Dynamic Simulation of Electric Bus Vehicle

Size: px
Start display at page:

Download "Dynamic Simulation of Electric Bus Vehicle"

Transcription

1 Dynamic Simulation of Electric Bus Vehicle Thanatchai Kulworawanichpong* & Suchart Punpaisarn** *School of Electrical Engineering, Suranaree University of Technology, THAILAND. thanatchai{at}gmail{dot}com **School of Electrical Engineering, Suranaree University of Technology, THAILAND. suchartlek17{at}gmail{dot}com Abstract In this paper, dynamic analysis and simulation of electric bus vehicle are illustrated. They consist of mathematical models integrating with large-scale vehicle movement and calculation of electric traction performances. The electric bus vehicle movement is studied by applying the Newton s second law of motion. Traction force of the electric bus vehicle is supplied from electric motors instead of a diesel engine. This dynamic modeling and simulation can be used to estimate vehicle performance during vehicle running services. To exhibit these analysis and simulation, an electric mini-bus of 1-ton weight is employed for simulation to provide a single-trip service distance of 9.4 km. The bus route used in this work is obtained by acquiring GPS tracking data on-board the bus. As a result, the electric bus vehicle requires energy from a set of on-board batteries of 10. kwh per trip and draws the peak power of 155 kw from the traction motor. Keywords Dynamic Simulation; Electric Bus Vehicle; Newton's Second Law of Motion; Traction Performance; Vehicle Resistance. Abbreviations Global Position System GPS); Suranaree University of Technology (SUT). I. INTRODUCTION Abus transport vehicle uses a conventional internal combustion engine propulsion system. This type of buses normally engages a diesel power-train and is also known as diesel buses. Because of its safety, reliability and efficiency, diesel is the predominant power source for public transit, school and intercity bus services nationwide. Nearly all buses and heavy-duty large trucks use diesel engines because of the massive torque available. The sufficient engine torque is the key to help the vehicle pull huge amounts of weight. Diesel fuel is one of the most efficient and energy dense fuels available today [Corbo, 1998; United States Environmental Protection Agency, 008]. Because it contains more usable energy than gasoline, it delivers better fuel economy. Although diesel fuel is considered more efficient than gasoline, the diesel engine still needs regular maintenance to keep them running. Within the last decade, electric bus vehicles have been introduced and replacing conventional diesel bus vehicles for test in some city bus services. The electric engine, so-called electric motor, does not result in a bus that is simply more environmentally friendly yet of a lower quality, in fact the overall performance is arguably improved. In addition to their main quality of a reduction in air pollution due to the lack of emissions, electric transport has proven itself adept at ascending steep hills, making the electric bus very popular. The electric engine causes far less vibration throughout the vehicle, making for a more comfortable journey for those on board without the rattling often experienced when a bus is at lights or a stop. A reduction in vibration also increases the life and reduces maintenance requirements of the bus, making it a cost-effective option for operators. Although the initial introduction of an electric transport system and fleet can be costly, as a long-term mode of public electric transport buses are surprisingly cost-effective in terms of lifespan and upkeep. One of the most common causes of approval for the electric bus is its lack of noise. The electric buses are noticeably quiet, lowering noise pollution and increasing comfort for those onboard. In addition, regenerative braking demonstrated with the electric bus means that the motor acts as a generator, channelling excess energy back into the battery on the bus. Diesel buses would see this energy expelled as friction during braking, meaning that the electric bus saves around 30% of energy through this difference alone [Chandler et al., 00; Hallmark, 01]. In this paper, the study of traction performance and dynamic simulation of bus vehicle is focused in order to investigate an amount of energy consumption of a single trip of the bus service. This information will help electric bus designers to decide how large of the on-board battery capacity and what the traction motor rating are. So that, this paper organizes a total of five sections. Next section, Section two, illustrates the mathematical model representing the electric bus vehicle movement and traction performance calculation. Section three gives the brief of MATLAB platform which is a software tool to develop simulation codes. Section four presents simulation results and discussion. Conclusion is in Section five. ISSN: Published by The Standard International Journals (The SIJ) 99

