECTURE FOR THE ISECG REFERENCE ARCHITECTURE FOR HUMAN LUNAR EXPLORATION M. Haese ESA, The Netherlands, marc.haese@esa.int Pat George NASA Glenn Research Center, USA, patrick.j.george@nasa.gov

More information

Lunar Missions by Year - All Countries. Mission count dropped as we transitioned from politically driven missions to science driven missions

Lunar Missions by Year - All Countries. Mission count dropped as we transitioned from politically driven missions to science driven missions n Lunar Missions by Year - All Countries Key: All Mission Attempts Mission Successes Mission count dropped as we transitioned from politically driven missions to science driven missions Capability Driven

More information

Initial Concept Review Team Alpha ALUM Rover (Astronaut Lunar Utility Mobile Rover) Friday, October 30, GMT

Initial Concept Review Team Alpha ALUM Rover (Astronaut Lunar Utility Mobile Rover) Friday, October 30, GMT Initial Concept Review Team Alpha ALUM Rover (Astronaut Lunar Utility Mobile Rover) Friday, October 30, 2009 1830-2030 GMT Rover Requirements/Capabilities Performance Requirements Keep up with an astronaut

More information

Lunar Surface Access from Earth-Moon L1/L2 A novel lander design and study of alternative solutions

Lunar Surface Access from Earth-Moon L1/L2 A novel lander design and study of alternative solutions Lunar Surface Access from Earth-Moon L1/L2 A novel lander design and study of alternative solutions 28 November 2012 Washington, DC Revision B Mark Schaffer Senior Aerospace Engineer, Advanced Concepts

More information

LUNAR INDUSTRIAL RESEARCH BASE. Yuzhnoye SDO proprietary

LUNAR INDUSTRIAL RESEARCH BASE. Yuzhnoye SDO proprietary LUNAR INDUSTRIAL RESEARCH BASE DESCRIPTION Lunar Industrial Research Base is one of global, expensive, scientific and labor intensive projects which is to be implemented by the humanity to meet the needs

More information

Lunette: A Global Network of Small Lunar Landers

Lunette: A Global Network of Small Lunar Landers Lunette: A Global Network of Small Lunar Landers Leon Alkalai and John O. Elliott Jet Propulsion Laboratory California Institute of Technology LEAG/ILEWG 2008 October 30, 2008 Baseline Mission Initial

More information

Cooperative EVA/Telerobotic Surface Operations in Support of Exploration Science

Cooperative EVA/Telerobotic Surface Operations in Support of Exploration Science Cooperative EVA/Telerobotic Surface Operations in Support of Exploration Science David L. Akin http://www.ssl.umd.edu Planetary Surface Robotics EVA support and autonomous operations at all physical scales

More information

On Orbit Refueling: Supporting a Robust Cislunar Space Economy

On Orbit Refueling: Supporting a Robust Cislunar Space Economy On Orbit Refueling: Supporting a Robust Cislunar Space Economy Courtesy of NASA 3 April 2017 Copyright 2014 United Launch Alliance, LLC. All Rights Reserved. Atlas V Launch History ULA s Vision: Unleashing

More information

Brief overview of lunar surface environment Examples of rover types and designs Steering systems Static and dynamic stability

Brief overview of lunar surface environment Examples of rover types and designs Steering systems Static and dynamic stability Brief overview of lunar surface environment Examples of rover types and designs Steering systems Static and dynamic stability 2007 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Lunar

More information

Mission to Mars: Project Based Learning Previous, Current, and Future Missions to Mars Dr. Anthony Petrosino, Department of Curriculum and Instruction, College of Education, University of Texas at Austin

More information

IN DECEMBER 2006, NASA published their initial plan [1] for a

IN DECEMBER 2006, NASA published their initial plan [1] for a JOURNAL OF SPACECRAFT AND ROCKETS Vol. 46, No. 2, March April 2009 Analysis of Human Lunar Outpost Strategies and Architectures Wilfried K. Hofstetter, Paul D. Wooster, and Edward F. Crawley Massachusetts

More information

NASA Glenn Research Center Intelligent Power System Control Development for Deep Space Exploration

