Non-projectile motion. Projectile Motion

Size: px
Start display at page:

Download "Non-projectile motion. Projectile Motion"

Transcription

1 Non-projectile motion *** Ex) A spacecraft has an initial component of v ix = +22 m/s and an acceleration component of a x = +24 m/s 2. In the y direction, the analogous quantities are viy = +14 m/s and a y = +12 m/s 2. After a time of 7.0 s, find the final velocity? x direction data x a x v x v ix t +24 m/s 2? +22 m/s 7 s y direction data y a y v y v iy t +12 m/s 2? +14 m/s 7 s Projectile Motion In absence of air resistance: v x = v ix a x = 0 a y = g = -9.8 m/s 2 Two types when v iy = 0 and when v iy 0 1

2 A car traveling with initial and final velocity of +10 m/s shoots a bullet straight up. With no air resistance, where does the bullet fall? Right Hand: lands in the exact position that it was shot from. Left Hand: lands back in the barrel of the gun Both Hands: lands somewhere between where it was shot and the car current position Ex) An airplane moving horizontally with a constant velocity of +115 m/s at an altitude of 1050 m. A package is released. Ignore air resistance, how long does it take the ground? y direction data y a y v y v iy t m -9.8 m/s 2 0? 2

3 Example continued At what velocity does the package collide with the earth? y direction data y a y v y v 0y t m -9.8 m/s 2? s v x θ v v y Max height A placekicker kicks a football at an angle of θ = 40.0 above horizontal axis. The initial speed of the ball is v 0 = 22 m/s. Ignore air resistance and find the maximum height that the ball attains. y =? V i = 22 m/s a y = -9.8 m/s 2 v y = 0 θ = v iy 3

4 The Range Find the range of the football kicked from the previous slide. t =? V iy = 14.1 m/s a y = -9.8 m/s 2 v y = 0 This is only the time up, the total time is 2.88 s A baseball player hits a home run, and the ball lands in the left-field seats, 7.5 m above the point at which the ball was hit. The ball lands with a velocity of 36 m/s at an angle of 28 below the horizontal. Ignoring air resistance, find the initial velocity with which the ball leaves the bat. 4

5 Name: Homework due 9/13/10 Hour: 1) A motorcycle daredevil is attempting to jump across as many buses as possible. The takeoff ramp makes an angle of 18.0 above the horizontal, and the landing ramp is identical to the takeoff ramp. The buses are parked side by side, and each bus is 2.74 m wide. The cyclist leaves the ramp with a speed of 33.5 m/s. What is the maximum number of buses over which the cyclist can jump? 2) A rock climber throws a small first aid kit to another climber who is higher up the mountain. The initial velocity of the kit is 11 m/s at an angle of 65 above the horizontal. At the instant when the kit is caught, it is traveling horizontally, so its vertical speed is zero. What is the vertical height between the two climbers? 3) A diver springs upward from a board that is three meters above the water. At the instant she contacts the water her speed is 8.90 m/s and her body makes and angle of 75.0 with respect to the horizontal surface of the water. Determine her initial velocity, both magnitude and direction. 4) Water from a garden hose that is pointed 25 above the horizontal lands directly on a sunbather lying on the ground 4.4 m away in the horizontal direction. If the hose is held 1.4 m above the ground, at what speed does the water leave the nozzle? 5) A soccer player kicks the ball toward a goal that is 29.0 m in front of him. The ball leaves his foot at a speed of 19.0 m/s and an angle of 32.0 above the ground. Find the speed of the ball when the goalie catches it in front of the net. (Note: The answer is not 19.0 m/s.) 5

6 6) Stones are thrown horizontally with the same velocity from the tops of two different buildings. One stone lands twice as far from the base of the building from which it is thrown as does the other. Find t he ratio of the height of the taller building to the height of the shorter building. 7) Suppose the water at the top of Niagara Falls has a horizontal speed of 2.7 m/s just before it cascades over the edge of the falls. At what vertical distance below the edge does the velocity vector of the water point downward at a 75 angle below the horizontal? 8) On a spacecraft two engines fire for a time of 565 s. One gives the craft an acceleration in the x direction of a x = 5.10 m/s 2, while the other produces an acceleration in the y direction of a y = 7.30 m/s 2. At the end of the firing period, the craft has velocity components of v x =3775 m/s and v y = 4816 m/s. Find the magnitude and direction of the initial velocity. Express the direction as an angle with respect to the +x axis. 9) A volleyball is spiked so that it has an initial velocity of 15 m/s directed downward at an angle of 55 below the horizontal. What is the horizontal component of the ball s velocity when the opposing player fields the ball? 10) From the top of a tall building, a gun is fired. The bullet leaves the gun at a speed of 340 m/s, parallel to the ground. The bullet puts a hole in a window of another building and hits the wall that faces the window. Using the data in the drawing, determine the distances D and H, which locate the point where the gun was fired. Assume that the bullet does not slow down as it passes through the window. H D 0.5 m 6.9 m 6