2 II. ELECTRIC BUS DYNAMIC SIMULATION The key dynamic variables of bus vehicle movement are position, velocity and acceleration rate. During single vehicle motion, the relationships among these variables are only subject to the straightforward kinematic equation according to the Newton s second law of motion [Henclewood, 007; Mashadi & Crolla, 01]. Let consider figure 1, a bus vehicle is moving up on an incline road surface. This motion can be expressed mathematically by using the free body diagram describing all the forces acting on the bus vehicle as shown in (1). Power electronic inverters are necessary tools for controlling the torque-speed characteristics of the traction motors. Figure -b) illustrates the controlled characteristics of the tractive effort of the electric traction motor [Vu, 01]. a) Diesel Engine Figure 1: Free Body Diagram of the Bus Vehicle Movement FT FR Meff a (1) FR FRR Fgrad Fdrag () F T denotes the tractive effort of the bus vehicle F R denotes the resistance force of the bus vehicle F RR denotes the rolling resistance force of the bus vehicle F drag denotes the aerodynamic drag force of the bus vehicle F grad denotes the gravitational force (gradient force) of the bus vehicle M eff denotes the total mass of the bus vehicle a denotes the bus vehicle acceleration.1. Tractive Effort Tractive effort or tractive force [Repčić, 011] is produced at the tyre-road interface. It is caused by the applied torque from traction motors to the wheel axis slip in the contact area. It notes that F T F max, otherwise the wheel slipping rather than spinning. The bus vehicle accelerates through the application of tractive forces. Diesel engine and electric motor are the propulsion system to generate the traction forces for diesel and electric vehicles, respectively. Diesel engine typically works at larger torques and low speeds. In a certain gear, the tractive force is considerably degraded with a wide range of the operating speed. It is clear that the tractive force at each gear varies with vehicle speed. At low gear, the tractive force is greater and produces greater acceleration. The non-smooth tractive effort of a diesel engine resulting from all gears is shown in figure -a). AC motors, induction or permanent magnet synchronous, are generally used as traction motors for medium-duty and heavy-duty electric vehicles. One of the inherent properties of electric motors is the production of torque at zero speed. b) Electric Motor Figure : Tractive Effort of the Bus Vehicle [Soylu, 011] (3) is used to simplify the tractive force for use in association with the vehicle movement. T m m F T (3) v F T is the tractive effort T is the overall power transmission system efficiency m is the torque produced by the traction motor m is the rotational speed of the traction motor s shaft v is the longitudinal speed of the bus vehicle.. Resistance Force There are resistive forces, F R, opposing of the vehicle motion [Duysinx, 01]. The resistive forces can be categorized into three types: frictional forces, commonly called rolling resistance, air resistance or dynamic drag forces and gravitational or gradient forces. ISSN: Published by The Standard International Journals (The SIJ) 100

3 The rolling resistance is the resistance to motion of rotating parts. It can be categorized into two main resistances: i) frictional torques (bearing torques, gear teeth friction, brake pads) and ii) tyre deformation. (4) is the mathematical representation of the rolling resistance. FRR frw f0 f1v W (4) W is the wheel load f R is the rolling resistance coefficient f 0 and f 1 are two constants (for simplification, f 1 is neglected) f 0 = (truck vehicle running on asphalt or concrete road).3. Aerodynamic Drag Forces The motion of a vehicle is taking place in the air and the force exerted by air on the vehicle will influence the motion. The aerodynamic resistance force results from three basic effects: i) the pressure different in front and behind the vehicle due to the separation of the air flow and the vortex creation behind the vehicle, ii) skin friction representing the surface roughness of the vehicle body and iii) internal flow of air entering the internal parts of the vehicle [Hucho, 1998; Kalm, 007]. It is common to express the aerodynamic resistance force in the basic form as (5). 1 Fdrag aircd AF vair (5) air is air density (kg/m 3 ) C d is an aerodynamic drag coefficient A F is the projected frontal area of the vehicle v air is the speed of air relative to the vehicle body.4. Gravitational or Gradient Forces The gravitational force [Tautkus, 011] on a slope will act in opposite direction for uphill and downhill motion of the vehicle. The positive and negative signs are for the downhill and uphill motions respectively. The gravitational force is a constant force as long as the slope is constant. (6) is the mathematical representation of the gradient force. F M g sin (6) grad M eff is the vehicle mass (kg) g is the gravitational constant (9.81 m/s ) is the slope angle.5. Equation of Motion eff The relation between velocity and time is a simple one during constantly accelerated, straight-line motion. Constant acceleration implies a uniform rate of change in the velocity. The longer the acceleration, the greater the change in velocity. Change in velocity is directly proportional to time when acceleration is constant. If an object already started with a certain velocity, then its new velocity would be the old velocity plus this change. This is the easiest of the three equations to derive formally. Start from the definition of acceleration, expand the Δv term, and solve for v as a function of t. The first equation, (7), is the relation between velocity and time. The displacement of a moving object is directly proportional to both velocity and time. Acceleration compounds this simple situation. Displacement is directly proportional to time and directly proportional to velocity, which is directly proportional to time. Time is a factor twice, making displacement proportional to the square of time. The second equation of motion, (8), is the relation of displacement and time. Combining the above two equations gives rise to a third, (9). Therefore, displacement is proportional to velocity squared when acceleration is constant. x t t x t v t t 1 a t (7) v t t v t a x t t x t (8) t is the time step x(t) is the displacement at time t v(t) is the velocity or speed at time t a is the acceleration of motion START Load system input parameters Initialize all variables e.g. t = 0 Calculate kinetic variables: speed, displacement, acceleration Calculate resistance forces: rolling resistance, drag, gradient forces Calculate tractive force, input power, energy consumption Store data t > Tstop END t = t + t Figure 3: Structure of Simulation Program III. SIMULATION MODEL AND PROGRAMMING STRUCTURE The bus vehicle movement simulator presented in this paper is simplistic. The power propulsion system is assumed to be a set of inverters, battery storage systems and traction motors. However, it neglects any complicated models of these equipment. The battery is represented by an ideal energy source. The efficiency of the on-board inverter and the ISSN: Published by The Standard International Journals (The SIJ) 101