NASA Glenn Research Center Intelligent Power System Control Development for Deep Space Exploration National Aeronautics and Space Administration NASA Glenn Research Center Intelligent Power System Control Development for Deep Space Exploration Anne M. McNelis NASA Glenn Research Center Presentation

More information

Human Exploration of the Lunar Surface

Human Exploration of the Lunar Surface International Space Exploration Coordination Group Human Exploration of the Lunar Surface International Architecture Working Group Future In-Space Operations Telecon September 20, 2017 Icon indicates first

More information

INTERNATIONAL LUNAR NETWORK ANCHOR NODES AND ROBOTIC LUNAR LANDER PROJECT UPDATE

INTERNATIONAL LUNAR NETWORK ANCHOR NODES AND ROBOTIC LUNAR LANDER PROJECT UPDATE INTERNATIONAL LUNAR NETWORK ANCHOR NODES AND ROBOTIC LUNAR LANDER PROJECT UPDATE NASA/ Barbara Cohen Julie Bassler Greg Chavers Monica Hammond Larry Hill Danny Harris Todd Holloway Brian Mulac JHU/APL

More information

Design of Power Systems for Extensible Surface Mobility Systems on the Moon and Mars

Design of Power Systems for Extensible Surface Mobility Systems on the Moon and Mars Design of Power Systems for Extensible Surface Mobility Systems on the Moon and Mars by SeungBum Hong B.S. in Mechanical and Aerospace Engineering, Seoul National University (2002) Submitted to the Department

More information

Lunar Escape. Astronaut Rescue and Recovery Rover. Members: Mohammad Alzohay, Dan Janke, Kyle Kilgore, Samad Qureshi, Nicholas Wade-Mayhue

Lunar Escape. Astronaut Rescue and Recovery Rover. Members: Mohammad Alzohay, Dan Janke, Kyle Kilgore, Samad Qureshi, Nicholas Wade-Mayhue Lunar Escape Astronaut Rescue and Recovery Rover Members: Mohammad Alzohay, Dan Janke, Kyle Kilgore, Samad Qureshi, Nicholas Wade-Mayhue Lunar Escape 1 Little Astronaut, Big Planet Lunar Escape 2 Moon

More information

Extending NASA s Exploration Systems Architecture towards Longterm Crewed Moon and Mars Operations

Extending NASA s Exploration Systems Architecture towards Longterm Crewed Moon and Mars Operations SpaceOps 2006 Conference AIAA 2006-5746 Extending NASA s Exploration Systems Architecture towards Longterm Crewed Moon and Mars Operations Wilfried K. Hofstetter *, Paul D. Wooster, Edward F. Crawley Massachusetts

More information

Planetary Surface Transportation and Site Development

Planetary Surface Transportation and Site Development Planetary Surface Transportation and Site Development Larry Bell * Sasakawa International Center for Space Architecture (SICSA), Houston, TX 77204-4000 This paper presents considerations and concepts for

More information

OMOTENASHI. (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor)

OMOTENASHI. (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor) SLS EM-1 secondary payload OMOTENASHI (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor) The smallest moon lander launched by the most powerful rocket in the world * Omotenashi

More information

Cygnus Payload Accommodations: Supporting ISS Utilization

Cygnus Payload Accommodations: Supporting ISS Utilization The Space Congress Proceedings 2018 (45th) The Next Great Steps Feb 27th, 1:30 PM Cygnus Payload Accommodations: Supporting ISS Utilization Frank DeMauro Vice President and General Manager, Advanced Programs

More information

NASA Perspectives on the Importance of Reform in Electric Energy Systems Education

NASA Perspectives on the Importance of Reform in Electric Energy Systems Education NASA Perspectives on the Importance of Reform in Electric Energy Systems Education Reforming Electric Energy Systems Curriculum With Emphasis on Renewable/Storage, Smart Delivery, and Efficient End-Use

More information

Name: Space Exploration PBL

Name: Space Exploration PBL Name: Space Exploration PBL Students describe the history and future of space exploration, including the types of equipment and transportation needed for space travel. Students design a lunar buggy and

More information

Analysis of Architectures for Long-Range Crewed Moon and Mars Surface Mobility

Analysis of Architectures for Long-Range Crewed Moon and Mars Surface Mobility AIAA SPACE 2008 Conference & Exposition 9-11 September 2008, San Diego, California AIAA 2008-7914 Analysis of Architectures for Long-Range Crewed Moon and Mars Surface Mobility Wilfried K. Hofstetter 1,

