Displacement & velocity time graphs

Size: px
Start display at page:

Download "Displacement & velocity time graphs"

Transcription

1 Displacement & elocity time graphs Model Answers 1 Leel Exam Board Subject Module Topic A LEVEL Edexcel Mathematics Mechanics & Statistics Constant acceleration Sub-Topic Booklet Model Answers 1 Displacement & elocity time graphs Time Allowed: Score: Percentage: 35 minutes /9 /100 Grade Boundaries: A* A B C D E U >85% 77.5% 70% 6.5% 57.5% 45% <45% Model Answer Key Red = Answer - This is what you need to write to get the mark - Each bullet point represents 1 mark Blue = Explanation - This is here to help you understand the answer - You DON'T need to write this to get the marks 1 Model answers are copyright. 018 Sae My Exams Ltd. All rights resered.

2 1. 1 (m s ) 30 O T t (s) Figure 4 The elocity-time graph in Figure 4 represents the journey of a train P traelling along a straight horizontal track between two stations which are 1.5 km apart. The train P leaes the first station, accelerating uniformly from rest for 300 m until it reaches a speed of 30 m s 1. The train then maintains this speed for T seconds before decelerating uniformly at 1.5 m s, coming to rest at the next station. (a) Find the acceleration of P during the first 300 m of its journey. Because the train has constant acceleration, we can use the SUVAT equation = uu + aaff The initial elocity of the train is 0 as it starts from rest. It traels s=300m until it reaches elocity = = aa(300) aa = a = 1.5 ms Model answers are copyright. 018 Sae My Exams Ltd. All rights resered.

3 (b) Find the alue of T. (5) The distance that the train traels is the area under the speed-time graph. The train traels a total distance of 1.5km (1500m), so this must be the total area underneath the graph. To find the time taken for the train to accelerate use the SUVAT equation = uu + aamm 30 = mm substitute in the known alues mm = 0FF To find the time taken for the train to decelerate use the SUVAT equation = uu + aamm 0 = mm substitute in the known alues mm = 4FF The distance traelled is the area under the graph. The area of a trapezium is 1 h (aa + bb) We know that the train traels 1500m oerall, so we can substitute in alues 1 30 (0 + TT TT) = TT = 100simplify TT = 56 3 T= 8s Model answers are copyright. 018 Sae My Exams Ltd. All rights resered.

4 A second train Q completes the same journey in the same total time. The train leaes the first station, accelerating uniformly from rest until it reaches a speed of V m s 1 and then immediately decelerates uniformly until it comes to rest at the next station. (c) Sketch on the diagram aboe, a elocity-time graph which represents the journey of train Q. Train Q is represented on the below graph in red. The key features are that the same oerall time is taken for train Q to go between the two stations, and that the shape of the graph is a triangle. Notice that the elocity V must be greater than =30. (d) Find the alue of V. (6) Train Q traels the same distance as train P, therefore the area under the graph of Q must also equal 1500m. The area is simply a triangle. AAbbmmaa = 1 VV 7 = 1500 V = 15 3 ms 1 (Total 15 marks) 4 Model answers are copyright. 018 Sae My Exams Ltd. All rights resered.

5 . A car is traelling along a straight horizontal road. The car takes 10 s to trael between two sets of traffic lights which are 145 m apart. The car starts from rest at the first set of traffic lights and moes with constant acceleration for 30 s until its speed is m s 1. The car maintains this speed for T seconds. The car then moes with constant deceleration, coming to rest at the second set of traffic lights. (a) Sketch, in the space below, a speed-time graph for the motion of the car between the two sets of traffic lights. ms s (T + 30) s t (b) Find the alue of T. (3) The area under the graph is the distance traelled which is known. Hence 145 = TT + 1 (10 TT 30) 145 = 11 (30 + TT + 90 TT) 195 = TT + 10 TT = 7711s 5 Model answers are copyright. 018 Sae My Exams Ltd. All rights resered.