7 Picture on number 10 7

Linear Motion Problems

Linear Motion Problems Linear Motion Problems For problems 1-9, list the givens and the variable to be found in each problem. 1. An angry mob lynches a physics teacher after receiving their grades. They throw the physics teacher

More information

PHYSICS KINETIC AND GRAVITATIONAL POTENTIAL ENERGIES WORKSHEET

PHYSICS KINETIC AND GRAVITATIONAL POTENTIAL ENERGIES WORKSHEET Kinetic Energy Basics 1. What is the kinetic energy of a 80 kg football player running at 8 m/s? 2. What is the kinetic energy of a 0.01 kg dart that is thrown at 20 m/s? 3. What is the kinetic energy

More information

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Name: Group: Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted,

More information

Year 11 Physics. Term1 Week 9 Review Test

Year 11 Physics. Term1 Week 9 Review Test Year 11 Physics Term1 Week 9 Review Test Q1 Q2 Q3 Q4 Q5 Q6 A woman driving at a speed of 23 m/s sees a deer on the road ahead and applies the brakes when she is 210 m from the deer. If the deer does not

More information

National 4/5. Dynamics and Space

National 4/5. Dynamics and Space North Berwick High School National 4/5 Department of Physics Dynamics and Space Section 1 Mechanics Problem Booklet KINEMATICS PROBLEMS Speed, distance and time 1. A runner completes a 200 m race in 25

More information

Q1. The graph shows the speed of a runner during an indoor 60 metres race.

Q1. The graph shows the speed of a runner during an indoor 60 metres race. Q1. The graph shows the speed of a runner during an indoor 60 metres race. (a) Calculate the acceleration of the runner during the first four seconds. (Show your working.) (b) How far does the runner travel

More information

Intermediate 2 Momentum & Energy Past Paper questions

Intermediate 2 Momentum & Energy Past Paper questions Intermediate 2 Momentum & Energy Past Paper questions 2000-2010 2000 Q23. A chairlift at a ski resort carries skiers through a vertical distance of 400 m. (a) One of the skiers has a mass of 90.0 kg.

More information

(1) 17 km (2) 23 km (3) 16 km (4) 7 km (5) 30 km

(1) 17 km (2) 23 km (3) 16 km (4) 7 km (5) 30 km Instructor(s): N. Sullivan PHYSICS DEPARTMENT PHY 2004 Exam 1 September 18, 2017 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

1.half the ladybug's. 2.the same as the ladybug's. 3.twice the ladybug's. 4.impossible to determine

1.half the ladybug's. 2.the same as the ladybug's. 3.twice the ladybug's. 4.impossible to determine 1. A ladybug sits at the outer edge of a merry-go-round, and a gentleman bug sits halfway between her and the axis of rotation. The merry-go-round makes a complete revolution once each second. The gentleman

More information

Rotational Kinematics and Dynamics Review

Rotational Kinematics and Dynamics Review Rotational Kinematics and Dynamics Review 1. The Earth takes slightly less than one day to complete one rotation about the axis passing through its poles. The actual time is 8.616 10 4 s. Given this information,

More information

Physics 2. Chapter 10 problems. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Chapter 10 problems. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 2 Chapter 10 problems 10.6 A machinist is using a wrench to loosen a nut. The wrench is 25cm long, and he exerts a 17-N force at the end of the handle. a) What torque does the machinist exert about

More information

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction Name: Period: Date: AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the north poles of

More information

time in seconds Amy leaves diving board

time in seconds Amy leaves diving board 1 Amy dives from the high diving board at a swimming pool. Look at the graph of her motion. speed in m / s 15 10 Amy enters water P Q 5 0 0 0.5 1.0 1.5 2.0 2.5 time in seconds Amy leaves diving board (a)

More information

Motional EMF. F = qvb

Motional EMF. F = qvb Motional EMF When a conducting rod moves through a constant magnetic field, a voltage is induced in the rod. This special case of electromagnetic induction arises as a result of the magnetic force that

More information

(a) A 36 volt battery powers the electric motor. The battery is made using individual 1.2 volt cells.