More information

BIMODAL NUCLEAR THERMAL ROCKET (BNTR) PROPULSION FOR FUTURE HUMAN MARS EXPLORATION MISSIONS

BIMODAL NUCLEAR THERMAL ROCKET (BNTR) PROPULSION FOR FUTURE HUMAN MARS EXPLORATION MISSIONS BIMODAL NUCLEAR THERMAL ROCKET (BNTR) PROPULSION FOR FUTURE HUMAN MARS EXPLORATION MISSIONS Stan Borowski National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio Bimodal Nuclear

More information

BIMODAL NUCLEAR THERMAL ROCKET (BNTR) PROPULSION FOR FUTURE HUMAN MARS EXPLORATION MISSIONS

BIMODAL NUCLEAR THERMAL ROCKET (BNTR) PROPULSION FOR FUTURE HUMAN MARS EXPLORATION MISSIONS BIMODAL NUCLEAR THERMAL ROCKET (BNTR) PROPULSION FOR FUTURE HUMAN MARS EXPLORATION MISSIONS Stan Borowski National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio Bimodal Nuclear

More information

Canadian Lunar & Planetary Rover. Development

Canadian Lunar & Planetary Rover. Development Canadian Lunar & Planetary Rover Guy who likes rovers Development Lunar Exploration Analysis Group Meeting October 21, 2015 Peter Visscher, P.Eng. Argo/Ontario Drive & Gear Ltd. Perry Edmundson, P.Eng.

More information

Station for Exploratory Analysis and Research Center for Humanity (SEARCH)

Station for Exploratory Analysis and Research Center for Humanity (SEARCH) Station for Exploratory Analysis and Research Center for Humanity (SEARCH) Authors: Jasmine Wong, Matthew Decker, Joseph Lewis, Megerditch Arabian, and Dr. Peter Bishay California State University, Northridge

More information

Lunar and Mars Mission Analysis and Design Using Commercial Launch Systems and the International Space Station

Lunar and Mars Mission Analysis and Design Using Commercial Launch Systems and the International Space Station 1 Lunar and Mars Mission Analysis and Design Using Commercial Launch Systems and the International Space Station ARCH 7610: Master s Project Space Architecture ARCH 6398: Special Projects David Smitherman

More information

Space Robotics Planetary Exploration - a DLR Perspective

Space Robotics Planetary Exploration - a DLR Perspective Space Robotics Planetary Exploration - a DLR Perspective Bernd Schäfer Deutsches Zentrum für Luft- und Raumfahrt (DLR) (German Aerospace Center) Robotics and Mechatronics Center (RMC) AirTec - SpaceWorld,

More information

Landing Targets and Technical Subjects for SELENE-2

Landing Targets and Technical Subjects for SELENE-2 Landing Targets and Technical Subjects for SELENE-2 Kohtaro Matsumoto, Tatsuaki Hashimoto, Takeshi Hoshino, Sachiko Wakabayashi, Takahide Mizuno, Shujiro Sawai, and Jun'ichiro Kawaguchi JAXA / JSPEC 2007.10.23

More information

Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing

Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing Therese Griebel NASA Glenn Research Center 1 Overview Current developments in technology that could meet NASA, DOD and commercial

More information

Plug-in Hardware Concepts for Mobile Modular Surface Habitats

Plug-in Hardware Concepts for Mobile Modular Surface Habitats Howe, A.S. & Howe, J.W. (2005). Plug-in Hardware Concepts for Mobile Modular Surface Habitats AIAA- 2005-2673. The 1st Exploration Conference: Continuing the Voyage of Discovery, Orlando, Florida, 30 Jan

More information

Ares V: Supporting Space Exploration from LEO to Beyond

Ares V: Supporting Space Exploration from LEO to Beyond Ares V: Supporting Space Exploration from LEO to Beyond American Astronautical Society Wernher von Braun Memorial Symposium October 21, 2008 Phil Sumrall Advanced Planning Manager Ares Projects Office

More information

From MARS To MOON. V. Giorgio Director of Italian Programs. Sorrento, October, All rights reserved, 2007, Thales Alenia Space