6 A motorcycle leaes the first set of traffic lights 10 s after the car has left the first set of traffic lights. The motorcycle moes from rest with constant acceleration, a m s, and passes the car at the point A which is 990 m from the first set of traffic lights. When the motorcycle passes the car, the car is moing with speed m s 1. (c) Find the time it takes for the motorcycle to moe from the first set of traffic lights to the point A. (4) Motorcycle moing with acceleration a ms -1 t 10 s t s 30 s (T + 30) s The motorcycle reaches point A at time t. We can calculate the area under the graph for the distance as before (using the car) 990 = (tt 30) tt = tt = 60 This is in the car s time frame. The bike leaes 10s later so the time the takes is = 50s (d) Find the alue of a. Using SUVAT 99 = uutt + 77 mmtt = aa 50 aa = = 0.79ms - (Total 11 marks) 6 Model answers are copyright. 018 Sae My Exams Ltd. All rights resered.

7 3. A ball of mass 0.3 kg is released from rest at a point which is m aboe horizontal ground. The ball moes freely under graity. After striking the ground, the ball rebounds ertically and rises to a maximum height of 1.5 m aboe the ground, before falling to the ground again. The ball is modelled as a particle. (d) Sketch, in the space proided, a elocity-time graph for the motion of the ball from the instant when it is released until the instant when it strikes the ground for the second time. (3) Velocity-time graph: Maximum elocity at the initial point The ball strikes the ground u Acceleration under g = -9.8 m/s = the gradient of the line We fix the direction up as positie. The ball reaches the highest point aft er rising the second time and then falls. Its elocity is lower than the one in t he initial displacement -u t Acceleration under g. This line should be just as steeper as the acceleration represented aboe, since the graitational acceleration is the same. When the ball starts at time t = 0, its elocity is maximum,. As it goes down ertically, the ball accelerates due to its weight acting downwards, W = mg. At the point = 0 m/s, the ball is at its highest point. The negatie elocity represents that the ball is moing in the negatie direction, downwards, and speeding up. (Total 3 marks) 7 Model answers are copyright. 018 Sae My Exams Ltd. All rights resered.

d / cm t 2 / s 2 Fig. 3.1

d / cm t 2 / s 2 Fig. 3.1 7 5 A student has been asked to determine the linear acceleration of a toy car as it moves down a slope. He sets up the apparatus as shown in Fig. 3.1. d Fig. 3.1 The time t to move from rest through a

More information

(a) A 36 volt battery powers the electric motor. The battery is made using individual 1.2 volt cells.

(a) A 36 volt battery powers the electric motor. The battery is made using individual 1.2 volt cells. Q1.The picture shows an electric bicycle. The bicycle is usually powered using a combination of the rider pedalling and an electric motor. (a) A 36 volt battery powers the electric motor. The battery is

More information

Chapter 9 Motion Exam Question Pack

Chapter 9 Motion Exam Question Pack Chapter 9 Motion Exam Question Pack Name: Class: Date: Time: 63 minutes Marks: 63 marks Comments: Page of 49 The graphs in List A show how the velocities of three vehicles change with time. The statements

More information

Exampro GCSE Physics. P2 Forces and their effects Self Study Questions Higher tier. Name: Class: Author: Date: Time: 117. Marks: 117.

Exampro GCSE Physics. P2 Forces and their effects Self Study Questions Higher tier. Name: Class: Author: Date: Time: 117. Marks: 117. Exampro GCSE Physics P2 Forces and their effects Self Study Questions Higher tier Name: Class: Author: Date: Time: 117 Marks: 117 Comments: Page 1 of 32 Q1. (a) The stopping distance of a vehicle is made

More information

Figure 1. What is the difference between distance and displacement?

Figure 1. What is the difference between distance and displacement? Q1.A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the same as the

More information

Exam Review. 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line.

Exam Review. 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. Graphing Motion Exam Review 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. Student 4. The graph represents the motion of a cart.

More information

Cumulative Frequency Diagrams Question Paper 1

Cumulative Frequency Diagrams Question Paper 1 Frequency Diagrams Question Paper 1 Level Subject Exam Board IGCSE Maths Edexcel Topic Handling Data Statistics Sub Topic Frequency Diagrams(Graphical representation of data) Booklet Question Paper 1 Time

More information

Q1. The graph shows the speed of a runner during an indoor 60 metres race.