4 Road Gradient Profile (m: SSL) The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), Vol., No. 3, May 014 traction motors for this application is normally high. Thus, all these can be represented by a single parameter of the overall power-conversion efficiency. The simulation program structure can be summarized as described in figure 3 [Punpaisarn & Kulworawanichpong, 014]. In this study, existing buses are considered as test vehicles. It assumes that a GPS tracking device is equipped on-board bus vehicles [Fuse & Shimizu, 000]. The speedtime and road altitude curves are vital components to conduct this simulation. An example of the vehicle speed trajectory and road altitude is shown in figure 4. Figure 4: Example of GPS Tracking Data IV. RESULTS AND DISCUSSION Figure 6: GPS Tracking Module and its Tracking Software In this paper, study of a single trip bus vehicle service is carried out. The campus bus service in Suranaree University of Technology, Nakhon Ratchasima, Thailand, is selected for this test as shown in figure 5. The GPS tracking module used in this work is a skylab GPS module SKM55 with high sensitivity of -165 dbm. The GPS tracking device and its tarcking interface via google map can be shown in figure 6. The bus route is 9.4 km long as described in figure 7-a). The speed trajectory and road altitude of the bus vehicle service acquired from the GPS tracking device are given in figure 8 and figure 7-b), respectively. The test was performed on an Intel, Core Duo,.4 GHz, 3.0 GB RAM with MATLAB software. a) Bus Route Figure 5: SUT s Campus Bus Service Distance (km) b) Road Altitude Figure 7: Test Route in SUT Campus ISSN: Published by The Standard International Journals (The SIJ) 10

5 Electric traction power (kw) Tractive force (kn) Bus speed (km/h) The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), Vol., No. 3, May time (s) Figure 8: Speed Trajectory of the Bus Vehicle under Study The simulation shows that the total time of the test bus service is 7 minutes approximately. The maximum tractive effort is about 14.3 kn as shown in figure 9 for the simulated traction force curve. The maximum power drawn from the battery is about 155 kw as described in figure 10. This pins out the limitation of the peak of the traction motor used for this electric bus vehicle design. The total energy consumption of the battery for one trip service is about 10. kwh. This value can be used to estimate the energy capacity of the onboard battery time (s) Figure 9: Simulated Traction Force of the Bus Vehicle time (s) Figure 10: Simulated Power Supplied by the On-Board Battery of the Bus Vehicle V. CONCLUSION This paper describes analysis and simulation of electric bus vehicle movement and traction performance calculation. The purpose of this simulation is to obtain necessary information for evaluating capacity of on-board battery and traction motors. This study is based on the Newton s second law of motion in which three main resistance forces (rolling resistance, aerodynamic drag resistance and gravitational resistance) are taken into account. From the calculation, tractive force created by the traction motors, power and energy supplied by the on-board battery are obtained. This information can be used accordingly to design motor and battery sizing of the electric bus vehicles. ACKNOWLEDGEMENTS This work was financially supported by Provincial Electric Authority of Thailand (Grant ID: B ) to Thanatchai Kulworawanichpong. REFERENCES [1] P. Corbo (1998), Lean Burn Natural Gas Engines as a Possible Power Unit in Urban Fleets of Heavy Duty Vehicles with Low Environmental Impact, International Journal of Vehicle Design, Vol. 0, Pp [] W.H. Hucho (1998), Aerodynamics of Road Vehicles, SAE International. [3] T. Fuse & E. Shimizu (000), A New Technique for Vehicle Tracking on the Assumption of Stratospheric Platforms, International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B5, Amsterdam. [4] K. Chandler, K. Walkowicz & L. Eudy (00), New York City Transit Diesel Hybrid-Electric Buses: Final Results, DOE/NREL Transit Bus Evaluation Project. [5] D.A. Henclewood (007), The Development of a Dynamic- Interactive-Vehicle Model for Modeling Traffic Beyond the Microscopic Level, University of Massachusetts-Amherst, USA. [6] E. Kalm (007), Design of an Aerodynamic Green Car, Lulea University of Technology. [7] United States Environmental Protection Agency (008), Vehicle and Engine Compliance Activities, Progress Report. [8] N. Repčić (011), Tractive Effort Curve in Gearbox Analyze, 15th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology (TMT 011), Prague, Czech Republic. [9] S. Soylu (011), Electric Vehicles - Modelling and Simulations, InTech. [10] A. Tautkus (011), Longitudinal and Lateral Dynamics, Powering the Future with Zero Emission and Human Powered Vehicles Terrassa, Erasmus LLP Intensive Programme. [11] S.L. Hallmark (01), Assessing the Costs for Hybrid versus Regular Transit Buses, Tech Brief, Center for Transportation Research and Education, Iowa State University. [1] P. Duysinx (01), Performance of Vehicles, Research Center in Sustainable Automotive Technologies, University of Liege. [13] B. Mashadi & D. Crolla (01), Vehicle Power Train Systems: Integration and Optimization, Wiley. ISSN: Published by The Standard International Journals (The SIJ) 103