From MARS To MOON. V. Giorgio Director of Italian Programs. Sorrento, October, All rights reserved, 2007, Thales Alenia Space From MARS To MOON Sorrento, October, 2007 V. Giorgio Director of Italian Programs Page 2 Objectives of this presentation is to provide the Lunar Exploration Community with some information and status of

More information

NEXT Exploration Science and Technology Mission. Relevance for Lunar Exploration

NEXT Exploration Science and Technology Mission. Relevance for Lunar Exploration NEXT Exploration Science and Technology Mission Relevance for Lunar Exploration Alain Pradier & the NEXT mission team ILEWG Meeting, 23 rd September 2007, Sorrento AURORA PROGRAMME Ministerial Council

More information

Mars Surface Mobility Proposal

Mars Surface Mobility Proposal Mars Surface Mobility Proposal Jeremy Chavez Ryan Green William Mullins Rachel Rodriguez ME 4370 Design I October 29, 2001 Background and Problem Statement In the 1960s, the United States was consumed

More information

Lunar Science and Infrastructure with the Future Lunar Lander

Lunar Science and Infrastructure with the Future Lunar Lander ICEUM9 Sorrento Lunar Science and Infrastructure with the Future Lunar Lander Session 9: Next steps for Robotic Landers, Rovers and Outposts ICEUM9 Sorrento, Oct. 26, 2007 Hansjürgen Günther 26/10/2007

More information

Adrestia. A mission for humanity, designed in Delft. Challenge the future

Adrestia. A mission for humanity, designed in Delft. Challenge the future Adrestia A mission for humanity, designed in Delft 1 Adrestia Vision Statement: To inspire humanity by taking the next step towards setting a footprint on Mars Mission Statement Our goal is to design an

More information

Lunar Driving Simulator History

Lunar Driving Simulator History 1 of 20 Lunar Driving Simulator History Early NASA MSFC/Northrop MOLAB Concept. This vehicle concept evolved from the study contract NAS8-11096 in support of the early Apollo Logistic Support System studies

More information

RIMRES: A project summary

RIMRES: A project summary RIMRES: A project summary at ICRA 2013 -- Planetary Rovers Workshop presented by Thomas M Roehr, thomas.roehr@dfki.de DFKI Robotics Innovation Center Bremen Robert-Hooke Straße 5 28359 Bremen 1 Acknowledgements

More information

Abstract #1754. English. French. Author(s) and Co Author(s) Resources in the cislunar marketplace. To follow. No abstract title in French

Abstract #1754. English. French. Author(s) and Co Author(s) Resources in the cislunar marketplace. To follow. No abstract title in French 4/26/2017 CIM TPMS Abstract #1754 English Resources in the cislunar marketplace To follow French No abstract title in French No French resume Author(s) and Co Author(s) Mr. GEorge Sowers (UnknownTitle)

More information

Utilizing Lunar Architecture Transportation Elements for Mars Exploration

Utilizing Lunar Architecture Transportation Elements for Mars Exploration Utilizing Lunar Architecture Transportation Elements for Mars Exploration 19 September 2007 Brad St. Germain, Ph.D. Director of Advanced Concepts brad.stgermain@sei.aero 1+770.379.8010 1 Introduction Architecture

More information

CHANGING ENTRY, DESCENT, AND LANDING PARADIGMS FOR HUMAN MARS LANDER

CHANGING ENTRY, DESCENT, AND LANDING PARADIGMS FOR HUMAN MARS LANDER National Aeronautics and Space Administration CHANGING ENTRY, DESCENT, AND LANDING PARADIGMS FOR HUMAN MARS LANDER Alicia Dwyer Cianciolo NASA Langley Research Center 2018 International Planetary Probe

More information

ECONOMIC ANALYSIS OF A LUNAR IN-SITU RESOURCE UTILIZATION (ISRU) PROPELLANT SERVICES MARKET:

ECONOMIC ANALYSIS OF A LUNAR IN-SITU RESOURCE UTILIZATION (ISRU) PROPELLANT SERVICES MARKET: ECONOMIC ANALYSIS OF A LUNAR IN-SITU RESOURCE UTILIZATION (ISRU) PROPELLANT SERVICES MARKET: 58 th International Astronautical Congress (IAC) IAC-07-A5.1.03 Hyderabad, India 24-28 September 2007 Mr. A.C.