Q1. The graph shows the speed of a runner during an indoor 60 metres race. Q1. The graph shows the speed of a runner during an indoor 60 metres race. (a) Calculate the acceleration of the runner during the first four seconds. (Show your working.) (b) How far does the runner travel

More information

Hovercraft

Hovercraft 1 Hovercraft 2017-2018 Names: Score: / 44 Show all equations and work. Point values are shown in parentheses at the end of the question. Assume g=9.8 m/s/s for all calculations. Include units in your answer.

More information

Circular Motion. Save My Exams! The Home of Revision GCSE(9-1) Level. Edexcel Topic. Exam Board. Circular Motion Sub-Topic Booklet Mark Scheme 1

Circular Motion. Save My Exams! The Home of Revision GCSE(9-1) Level. Edexcel Topic. Exam Board. Circular Motion Sub-Topic Booklet Mark Scheme 1 Circular Motion Mark Scheme Level GCSE(9-) Subject Physics Exam Board Edexcel Topic Circular Motion Sub-Topic Booklet Mark Scheme Time Allowed: 62 minutes Score: /62 Percentage: /00 Page M.(a) A (b) (i)

More information

Rotational Kinematics and Dynamics Review

Rotational Kinematics and Dynamics Review Rotational Kinematics and Dynamics Review 1. The Earth takes slightly less than one day to complete one rotation about the axis passing through its poles. The actual time is 8.616 10 4 s. Given this information,

More information

Angular Momentum Problems Challenge Problems

Angular Momentum Problems Challenge Problems Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise

More information

Velocity vs Time. Velocity vs Time

Velocity vs Time. Velocity vs Time Chapter : One Dimensional Motion Graphical Interpretation of Instantaneous and Average Acceleration Explain what happens in each of these graphs. Make sure to record the change in displacement, change

More information

ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI

ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI YR. 9 / YR. 10 PHYSICS REVISION WORKSHEET 1. (a) In 2009 the sprinter Usain Bolt ran the 100m sprint in a time of 9.58s. Calculate his average speed during this race.

More information

[2] [2]

[2] [2] High Demand Questions QUESTIONSHEET 1 A jet aircraft is taking off from an international airport. Its mass, including passengers and fuel is 150,000 kg. Its take-off speed is 100 ms -1. The maximum thrust

More information

P5 STOPPING DISTANCES

P5 STOPPING DISTANCES P5 STOPPING DISTANCES Practice Questions Name: Class: Date: Time: 85 minutes Marks: 84 marks Comments: GCSE PHYSICS ONLY Page of 28 The stopping distance of a car is the sum of the thinking distance and

More information

Intermediate 2 Momentum & Energy Past Paper questions

Intermediate 2 Momentum & Energy Past Paper questions Intermediate 2 Momentum & Energy Past Paper questions 2000-2010 2000 Q23. A chairlift at a ski resort carries skiers through a vertical distance of 400 m. (a) One of the skiers has a mass of 90.0 kg.

More information

(3) When the brake pedal of the car is pushed, brake pads press against very hard steel discs.

(3) When the brake pedal of the car is pushed, brake pads press against very hard steel discs. Q1. A car travels along a level road at 20 metres per second. (a) Calculate the distance travelled by the car in 4 seconds. (Show your working.) (b) When the brake pedal of the car is pushed, brake pads

More information

ISO 6292 INTERNATIONAL STANDARD. Powered industrial trucks and tractors Brake performance and component strength

ISO 6292 INTERNATIONAL STANDARD. Powered industrial trucks and tractors Brake performance and component strength INTERNATIONAL STANDARD ISO 6292 Second edition 2008-11-01 Powered industrial trucks and tractors Brake performance and component strength Chariots de manutention et tracteurs industriels automoteurs Performance

More information

Concepts of One Dimensional Kinematics Activity Purpose

Concepts of One Dimensional Kinematics Activity Purpose Concepts of One Dimensional Kinematics Activity Purpose During the activity, students will become familiar with identifying how the position, the velocity, and the acceleration of an object will vary with

More information

time in seconds Amy leaves diving board

time in seconds Amy leaves diving board 1 Amy dives from the high diving board at a swimming pool. Look at the graph of her motion. speed in m / s 15 10 Amy enters water P Q 5 0 0 0.5 1.0 1.5 2.0 2.5 time in seconds Amy leaves diving board (a)

More information

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Name: Group: Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted,

More information

Electricity was somehow being induced by the magnetic field of the first coil in the second coil.