(a) A 36 volt battery powers the electric motor. The battery is made using individual 1.2 volt cells. Q1.The picture shows an electric bicycle. The bicycle is usually powered using a combination of the rider pedalling and an electric motor. (a) A 36 volt battery powers the electric motor. The battery is

More information

d / cm t 2 / s 2 Fig. 3.1

d / cm t 2 / s 2 Fig. 3.1 7 5 A student has been asked to determine the linear acceleration of a toy car as it moves down a slope. He sets up the apparatus as shown in Fig. 3.1. d Fig. 3.1 The time t to move from rest through a

More information

distance travelled circumference of the circle period constant speed = average speed =

distance travelled circumference of the circle period constant speed = average speed = Lecture 6 Circular motion Instantaneous velocity and speed For an object travelling in the uniform circular motion, its instantaneous velocity is not constant because the direction of the object is continuously

More information

ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI

ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI YR. 9 / YR. 10 PHYSICS REVISION WORKSHEET 1. (a) In 2009 the sprinter Usain Bolt ran the 100m sprint in a time of 9.58s. Calculate his average speed during this race.

More information

Physics 12 Circular Motion 4/16/2015

Physics 12 Circular Motion 4/16/2015 Circular Motion Name: 1. It is possible to spin a bucket of water in a vertical circle and have none of the water spill when the bucket is upside down. How would you explain this to members of your family?

More information

Energy Transfer Model

Energy Transfer Model Name: Energy Transfer Model ENERGY Cheat sheet Symbol Type of Energy When is this energy present? Equation Notes 1 from Modeling Workshop Project 2006 Name: Period: Date: Physics! / Unit VII / ETM Energy

More information

Friction and Momentum

Friction and Momentum Lesson Three Aims By the end of this lesson you should be able to: understand friction as a force that opposes motion, and use this to explain why falling objects reach a terminal velocity know that the

More information

Section 3: Collisions and explosions

Section 3: Collisions and explosions Section 3: Collisions and explosions 1. What is the momentum of the object in each of the following situations? (c) 2. A trolley of mass 2 0 kg is travelling with a speed of 1 5 m s 1. The trolley collides

More information

Exam Review. 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line.

Exam Review. 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. Graphing Motion Exam Review 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. Student 4. The graph represents the motion of a cart.

More information

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units Example Problems 1.4 Kinematics E1. Super-monkey is flying at 14.5 m/s when he sees trouble and accelerates at a rate of 23.6 m/s² for 7.0 sec. What is Super-monkey s final velocity? E2. Super-monkey is

More information

Team Name: Team #: Compound Machines

Team Name: Team #: Compound Machines Team Name: Team #: Names: Compound Machines MIT Science Olympiad Invitational Tournament 2015 1/24/2015-50 Minutes Supervised by Mitchell Gu Mounds View HS 14 MIT 18 mitchgu@mit.edu Co-written by Mitchell,

More information

Hovercraft

Hovercraft 1 Hovercraft 2017-2018 Names: Score: / 44 Show all equations and work. Point values are shown in parentheses at the end of the question. Assume g=9.8 m/s/s for all calculations. Include units in your answer.

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Twelve General Plane Motion, Work and Energy Part A (Introductory) 1. (Problem 6/78 from Meriam and Kraige - Dynamics) Above the earth

More information

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in.

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in. Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in. (a) Choose from the following words to complete the sentences below. distance energy force speed time You

More information

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Contents: 121P11-1P, 3P,4P, 5P, 7P, 17P, 19P, 24P, 27P, 28P, 31P Overview Magnetic Flux Motional EMF Two Magnetic Induction Experiments

More information

Axis. Annular cylinder (or ring) about central axis I = 2 M(R 2 + R 2 1 2) Axis. Thin rod about axis through center perpendicular to length.