More information

16.89J / ESD.352J Space Systems Engineering

16.89J / ESD.352J Space Systems Engineering MIT OpenCourseWare http://ocw.mit.edu 16.89J / ESD.352J Space Systems Engineering Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.89 /

More information

Field Experiments in Mobility and Navigation with a Lunar Rover Prototype

Field Experiments in Mobility and Navigation with a Lunar Rover Prototype Field Experiments in Mobility and Navigation with a Lunar Rover Prototype David Wettergreen 1, Dominic Jonak, David Kohanbash, Scott Moreland, Spencer Spiker, and James Teza Abstract Scarab is a prototype

More information

Space Architecture. Master s Thesis Project Jain, Abhishek Dec. 2 nd, 2013

Space Architecture. Master s Thesis Project Jain, Abhishek Dec. 2 nd, 2013 Space Architecture Master s Thesis Project Jain, Abhishek Dec. 2 nd, 2013 Contents Catalog design for medium lift launch vehicles Catalog application Mission architecture - Lagrange point L2 mission L2

More information

Industrial-and-Research Lunar Base

Industrial-and-Research Lunar Base Industrial-and-Research Lunar Base STRATEGY OF LUNAR BASE CREATION Phase 1 Preparatory: creation of international cooperation, investigation of the Moon by unmanned spacecraft, creation of space transport

More information

Lunar Escape: Development of Astronaut Recovery Rover Program

Lunar Escape: Development of Astronaut Recovery Rover Program Lunar Escape: Development of Astronaut Recovery Rover Program Nicholas Wade-Mayhue, Dan Janke, Kyle Kilgore, Mohammed Alzohay, Samad Qureshi Colorado School of Mines Advisor: Dr. Knecht nwademay@mines.edu

More information

ASTRIUM. Lunar Lander Concept for LIFE. Hansjürgen Günther TOB 11. Bremen, 23/

ASTRIUM. Lunar Lander Concept for LIFE. Hansjürgen Günther TOB 11. Bremen, 23/ Lunar Lander Concept for LIFE Hansjürgen Günther TOB 11 Bremen, 23/24.11.2006 This document is the property of EADS SPACE. It shall not be communicated to third parties without prior written agreement.its

More information

LLO LLO. = Commercial Missions. = = NASA Commercial Missions. = Military Missions. = Military = NASA Missions LEO LEO. Cargo / (to 2013) (U/PLC)

LLO LLO. = Commercial Missions. = = NASA Commercial Missions. = Military Missions. = Military = NASA Missions LEO LEO. Cargo / (to 2013) (U/PLC) Andrews Highlights Reference concepts derived from stakeholder objectives, historical data, and timing / sequence constraints. 7 Design Reference Cases Key Aspects of DRC1 Global access Launch anytime

More information

John Klaus Robert Cooper Thilina Fernando Zoe Morozko

John Klaus Robert Cooper Thilina Fernando Zoe Morozko Faculty Advisors: Dr. Dan Kirk Greg Peebles Justin Treptow Alex Morrese Alexis Mendez Casselle Russell John Klaus Robert Cooper Thilina Fernando Zoe Morozko Paul Martin Ben Burnett Damian Harasiuk 1 Launch

More information

MARS-OZ: A Design for a Simulated Mars Base in the Arkaroola Region

MARS-OZ: A Design for a Simulated Mars Base in the Arkaroola Region MARS-OZ: A Design for a Simulated Mars Base in the Arkaroola Region David Willson (david.willson@au.tenovagroup.com) and Jonathan D. A. Clarke (jon.clarke@bigpond.com), Mars Society Australia The centrepiece

More information

SPACE LAUNCH SYSTEM. Steve Creech Manager Spacecraft/Payload Integration & Evolution August 29, 2017 A NEW CAPABILITY FOR DISCOVERY

SPACE LAUNCH SYSTEM. Steve Creech Manager Spacecraft/Payload Integration & Evolution August 29, 2017 A NEW CAPABILITY FOR DISCOVERY National Aeronautics and Space Administration 5... 4... 3... 2... 1... SPACE LAUNCH SYSTEM A NEW CAPABILITY FOR DISCOVERY Steve Creech Manager Spacecraft/Payload Integration & Evolution August 29, 2017