Electricity was somehow being induced by the magnetic field of the first coil in the second coil. AP Physics Induction Not too many years ago the word induction meant the draft as in Uncle Sam and the army. Well, fortunately for some - although the Physics Kahuna thinks that mandatory serice for your

More information

Page 2. The go-kart always had the same mass and used the same motor.

Page 2. The go-kart always had the same mass and used the same motor. Q1.(a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart. The go-kart always had the same mass and used

More information

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect. Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car. The results are shown in the table. Speed in metres per second

More information

Friction and Momentum

Friction and Momentum Lesson Three Aims By the end of this lesson you should be able to: understand friction as a force that opposes motion, and use this to explain why falling objects reach a terminal velocity know that the

More information

National 4/5. Dynamics and Space

National 4/5. Dynamics and Space North Berwick High School National 4/5 Department of Physics Dynamics and Space Section 1 Mechanics Problem Booklet KINEMATICS PROBLEMS Speed, distance and time 1. A runner completes a 200 m race in 25

More information

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in.

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in. Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in. (a) Choose from the following words to complete the sentences below. distance energy force speed time You

More information

Year 11 Physics. Term1 Week 9 Review Test

Year 11 Physics. Term1 Week 9 Review Test Year 11 Physics Term1 Week 9 Review Test Q1 Q2 Q3 Q4 Q5 Q6 A woman driving at a speed of 23 m/s sees a deer on the road ahead and applies the brakes when she is 210 m from the deer. If the deer does not

More information

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. ACCELERATION Q1. Figure 1 shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier and

More information

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units Example Problems 1.4 Kinematics E1. Super-monkey is flying at 14.5 m/s when he sees trouble and accelerates at a rate of 23.6 m/s² for 7.0 sec. What is Super-monkey s final velocity? E2. Super-monkey is

More information

Figure 1. What is the difference between distance and displacement?

Figure 1. What is the difference between distance and displacement? Q1.A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the same as the

More information

meters Time Trials, seconds Time Trials, seconds 1 2 AVG. 1 2 AVG

meters Time Trials, seconds Time Trials, seconds 1 2 AVG. 1 2 AVG Constan t Velocity (Speed) Objective: Measure distance and time during constant velocity (speed) movement. Determine average velocity (speed) as the slope of a Distance vs. Time graph. Equipment: battery

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110. Aircraft and Automotive Systems

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110. Aircraft and Automotive Systems s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110 Aircraft and Automotive Systems Time allowed: TWO hours Answer TWO questions from THREE in Section A and TWO questions

More information

Friction. Coefficients of friction for rubber on roads are listed in the table. asphalt road) Dry road Wet road 0.53

Friction. Coefficients of friction for rubber on roads are listed in the table. asphalt road) Dry road Wet road 0.53 Conceptual questions Friction 1 Most bikes have normal tires: some have fats. a Suppose the wheels on both a normal bike (not shown) and the bikes above have outside diameters of 67 cm. By using your own

More information

SIMRET makes Heavy Vehicle Brake Testing easy!

SIMRET makes Heavy Vehicle Brake Testing easy! SIMRET makes Heavy Vehicle Brake Testing easy! The traditional way to measure brake performance of a vehicle has been to its measure stopping distance. In other words, the distance travelled between applying

More information

An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper

An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper SAE TECHNICAL PAPER SERIES -1-3337 An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper Michael S. Talbott Honda R&D Americas, Inc. John Starkey Purdue Uniersity Reprinted

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2014/2015 ME110. Aircraft and Automotive Systems

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2014/2015 ME110. Aircraft and Automotive Systems s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER EXAMINATIONS 014/015 ME110 Aircraft and Automotive Systems Time allowed: ONE hour THIRTY minutes Answer TWO questions from THREE Items permitted:

More information

Section 3: Collisions and explosions

Section 3: Collisions and explosions Section 3: Collisions and explosions 1. What is the momentum of the object in each of the following situations? (c) 2. A trolley of mass 2 0 kg is travelling with a speed of 1 5 m s 1. The trolley collides