Axis. Annular cylinder (or ring) about central axis I = 2 M(R 2 + R 2 1 2) Axis. Thin rod about axis through center perpendicular to length. Instructor(s): C. Parks PHYSICS DEPATMENT PHY2053, Summer 205 EXAM 2 The Simpsons July 9, 205 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this

More information

Name: New Document 1. Class: Date: 221 minutes. Time: 220 marks. Marks: Comments:

Name: New Document 1. Class: Date: 221 minutes. Time: 220 marks. Marks: Comments: New Document Name: Class: Date: Time: 22 minutes Marks: 220 marks Comments: Q. The diagram shows a boat pulling a water skier. The arrow represents the force on the water produced by the engine propeller.

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. ACCELERATION Q1. Figure 1 shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier and

More information

Velocity vs Time. Velocity vs Time

Velocity vs Time. Velocity vs Time Chapter : One Dimensional Motion Graphical Interpretation of Instantaneous and Average Acceleration Explain what happens in each of these graphs. Make sure to record the change in displacement, change

More information

Angular Momentum Problems Challenge Problems

Angular Momentum Problems Challenge Problems Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise

More information

Exampro GCSE Physics. P2 Forces and their effects Self Study Questions Higher tier. Name: Class: Author: Date: Time: 117. Marks: 117.

Exampro GCSE Physics. P2 Forces and their effects Self Study Questions Higher tier. Name: Class: Author: Date: Time: 117. Marks: 117. Exampro GCSE Physics P2 Forces and their effects Self Study Questions Higher tier Name: Class: Author: Date: Time: 117 Marks: 117 Comments: Page 1 of 32 Q1. (a) The stopping distance of a vehicle is made

More information

Question Papers on Momentum

Question Papers on Momentum Question Papers on Momentum Name Due Date QUESTION 6 Collisions happen on the roads in our country daily. In one of these collisions, a car of mass 1 600 kg, travelling at a speed of 30 m s -1 to the left,

More information

Use the graph to answer the question. Write the correct letter in the blank. Dave had 7 oranges. He juiced oranges. How many oranges are left?

Use the graph to answer the question. Write the correct letter in the blank. Dave had 7 oranges. He juiced oranges. How many oranges are left? 1 Use the graph to answer the question. 4 High Temperature ( F) 120 1 0 90 80 70 60 50 40 30 20 0 Temperature Over a Week Sunday Monday Tuesday Wednesday Thursday Friday Saturday Dave had 7 oranges. He

More information

Unit 5. Guided Work Sheet Sci 701 NAME: 1) Define the following key terms. Acceleration. DC motor. Direct current (DC) Force.

Unit 5. Guided Work Sheet Sci 701 NAME: 1) Define the following key terms. Acceleration. DC motor. Direct current (DC) Force. Unit 5 Guided Work Sheet Sci 701 NAME: 1) Define the following key terms. Acceleration DC motor Direct current (DC) Force Power Shaft Speed Torque Work Wrench flat 1. Determine free wheel speed and stall

More information

Centripetal Force * Takashi Sato. Based on Centripetal Force by OpenStax

Centripetal Force * Takashi Sato. Based on Centripetal Force by OpenStax OpenStax-CNX module: m55638 1 Centripetal Force * Takashi Sato Based on Centripetal Force by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0

More information

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF 220 13-1 I. THEORY EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic Assignment 1 Magnetism and Electromagnetism Name: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Show appropriate workings. 1. What type of

More information

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Motional emf. as long as the velocity, field, and length are mutually perpendicular. Motional emf Motional emf is the voltage induced across a conductor moving through a magnetic field. If a metal rod of length L moves at velocity v through a magnetic field B, the motional emf is: ε =

More information

[2] [2]

[2] [2] High Demand Questions QUESTIONSHEET 1 A jet aircraft is taking off from an international airport. Its mass, including passengers and fuel is 150,000 kg. Its take-off speed is 100 ms -1. The maximum thrust

More information

Lab 4 Constant Acceleration by Drew Von Maluski

Lab 4 Constant Acceleration by Drew Von Maluski Lab 4 Constant Acceleration by Drew Von Maluski Note: Please record all your data and answers on the data sheet. In this lab you will familiarize yourself with using the LoggerPro software, LabPro equipment,

More information

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? Electromagnetic Induction Chapter Questions 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? 2. The discovery of electric currents generating an magnetic field led physicists to look