More information

Propulsion Controls and Diagnostics Research at NASA GRC Status Report

Propulsion Controls and Diagnostics Research at NASA GRC Status Report Propulsion Controls and Diagnostics Research at NASA GRC Status Report Dr. Sanjay Garg Branch Chief Ph: (216) 433-2685 FAX: (216) 433-8990 email: sanjay.garg@nasa.gov http://www.lerc.nasa.gov/www/cdtb

More information

Suitability of reusability for a Lunar re-supply system

Suitability of reusability for a Lunar re-supply system www.dlr.de Chart 1 Suitability of reusability for a Lunar re-supply system Etienne Dumont Space Launcher Systems Analysis (SART) Institut of Space Systems, Bremen, Germany Etienne.dumont@dlr.de IAC 2016

More information

Future NASA Power Technologies for Space and Aero Propulsion Applications. Presented to. Workshop on Reforming Electrical Energy Systems Curriculum

Future NASA Power Technologies for Space and Aero Propulsion Applications. Presented to. Workshop on Reforming Electrical Energy Systems Curriculum Future NASA Power Technologies for Space and Aero Propulsion Applications Presented to Workshop on Reforming Electrical Energy Systems Curriculum James F. Soeder Senior Technologist for Power NASA Glenn

More information

Phoenix Lander Implications on in situ resource utilization for robotic exploration of Mars

Phoenix Lander Implications on in situ resource utilization for robotic exploration of Mars Phoenix Landing Site May 2008 Phoenix Lander Implications on in situ resource utilization for robotic exploration of Mars LEAG-ICEUM-SRR (2008) Cape Canaveral, FL Robert L. Ash October 29, 2008 Aerospace

More information

Building an Economical and Sustainable Lunar Infrastructure To Enable Lunar Science and Space Commerce

Building an Economical and Sustainable Lunar Infrastructure To Enable Lunar Science and Space Commerce Building an Economical and Sustainable Lunar Infrastructure To Enable Lunar Science and Space Commerce Dr. Allison Zuniga, Mark Turner and Dr. Dan Rasky NASA Ames Research Center Space Portal Office Mike

More information

Robots to Support a Human Mars Mission

Robots to Support a Human Mars Mission Robots to Support a Human Mars Mission 1 W. Naumann, P. Hofmann, A. v. Richter Kayser-Threde GmbH Wolfratshauser Str. 48, D-81379 München email: andreas.von.richter@kayser-threde.com 7th Workshop ASTRA

More information

Abstract #1756. English. French. Author(s) and Co Author(s) ispace & Team Hakuto s 2017 Lunar Mission

Abstract #1756. English. French. Author(s) and Co Author(s) ispace & Team Hakuto s 2017 Lunar Mission 4/25/2017 CIM TPMS Abstract #1756 English ispace & Team Hakuto s 2017 Lunar Mission This presentation will introduce ispace, a lunar exploration company headquartered in Tokyo, Japan, and Team Hakuto,

More information

FEDERAL SPACE AGENCY OF RUSSIAN FEDERATION LAVOCHKIN ASSOCIATION PROGRAM OF THE MOON EXPLORATION BY AUTOMATIC SPACE COMPLEXES

FEDERAL SPACE AGENCY OF RUSSIAN FEDERATION LAVOCHKIN ASSOCIATION PROGRAM OF THE MOON EXPLORATION BY AUTOMATIC SPACE COMPLEXES FEDERAL SPACE AGENCY OF RUSSIAN FEDERATION LAVOCHKIN ASSOCIATION PROGRAM OF THE MOON EXPLORATION BY AUTOMATIC SPACE COMPLEXES 2007 CONCEPT 1. The program foresees development of automatic space complexes

More information

The European Lunar Lander Mission

The European Lunar Lander Mission The European Lunar Lander Mission Alain Pradier ASTRA Noordwijk, 12 th April 2011 European Space Agency Objectives Programme Objective PREPARATION FOR FUTURE HUMAN EXPLORATION Lunar Lander Mission Objective