More information

CH 65 MOTION PROBLEMS, PART 1

CH 65 MOTION PROBLEMS, PART 1 CH 65 MOTION PROBLEMS, PART 1 585 Introduction W hether it s the police pursuing a bank robber, or a physicist determining the velocity of a proton in a linear accelerator, the concepts of time, distance,

More information

Linear Motion Problems

Linear Motion Problems Linear Motion Problems For problems 1-9, list the givens and the variable to be found in each problem. 1. An angry mob lynches a physics teacher after receiving their grades. They throw the physics teacher

More information

(1) 17 km (2) 23 km (3) 16 km (4) 7 km (5) 30 km

(1) 17 km (2) 23 km (3) 16 km (4) 7 km (5) 30 km Instructor(s): N. Sullivan PHYSICS DEPARTMENT PHY 2004 Exam 1 September 18, 2017 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Twelve General Plane Motion, Work and Energy Part A (Introductory) 1. (Problem 6/78 from Meriam and Kraige - Dynamics) Above the earth

More information

ELECTRONIC PHYSICIAN Waist-High Scale 6027 and 6029 Series Owner s Manual

ELECTRONIC PHYSICIAN Waist-High Scale 6027 and 6029 Series Owner s Manual ELECTRONIC PHYSICIAN Waist-High Scale 6027 and 6029 Series Owner s Manual CARDINAL SCALE MFG. CO. 0044-M078-O1 Re G PO BOX 151 WEBB CITY, MO 64870 Printed in USA 11/06 PH (417) 673-4631 FAX (417) 673-5001

More information

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. Figure shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier and her skis. Figure

More information

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect. Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car. The results are shown in the table. Speed in metres per second

More information

A.M. MONDAY, 19 January minutes

A.M. MONDAY, 19 January minutes Candidate Name Centre Number Candidate Number 0 GCSE 241/01 ADDITIONAL SCIENCE FOUNDATION TIER PHYSICS 2 A.M. MONDAY, 19 January 2009 45 minutes For Examiner s use Total Mark ADDITIONAL MATERIALS In addition

More information

Non-projectile motion. Projectile Motion

Non-projectile motion. Projectile Motion Non-projectile motion *** Ex) A spacecraft has an initial component of v ix = +22 m/s and an acceleration component of a x = +24 m/s 2. In the y direction, the analogous quantities are viy = +14 m/s and

More information

Working Model 2D Tutorial 2

Working Model 2D Tutorial 2 Working Model 2D: Tutorial 2 Example 11-10: A wheel with Diameter of 1.2m, mounted in a vertical plane, accelerates uniformly from rest at 3 rad/s 2 for five seconds, and then maintains uniform velocity

More information

Fraction Distillation of Crude Oil

Fraction Distillation of Crude Oil Fraction Distillation of Crude Oil Question Paper 2 Level A Level Subject Chemistry Exam Board AQA Module 3.3 Organic Chemistry Topic 3.3.2 Alkanes Sub-Topic 3.3.2.1 Fractional Distillation of Crude Oil

More information

2/1/EN/3. Slot Diffuser. Type VSD15. with 15 mm wide diffuser face

2/1/EN/3. Slot Diffuser. Type VSD15. with 15 mm wide diffuser face 2/1/EN/3 Slot Diffuser Type VSD15 with 15 mm wide diffuser face Contents Air Diffuser Discharge Characteristics (horizontal) 2 Description 3 Air Diffuser Discharge Characteristics (alternating) 3 Construction

More information

1.2 Flipping Ferraris

1.2 Flipping Ferraris 1.2 Flipping Ferraris A Solidify Understanding Task When people first learn to drive, they are often told that the faster they are driving, the longer it will take to stop. So, when you re driving on the

More information

Linear Drive with Ball Screw Drive Series OSP-E..SB

Linear Drive with Ball Screw Drive Series OSP-E..SB Linear Drive with Ball Screw Drive Series OSP-E..SB Contents Description Data Sheet No. Page Overview 1.30.001E 47-50 Technical Data 1.30.002E-1 to 5 51-55 Dimensions 1.30.002E-6, -7 56-57 Order instructions

More information

Max. particle size 5 µm. Pressure for determining piston forces Repetitive precision. Polyurethane