More information

Bill the Cat, tied to a rope, is twirled around in a vertical circle. Draw the free-body diagram for Bill in the positions shown. Then sum the X and

Bill the Cat, tied to a rope, is twirled around in a vertical circle. Draw the free-body diagram for Bill in the positions shown. Then sum the X and Assignment (a) No assigned WH. (b)read motion in the presence of resistive forces (finish the chapter). Go over problems covered in classes. (c)read: System and Environments, Work done by a constant force,

More information

Homework # Physics 2 for Students of Mechanical Engineering

Homework # Physics 2 for Students of Mechanical Engineering Homework #10 203-1-1721 Physics 2 for Students of Mechanical Engineering Part A 3. In Fig. 34-41 below, the magnetic flux through the loop shown increases according to the relation B = (6 mwb/s 2 )t 2

More information

VTU EDUSAT PROGRAMME -17 DYNAMICS OF MACHINES (10 ME 54) Unit-7 ADARSHA H G GYROSCOPE

VTU EDUSAT PROGRAMME -17 DYNAMICS OF MACHINES (10 ME 54) Unit-7 ADARSHA H G GYROSCOPE VTU EDUSAT PROGRAMME -17 DYNAMICS OF MACHINES (10 ME 54) 1.0 INTRODUCTION Unit-7 GYROSCOPE Gyre is a Greek word, meaning circular motion and Gyration means the whirling motion. A gyroscope is a spatial

More information

Q1. Figure 1 shows how atmospheric pressure varies with altitude.

Q1. Figure 1 shows how atmospheric pressure varies with altitude. PRESSURE IN A FLUID Q1. Figure 1 shows how atmospheric pressure varies with altitude. Figure 1 (a) Explain why atmospheric pressure decreases with increasing altitude. (3) (b) When flying, the pressure

More information

An object will remain in rotational equilibrium if its center of mass is above the area of support Torque

An object will remain in rotational equilibrium if its center of mass is above the area of support Torque An object will remain in rotational equilibrium if its center of mass is above the area of support. What determines whether an object will rotate when a force acts on it? Why doesn t the Leaning Tower

More information

11 Rotational Equilibrium. An object will remain in rotational equilibrium if its center of mass is above the area of support.

11 Rotational Equilibrium. An object will remain in rotational equilibrium if its center of mass is above the area of support. An object will remain in rotational equilibrium if its center of mass is above the area of support. What determines whether an object will rotate when a force acts on it? Why doesn t the Leaning Tower

More information

A. 1. In first case, friction acts along the right. In second case, friction acts along the left.

A. 1. In first case, friction acts along the right. In second case, friction acts along the left. Chapter 12 Friction Topicwise Assignment Force of Friction A. 1. In first case, friction acts along the right. In second case, friction acts along the left. 2. Friction opposes the motion of one surface

More information

Mr. Freeze QUALITATIVE QUESTIONS

Mr. Freeze QUALITATIVE QUESTIONS QUALITATIVE QUESTIONS Many of the questions that follow refer to the graphs of data collected when riding Mr. Freeze with high tech data collection vests. With your I.D., you can borrow a vest without

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Electromagnetic Induction, Faraday s Experiment

Electromagnetic Induction, Faraday s Experiment Electromagnetic Induction, Faraday s Experiment A current can be produced by a changing magnetic field. First shown in an experiment by Michael Faraday A primary coil is connected to a battery. A secondary

More information

MAGNETIC FORCE ON A CURRENT-CARRYING WIRE

MAGNETIC FORCE ON A CURRENT-CARRYING WIRE MAGNETIC FORCE ON A CURRENT-CARRYING WIRE Pre-Lab Questions Page 1. What is the SI unit for Magnetic Field? Name: Class: Roster Number: Instructor: 2. The magnetic field on a wire is 12.0 x 10 5 Gausses,

More information

Concepts of One Dimensional Kinematics Activity Purpose

Concepts of One Dimensional Kinematics Activity Purpose Concepts of One Dimensional Kinematics Activity Purpose During the activity, students will become familiar with identifying how the position, the velocity, and the acceleration of an object will vary with

More information

Chapter 9 Motion Exam Question Pack

Chapter 9 Motion Exam Question Pack Chapter 9 Motion Exam Question Pack Name: Class: Date: Time: 63 minutes Marks: 63 marks Comments: Page of 49 The graphs in List A show how the velocities of three vehicles change with time. The statements

More information

1. (s r r d v i e) These people work on buses or in taxis. They are. 2. (s s s g p n r a e e) These people ride on public transportation.