More information

Loads, Structures, and Mechanisms Design Project ENAE 483 Fall 2012

Loads, Structures, and Mechanisms Design Project ENAE 483 Fall 2012 Loads, Structures, and Mechanisms Design Project Fall 2012 Stephanie Bilyk Leah Krombach Josh Sloane Michelle Sultzman Mission Specifications Design vehicle for lunar exploration mission 10 day mission

More information

Moon Express Summary. Dr. Andrew Aldrin President, Moon Express, Inc. 12 June, Science Network. Sample Return ME-1: GLXP

Moon Express Summary. Dr. Andrew Aldrin President, Moon Express, Inc. 12 June, Science Network. Sample Return ME-1: GLXP Science Network Moon Express Summary Sample Return Dr. Andrew Aldrin President, Moon Express, Inc. 12 June,2014 www.moonexpress.com Sub-Satellite Deployment ME-1: GLXP ISRU / Resource Prospecting Polar

More information

Case Study: ParaShield

Case Study: ParaShield Case Study: ParaShield Origin of ParaShield Concept ParaShield Flight Test Wind Tunnel Testing Future Applications U N I V E R S I T Y O F MARYLAND 2012 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Lunar Cargo Capability with VASIMR Propulsion

Lunar Cargo Capability with VASIMR Propulsion Lunar Cargo Capability with VASIMR Propulsion Tim Glover, PhD Director of Development Outline Markets for the VASIMR Capability Near-term Lunar Cargo Needs Long-term/VSE Lunar Cargo Needs Comparison with

More information

Combustion-based Power Through ISRU for Venus Landers

Combustion-based Power Through ISRU for Venus Landers Combustion-based Power Through ISRU for Venus Landers Christopher Greer 1, czg5155@psu.edu, Tim Miller 1, Michael Paul 1, Alexander Rattner 2, Bellamarie Ludwig 1, Sonny Harman 3, Teri Baker 1 1 Penn State

More information

Notes: GENERAL DYNAMICS EARLY LUNAR ACCESS [1993]

Notes: GENERAL DYNAMICS EARLY LUNAR ACCESS [1993] Notes: file:///f /SPACE Misc/Lunar Explore/Lunar Do...NERAL DYNAMICS EARLY LUNAR ACCESS [1993].htm (1 of 8) [17/03/2005 9:35:03 p.m.] 1.INTRODUCTION EARLY LUNAR ACCESS (ELA) was a "cheaperfasterbetter"

More information

Building Bridges for Lunar Commerce

Building Bridges for Lunar Commerce Building Bridges for Lunar Commerce Robert D. Richards Director, Optech Space Division Founder, International Space University THE NEW RACE TO THE MOON 1 The Dream Dichotomy THE NEW RACE TO THE MOON 2

More information

EUROBOT EVA-assistant robot for ISS

EUROBOT EVA-assistant robot for ISS In the proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 EUROBOT EVA-assistant robot for

More information

Europa Lander. Mission Concept Update 3/29/2017

Europa Lander. Mission Concept Update 3/29/2017 Europa Lander Mission Concept Update 3/29/2017 2017 California Institute of Technology. Government sponsorship acknowledged. 1 Viable Lander/Carrier Mission Concept Cruise/Jovian Tour Jupiter orbit insertion

More information

Good afternoon. We're going to be talking today about frontiers of imagination in space exploration

Good afternoon. We're going to be talking today about frontiers of imagination in space exploration Good afternoon. We're going to be talking today about frontiers of imagination in space exploration First, though, I want to introduce myself. My name is Loretta Hall, and I'm a space buff. I've been a

More information

ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003

ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003 ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003 Major James Shoemaker, USAF, Ph.D. DARPA Orbital Express Space Operations Program

More information

Update on Progress of SSIKLOPS (Space Station Integrated Kinetic Launcher for Orbital Payload Systems) - Cyclops

Update on Progress of SSIKLOPS (Space Station Integrated Kinetic Launcher for Orbital Payload Systems) - Cyclops Update on Progress of SSIKLOPS (Space Station Integrated Kinetic Launcher for Orbital Payload Systems) - Cyclops SpinSat Cyclops AIAA Small Satellite Conference Authors: D. Newswander (NASA JSC), J. Smith