Max. particle size 5 µm. Pressure for determining piston forces Repetitive precision. Polyurethane Piston rod cylinders Guide cylinders 1 Ambient temperature min./max. +0 C / +60 C edium Compressed air ax. particle size 5 µm Oil content of compressed air 0 mg/m³ - 1 mg/m³ Pressure for determining piston

More information

Physics 2. Chapter 10 problems. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Chapter 10 problems. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 2 Chapter 10 problems 10.6 A machinist is using a wrench to loosen a nut. The wrench is 25cm long, and he exerts a 17-N force at the end of the handle. a) What torque does the machinist exert about

More information

SECTION A DYNAMICS. Attempt any two questions from this section

SECTION A DYNAMICS. Attempt any two questions from this section SECTION A DYNAMICS Question 1 (a) What is the difference between a forced vibration and a free or natural vibration? [2 marks] (b) Describe an experiment to measure the effects of an out of balance rotating

More information

Linear Drive with Toothed Belt Series OSP-E..B. Contents Description Overview Technical Data Dimensions Order Instructions 46

Linear Drive with Toothed Belt Series OSP-E..B. Contents Description Overview Technical Data Dimensions Order Instructions 46 Linear Drive with Toothed Belt Contents Description Page Overview 35-38 Technical Data 39-43 Dimensions 44-45 Order Instructions 46 35 The System Concept ELECTRIC LINEAR DRIVE FOR POINT-TO-POINT APPLICATIONS

More information

Features of the Ball Screw

Features of the Ball Screw Features of the Driving Torque One Third of the Sliding Screw With the, balls roll between the screw shaft and the nut to achieve high effi ciency. Its required driving torque is only one third of the

More information

Chapter 10 Forces and Motion

Chapter 10 Forces and Motion Chapter 0 Forces and Motion Name: Class: Date: Time: 282 minutes Marks: 282 marks Comments: Page of 86 (a) A van has a mass of 3200 kg. The diagram shows the van just before and just after it collides

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 A plastic rod is rubbed with a cloth and becomes negatively charged. (a) Explain how the rod becomes negatively charged when rubbed with a cloth... [2] (b) An uncharged metal-coated

More information

Simplus

Simplus Simplus in Latin means Simple. We focus on making direct drive 1 actuators that are simple to use, plus the additional benefits of: small form factor higher performance better reliability 1 direct drive

More information

Linear Actuator with Ball Screw Series OSP-E..S. Contents Description Overview Technical Data Dimensions 89

Linear Actuator with Ball Screw Series OSP-E..S. Contents Description Overview Technical Data Dimensions 89 Linear Actuator with Ball Screw Series OSP-E..S Contents Description Page Overview 79-82 Technical Data 83-88 Dimensions 89 79 The System Concept ELECTRIC LINEAR ACTUATOR FOR HIGH ACCURACY APPLICATIONS

More information

The characteristics of each type of service are given in table 1 given below:

The characteristics of each type of service are given in table 1 given below: Types of Railway Services There are three types of passenger services which traction system has to cater for namely Urban, Sub-urban and Main line services. 1. Urban or city service In this type of service

More information

2. Write the expression for estimation of the natural frequency of free torsional vibration of a shaft. (N/D 15)

2. Write the expression for estimation of the natural frequency of free torsional vibration of a shaft. (N/D 15) ME 6505 DYNAMICS OF MACHINES Fifth Semester Mechanical Engineering (Regulations 2013) Unit III PART A 1. Write the mathematical expression for a free vibration system with viscous damping. (N/D 15) Viscous

More information

Performance Evaluation of Series Hybrid and Pure Electric Vehicles Using Lead-Acid Batteries and Supercapacitors

Performance Evaluation of Series Hybrid and Pure Electric Vehicles Using Lead-Acid Batteries and Supercapacitors Performance Ealuation of Series Hybrid and Pure Electric Vehicles Using Lead-Acid Batteries and Supercapacitors William F. Infante Adrin F. Khan Nathaniel Joseph C. Libatique, Member, IEEE Gregory L. Tangonan,

More information

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb.