1. (s r r d v i e) These people work on buses or in taxis. They are. 2. (s s s g p n r a e e) These people ride on public transportation. 10.1 PUBLIC TRANSPORTATION 1 What s There? Circle the answers to the questions. What can you find... DICTIONARY PAGE 71 1.... inside a train station? trains tracks taxis 2.... inside a subway station?

More information

Chapter 15. Inertia Forces in Reciprocating Parts

Chapter 15. Inertia Forces in Reciprocating Parts Chapter 15 Inertia Forces in Reciprocating Parts 2 Approximate Analytical Method for Velocity & Acceleration of the Piston n = Ratio of length of ConRod to radius of crank = l/r 3 Approximate Analytical

More information

9/13/2017. Friction, Springs and Scales. Mid term exams. Summary. Investigating friction. Physics 1010: Dr. Eleanor Hodby

9/13/2017. Friction, Springs and Scales. Mid term exams. Summary. Investigating friction. Physics 1010: Dr. Eleanor Hodby Day 6: Friction s Friction, s and Scales Physics 1010: Dr. Eleanor Hodby Reminders: Homework 3 due Monday, 10pm Regular office hours Th, Fri, Mon. Finish up/review lecture Tuesday Midterm 1 on Thursday

More information

The CBJ Technology. 7.62x51 NATO.300 Blackout 6.5x25 CBJ Ball

The CBJ Technology. 7.62x51 NATO.300 Blackout 6.5x25 CBJ Ball The CBJ Technology 7.62x51 NATO.300 Blackout 6.5x25 CBJ Ball The CBJ Technology CBJ Tech AB has developed the 6.5x25 CBJ Cartridge, which utilizes subcaliber technology (tungsten core projectile inside

More information

Chapter 15. Inertia Forces in Reciprocating Parts

Chapter 15. Inertia Forces in Reciprocating Parts Chapter 15 Inertia Forces in Reciprocating Parts 2 Approximate Analytical Method for Velocity and Acceleration of the Piston n = Ratio of length of ConRod to radius of crank = l/r 3 Approximate Analytical

More information

Force and Motion. Downloaded from ebooks.lab-aids.com

Force and Motion. Downloaded from ebooks.lab-aids.com Force and Motion E Force and Motion I can t wait until school is over, Jack said to his friend Uma. My favorite relative, Aunt Tillie, is visiting. She drives a tour bus and today she is going to pick

More information

February 8, SWBAT explain the difference between potential and kinetic energy. How will you help our class earn all of our S.T.R.I.V.E. Points?

February 8, SWBAT explain the difference between potential and kinetic energy. How will you help our class earn all of our S.T.R.I.V.E. Points? February 8, 2017 Aims: SWBAT explain the difference between potential and kinetic energy. Agenda 1. Do Now 2. Class Notes 3. Guided Practice 4. Independent Practice 5. Practicing our AIMS: Homework: E.2

More information

Review Distance, Rate, and Time

Review Distance, Rate, and Time 8.4 Guided Notes Name: D = RT & Mixture Problems (Applications of Systems) Review Distance, Rate, and Time Distance Formula or the uniform rate formula D = On Your Own: Bob drives at an average rate of

More information

Stopping distance = thinking distance + braking distance.

Stopping distance = thinking distance + braking distance. Q1. (a) A driver may have to make an emergency stop. Stopping distance = thinking distance + braking distance. Give three different factors which affect the thinking distance or the braking distance. In

More information

overcomingchallengeschanginglives

overcomingchallengeschanginglives overcomingchallengeschanginglives Upper Extremity Team Jamie Samuel Moore Emma Sarles Amy Hughes Hannah Folby Elizabeth Nicolas Robert Henry Guide: Gerald Garavuso 2 Presentation Agenda Catch&Launch Strike

More information

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Key Points Induced EMF Faraday s Law of Induction; Lenz s Law References SFU Ed: 29-1,2,3,4,5,6. 6 th Ed: 21-1,2,3,4,5,6,7. Induced EMF