More information

Apollo Boilerplate #1207

Apollo Boilerplate #1207 Apollo Boilerplate #1207 As part of the Apollo program, NASA built non-flight Command Modules known as boilerplates (BP) to test equipment, develop procedures, and use in training with the Department of

More information

Wheeled Robotic Mobility. Dimi Apostolopoulos

Wheeled Robotic Mobility. Dimi Apostolopoulos Wheeled Robotic Mobility Dimi Apostolopoulos Significance of Mobility Move Position Transport Employ instruments and tools React to work loads in a controllable fashion ROBOTIC MOBILITY Dimi Apostolopoulos

More information

'ELaNa XIX' press Kit DECEMBER 2018

'ELaNa XIX' press Kit DECEMBER 2018 ROCKET LAB USA 2018 'ELaNa XIX' press Kit DECEMBER 2018 LAUNCHING ON ELECTRON VEHICLE FOUR: 'THIS ONE'S FOR PICKERING' ROCKET LAB PRESS KIT 'ELANA-19' 2018 LAUNCH INFORMATION Launch window: 13 21 December,

More information

Centennial Challenges

Centennial Challenges National Council of Space Grant Directors - 2006 Spring Meeting Centennial Challenges Ken Davidian Supporting Centennial Challenges Advanced Capabilities Division Exploration Systems Mission Directorate

More information

ReachMars 2024 A Candidate Large-Scale Technology Demonstration Mission as a Precursor to Human Mars Exploration

ReachMars 2024 A Candidate Large-Scale Technology Demonstration Mission as a Precursor to Human Mars Exploration ReachMars 2024 A Candidate Large-Scale Technology Demonstration Mission as a Precursor to Human Mars Exploration 1 October 2014 Toronto, Canada Mark Schaffer Senior Aerospace Engineer, Advanced Concepts

More information

Copyright 2016 Boeing. All rights reserved.

Copyright 2016 Boeing. All rights reserved. Boeing s Commercial Crew Program John Mulholland, Vice President and Program Manager International Symposium for Personal and Commercial Spaceflight October 13, 2016 CST-100 Starliner Spacecraft Flight-proven

More information

MARTIAN HABITAT DESIGN

MARTIAN HABITAT DESIGN MARTIAN HABITAT DESIGN MARS OR BUST, INC. UNIVERSITY OF COLORADO, BOULDER AEROSPACE ENGINEERING SCIENCES ASEN 4158/5158 MOB DECEMBER 17, 2003 TABLE OF CONTENTS 1 MISSION SUMMARY... 8 1.1 CONTEXT OF THIS

More information

Shaping the future of the TWV Fleet

Shaping the future of the TWV Fleet U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Shaping the future of the TWV Fleet Dr. Paul Rogers Director, TARDEC, Distribution A Who is TARDEC? MISSION: Develop, integrate and

More information

Blue Origin Achievements and plans for the future

Blue Origin Achievements and plans for the future Blue Origin Achievements and plans for the future Blue Origin A private aerospace manufacturer and spaceflight services company Founded in 2000 by Amazon.com CEO Jeff Bezos Headquarters in Kent (Seattle),

More information

Cal Poly CubeSat Workshop 2014

Cal Poly CubeSat Workshop 2014 Cal Poly CubeSat Workshop 2014 866.204.1707 www.spaceflightservices.com info@spaceflightservices.com hhh @spaceflightinc 1 Spaceflight Business Model Our Model Arrange launch opportunities for secondary

More information

Spinning-in of Terrestrial Microsystems and Technologies to Space Robotics: Results and Roadmaps

Spinning-in of Terrestrial Microsystems and Technologies to Space Robotics: Results and Roadmaps National Technical University of Athens Mechanical Engineering Department Control Systems Laboratory http://csl-ep.mech.ntua.gr Spinning-in of Terrestrial Microsystems and Technologies to Space Robotics:

More information

Boeing CST-100. Commercial Crew Transportation System. Keith Reiley, The Boeing Company. February, 2011

Boeing CST-100. Commercial Crew Transportation System. Keith Reiley, The Boeing Company. February, 2011 Boeing CST-100 Commercial Crew Transportation System Keith Reiley, The Boeing Company February, 2011 BOEING is a trademark of Boeing Management Company. Commercial Crew Transportation System (CCTS) Design

More information