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb. Q1. A small torch uses a single cell to make the bulb light up. (a) The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch

More information

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5C: Approved specimen question paper. Version 1.1

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5C: Approved specimen question paper. Version 1.1 GCE AS and A Level Physics A AS exams 2009 onwards A2 exams 2010 onwards Unit 5C: Approved specimen question paper Version 1.1 Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature

More information

Industrial Technology

Industrial Technology 2011 HIGHER SCHOOL CERTIFICATE EXAMINATION Industrial Technology Automotive Technologies Total marks 40 General Instructions Reading time 5 minutes Working time 1 1 hours 2 Write using black or blue pen

More information

Model of deceleration lane length calculation based on quadratic

Model of deceleration lane length calculation based on quadratic Model of deceleration lane length calculation based on quadratic konglingzong Tongji University Report Contents 1 Introduction 2 Forms of deceleration lane 3 Model establishment 4 Model parameter and recommended

More information

Linear Actuator with Toothed Belt Series OSP-E..B

Linear Actuator with Toothed Belt Series OSP-E..B Linear Actuator with Toothed Belt Series OSP-E..B Contents Description Data Sheet No. Page Overview 1.20.001E 21-24 Technical Data 1.20.002E-1 to 5 25-29 Dimensions 1.20.002E-6 30 Order Instructions 1.20.002E-7

More information

Active and Passive Brakes Series OSP-P

Active and Passive Brakes Series OSP-P Active and Passive Brakes Series OSP-P Contents Description Page Overview 51-52 Standard cylinder with Active brake 53-56 Plain bearing SLIDELINE with Active brake 33-34 Aluminium roller guide PROLINE

More information

Momentum, Energy and Collisions

Momentum, Energy and Collisions Experiment 19 The of two carts on a track can be described in terms of conservation and, in some cases, energy conservation. If there is no net external force experienced by the system of two carts, then

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Faraday's Law 1. Objectives. The objectives of this laboratory are a. to verify the dependence of the induced emf in a coil on

More information

ELECTRICITY: INDUCTORS QUESTIONS

ELECTRICITY: INDUCTORS QUESTIONS ELECTRICITY: INDUCTORS QUESTIONS No Brain Too Small PHYSICS QUESTION TWO (2017;2) In a car engine, an induction coil is used to produce a very high voltage spark. An induction coil acts in a similar way

More information

TURBO30 TURBOFLEX OPERATING INSTRUCTIONS WARNING It is dangerous to work in the icinity of a lead-acid battery since they generate explosie gases during normal battery operation. To preent an explosion

More information

6: Vehicle Performance

6: Vehicle Performance 6: Vehicle Performance 1. Resistance faced by the vehicle a. Air resistance It is resistance offered by air to the forward movement of vehicle. This resistance has an influence on performance, ride and

More information

R (a) Define (i) Mean spherical Candlepower (ii) Waste light factor

R (a) Define (i) Mean spherical Candlepower (ii) Waste light factor Set No: 1 1. (a) Derive the relation between the temperature of a motor at a particular time during operation and final temperature. (b) What do you understand by load equalization? 2. (a) What are the

More information

If the windlass has a diameter of 300mm, calculate the torque produced by the load. (Show all working and units.)

If the windlass has a diameter of 300mm, calculate the torque produced by the load. (Show all working and units.) 8. A winch system used to raise a 5N load is shown. (a) If the windlass has a diameter of mm, calculate the torque produced by the load. (Show all working and units.) T = r = 5 5 = 875Nmm = 8. 75Nm substitution

More information

Question Papers on Momentum

Question Papers on Momentum Question Papers on Momentum Name Due Date QUESTION 6 Collisions happen on the roads in our country daily. In one of these collisions, a car of mass 1 600 kg, travelling at a speed of 30 m s -1 to the left,

More information

Letter STUDENT NUMBER SYSTEMS ENGINEERING. Written examination. Monday 20 November 2017

Letter STUDENT NUMBER SYSTEMS ENGINEERING. Written examination. Monday 20 November 2017 Victorian Certificate of Education 2017 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Letter STUDENT NUMBER SYSTEMS ENGINEERING Written examination Monday 20 November 2017 Reading time: 9.00 am to 9.15 am

More information

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011.