More information

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. Figure shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier and her skis. Figure

More information

Projectile Impact Tester

Projectile Impact Tester Projectile Impact Tester Design Team Neil Cameron, Laura Paradis, Tristan Whiting Betsy Huse, James Leithauser Design Advisor Prof. Mohammad Taslim Abstract The purpose of this project was to design a

More information

Displacement & velocity time graphs

Displacement & velocity time graphs Displacement & elocity time graphs Model Answers 1 Leel Exam Board Subject Module Topic A LEVEL Edexcel Mathematics Mechanics & Statistics Constant acceleration Sub-Topic Booklet Model Answers 1 Displacement

More information

210C-1 Selection materials

210C-1 Selection materials 7 2C- Selection materials 8 Calculation of cylinder buckling ) Be sure to calculate the cylinder buckling. 2) In the case of using a hydraulic cylinder, the stress and buckling must be considered depending

More information

Video Communications Presents. Reference Guide and Test Questions. Tail Swing Safety for School Bus Drivers

Video Communications Presents. Reference Guide and Test Questions. Tail Swing Safety for School Bus Drivers Video Communications Presents Reference Guide and Test Questions Tail Swing Safety for School Bus Drivers Introduction Tail swing occurs whenever a bus makes a turn. The school bus driver must be aware

More information

Problem of the Month. Movin n Groovin

Problem of the Month. Movin n Groovin Problem of the Month Movin n Groovin Level A: Maria and Tran each have a pet hamster. They have a maze for the hamsters to run through. Maria says she thinks her hamster can run through the maze faster

More information

ELECTRICITY: ELECTROMAGNETISM QUESTIONS

ELECTRICITY: ELECTROMAGNETISM QUESTIONS ELECTRICITY: ELECTROMAGNETISM QUESTIONS The flying fox (2017;3) Sam has a flying fox (zip line) that he wants to use in the dark. Sam connects a 12.0 V battery to a spotlight, using two 1.60-metre-long

More information

MAGNETIC EFFECTS ON AND DUE TO CURRENT-CARRYING WIRES

MAGNETIC EFFECTS ON AND DUE TO CURRENT-CARRYING WIRES 22 January 2013 1 2013_phys230_expt3.doc MAGNETIC EFFECTS ON AND DUE TO CURRENT-CARRYING WIRES OBJECTS To study the force exerted on a current-carrying wire in a magnetic field; To measure the magnetic

More information

Landships of Mogdonazia by John Bell

Landships of Mogdonazia by John Bell Landships of Mogdonazia by John Bell These rules are made to interact with Larry Brom s The Sword and The Flame rules set. Anything not explained here might be found in TSATF. It should be noted that the

More information

UNIT - III GYROSCOPE

UNIT - III GYROSCOPE UNIT - III GYROSCOPE Introduction 1When a body moves along a curved path, a force in the direction of centripetal acceleration (centripetal force ) has to be applied externally This external force is known

More information

CHAPTER -13 MAGNETIC EFFECT OF ELECTRIC CURRENT

CHAPTER -13 MAGNETIC EFFECT OF ELECTRIC CURRENT CHAPTER -13 MAGNETIC EFFECT OF ELECTRIC CURRENT Madhu:8095226364 Question 1: Why does a compass needle get deflected when brought near a bar magnet? Answer 1: Magnetic compass needle and bar magnet both

More information

Figure 1: Forces Are Equal When Both Their Magnitudes and Directions Are the Same

Figure 1: Forces Are Equal When Both Their Magnitudes and Directions Are the Same Moving and Maneuvering 1 Cornerstone Electronics Technology and Robotics III (Notes primarily from Underwater Robotics Science Design and Fabrication, an excellent book for the design, fabrication, and

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction Lecture by Dr. Hebin Li Goals of Chapter 29 To examine experimental evidence that a changing magnetic field induces an emf To learn how Faraday s law relates the induced

More information

Technology in Transportation Exam 1

Technology in Transportation Exam 1 Name: 16.682 Technology in Transportation Exam 1 April 5, 2011 Question 1: Internal Combustion Engine Technology (20 points) Use the torque/rpm curve below to answer the following questions: 600 500 Horsepower

More information

The rod and the cloth both become charged as electrons move between them.