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011. Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Additional Science Unit Physics P2 Physics Unit Physics P2 Written Paper General Certificate

More information

4.2 Electrical Quantities

4.2 Electrical Quantities For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 4.2 Electrical Quantities Question Paper Level IGSE Subject Physics (625) Exam oard Topic Sub Topic ooklet ambridge International

More information

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY 1 B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions

More information

16.682: Technology in Transportation - Pset #2 Issued: Wednesday, February 16th, 2011 Due: Thursday, February 24th, 2011

16.682: Technology in Transportation - Pset #2 Issued: Wednesday, February 16th, 2011 Due: Thursday, February 24th, 2011 16.682: Technology in Transportation - set #2 Issued: Wednesday, February 16th, 2011 Due: Thursday, February 24th, 2011 Topics Covered: Thermodynamics Internal Combustion Engines Road Vehicle Engineering

More information

PHYSICS KINETIC AND GRAVITATIONAL POTENTIAL ENERGIES WORKSHEET

PHYSICS KINETIC AND GRAVITATIONAL POTENTIAL ENERGIES WORKSHEET Kinetic Energy Basics 1. What is the kinetic energy of a 80 kg football player running at 8 m/s? 2. What is the kinetic energy of a 0.01 kg dart that is thrown at 20 m/s? 3. What is the kinetic energy

More information

View Numbers and Units

View Numbers and Units To demonstrate the usefulness of the Working Model 2-D program, sample problem 16.1was used to determine the forces and accelerations of rigid bodies in plane motion. In this problem a cargo van with a

More information

Newton s 2 nd Law Activity

Newton s 2 nd Law Activity Newton s 2 nd Law Activity Purpose Students will begin exploring the reason the tension of a string connecting a hanging mass to an object will be different depending on whether the object is stationary

More information

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m.

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m. Problem 3.1 The rolling resistance force is reduced on a slope by a cosine factor ( cos ). On the other hand, on a slope the gravitational force is added to the resistive forces. Assume a constant rolling

More information

Topic: Friction. Planes, Trains, and Automobiles. A Poppins Book Nook Science Experiment. My Name Is:

Topic: Friction. Planes, Trains, and Automobiles. A Poppins Book Nook Science Experiment. My Name Is: Planes, Trains, and Automobiles A Poppins Book Nook Science Experiment Topic: Friction My Name Is: ---------------------------------------------------------------------------------------------------------

More information

44 (0) E:

44 (0) E: FluidFlow Equipment Sizing Handbook Flite Software 2018 Flite Software N.I. Ltd, Block E, Balliniska Business Park, Springtown Rd, Derry, BT48 0LY, N. Ireland. T: 44 (0) 2871 279227 E: sales@fluidflowinfo.com

More information

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Contents: 121P11-1P, 3P,4P, 5P, 7P, 17P, 19P, 24P, 27P, 28P, 31P Overview Magnetic Flux Motional EMF Two Magnetic Induction Experiments

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *8019038925* PHYSICS 0625/03 Paper 3 Extended October/November 2007 1 hour 15 minutes Candidates

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law C HAP T E O UTL E 311 Faraday s Law of nduction 312 Motional emf 313 Lenz s Law 314 nduced emf and Electric Fields 315 Generators and Motors 316 Eddy Currents 317 Maxwell s Equations

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

Academic Year

Academic Year EXCELLENCE INTERNATIONAL SCHOOL First Term, Work sheet (1) Grade (9) Academic Year 2014-2015 Subject: quantities Topics:- Static electricity - Eelectrical NAME: DATE: MULTIPLE CHOICE QUESTIONS: 1 - A circuit

More information

Speed Workshop. In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs

Speed Workshop. In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs Speed Workshop In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs Average speed Speed is how quickly an object can cover a distance. You may also

More information

A student used the apparatus drawn below to investigate the heating effect of an electric heater.

A student used the apparatus drawn below to investigate the heating effect of an electric heater. Q1.(a) A student used the apparatus drawn below to investigate the heating effect of an electric heater. (i) Before starting the experiment, the student drew Graph A. Graph A shows how the student expected

More information

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The stopping distance of a car is the sum of the thinking distance and the braking distance. FORCES AND BRAKING Q1. The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed.

More information

APPLICATION NOTE AN-ODP March 2009

APPLICATION NOTE AN-ODP March 2009 Application Note Title AN-ODP-37 Braking Resistor Selection and Usage Revision History Version Comments Author Date 2.21 Previous version NX 15/6/07 3.00 Revised to new format, additional information added

More information