The rod and the cloth both become charged as electrons move between them. 1 polythene rod is rubbed with a cloth. polythene rod cloth The rod and the cloth both become charged as electrons move between them. The rod becomes negatively charged. Which diagram shows how the rod

More information

The Basics of Balancing 101

The Basics of Balancing 101 The Basics of Balancing 101 Gary K. Grim Bruce J. Mitchell Copyright 2014 Balance Technology Inc. Do not Distribute or Duplicate without the Authorized Written Consent of BTI (Balance Technology Inc.)

More information

Mathacle. Level Number Name: Date:

Mathacle. Level Number Name: Date: 1 1.) A chemist has 10 milliliters of a solution that contains a 30% concentration of acid. How many milliliters of pure acid must be added in order to increase the concentration to 50%? 2.) A radiator

More information

SCIENCE 8. Unit 4 Booklet. Machines and Mechanical Systems

SCIENCE 8. Unit 4 Booklet. Machines and Mechanical Systems SCIENCE 8 Unit 4 Booklet Machines and Mechanical Systems TOPIC 1 REINFORCEMENT Levers Have Class BLM 4-2 Goal Identify items as Class 1, Class 2, or Class 3 levers. Introduction There are three classes

More information

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday 10/26/17 Update Last week Completed Sources of Magnetic Fields (Chapter 30) This week A. B. Kaye, Ph.D. Associate Professor of Physics (Chapter 31) Next week 30 October 3 November 2017 Chapter 32 Induction

More information

FULL PERFORMANCE FROM SHORT BARRELS

FULL PERFORMANCE FROM SHORT BARRELS FULL PERFORMANCE FROM SHORT BARRELS PERFORMANCE LINE SHORT RIFLE Many hunters are not aware of the loss of performance from shorter barrels. Great, that RWS now covers this gap with the new cartridge.

More information

Dynamics of Machines. Prof. Amitabha Ghosh. Department of Mechanical Engineering. Indian Institute of Technology, Kanpur. Module No.

Dynamics of Machines. Prof. Amitabha Ghosh. Department of Mechanical Engineering. Indian Institute of Technology, Kanpur. Module No. Dynamics of Machines Prof. Amitabha Ghosh Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module No. # 04 Lecture No. # 03 In-Line Engine Balancing In the last session, you

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *8019038925* PHYSICS 0625/03 Paper 3 Extended October/November 2007 1 hour 15 minutes Candidates

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Faraday's Law 1. Objectives. The objectives of this laboratory are a. to verify the dependence of the induced emf in a coil on

More information

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect. Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car. The results are shown in the table. Speed in metres per second

More information

Pg 1 Solve each word problem 1. Marie rode her bicycle from her home to the bicycle shope in town and then walked back home. If she averaged 6 miles

Pg 1 Solve each word problem 1. Marie rode her bicycle from her home to the bicycle shope in town and then walked back home. If she averaged 6 miles Pg 1 Solve each word problem 1. Marie rode her bicycle from her home to the bicycle shope in town and then walked back home. If she averaged 6 miles per hour riding and 3 miles per hour walking, how far

More information

SECTION A DYNAMICS. Attempt any two questions from this section

SECTION A DYNAMICS. Attempt any two questions from this section SECTION A DYNAMICS Question 1 (a) What is the difference between a forced vibration and a free or natural vibration? [2 marks] (b) Describe an experiment to measure the effects of an out of balance rotating

More information

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The stopping distance of a car is the sum of the thinking distance and the braking distance. FORCES AND BRAKING Q1. The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed.

More information

Set-Up and Usage Instructions

Set-Up and Usage Instructions 4-WAY GRAVITY-DROP AND REBOUNDER SYSTEM Set-Up and Usage Instructions Joe Mauer» AL Batting Champion 06, 08, 09» 2009 League MVP Warning: Always wear a helmet with face guard Improper use of this product

More information

FLY IN ATMOSPHERE BY DRAG FORCE EASY THRUST GENERATION - NEXT GENERATION TECHNOLOGY -

FLY IN ATMOSPHERE BY DRAG FORCE EASY THRUST GENERATION - NEXT GENERATION TECHNOLOGY - International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 903 FLY IN ATMOSPHERE BY DRAG FORCE EASY THRUST GENERATION - NEXT GENERATION TECHNOLOGY - Mwizerwa Pierre Celestin

More information