6 [14] T.M. Vu (01), Vehicle Steering Dynamic Calculation and Simulation, Annals of DAAAM for 01 & Proceedings of the 3rd International DAAAM Symposium, Vol. 3, No. 1. [15] S. Punpaisarn & T. Kulworawanichpong (014), Traction Performance and Electric Bus Vehicle Dynamic Simulation, International Symposium on Fundamental and Applied Sciences, 8 30 March 014, Tokyo, Japan. Thanatchai Kulworawanichpong. He is an associate professor of the School of Electrical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, THAILAND. He received B.Eng. with first-class honour in Electrical Engineering from Suranaree University of Technology, Thailand (1997), M.Eng. in Electrical Engineering from Chulalongkorn University, Thailand (1999), and Ph.D. in Electronic and Electrical Engineering from the University of Birmingham, United Kingdom (003). His fields of research interest include a broad range of electrical power systems, railway electrification, traction system and electric vehicle, power electronic, electrical drives and control, optimization and artificial intelligent techniques. He has joined the school since June 1998 and is currently a leader in Electric Transportation Research and Electrical Power System, Suranaree University of Technology, to supervise and co-supervise over 15 postgraduate students. Suchart Punpaisarn. He received B.Eng. in Electronics Engineering from Vongchavalitkul University, Nakhon Ratchasima, Thailand (1998) and M.Eng. in Electrical Engineering from Kasetsart University, Bangkok, Thailand (005). He worked as an Assistant Chief Engineer, JVC (Components) Thailand Company, Nakhon Ratchasima, Thailand ( ) - Level IV Engineer and a Senior Engineer, Seagate Technology (Thailand) Ltd., Nakhon Rachasima, Thailand ( ) Level V Engineer. Currently he is a Ph.D. student conducting his research in electric bus vehicle analysis, simulation and design. His research interests include control system, process and industrial control and instrument, electronic and digital circuit design, robotics, signal and image processing, artificial intelligence and optimization. ISSN: Published by The Standard International Journals (The SIJ) 104

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m.

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m. Problem 3.1 The rolling resistance force is reduced on a slope by a cosine factor ( cos ). On the other hand, on a slope the gravitational force is added to the resistive forces. Assume a constant rolling

More information

MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID POWERTRAIN

MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID POWERTRAIN 2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER & MOBILITY (P&M) TECHNICAL SESSION AUGUST 12-14, 2014 - NOVI, MICHIGAN MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID

More information

Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway

Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway Energy and Sustainability III 461 Investigating the impact of track gradients on traction energy efficiency in freight transportation by railway G. Bureika & G. Vaičiūnas Department of Railway Transport,

More information

A conceptual design of main components sizing for UMT PHEV powertrain

A conceptual design of main components sizing for UMT PHEV powertrain IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS A conceptual design of main components sizing for UMT PHEV powertrain Related content - Development of a KT driving cycle for

More information

Vehicle Types and Dynamics Milos N. Mladenovic Assistant Professor Department of Built Environment

Vehicle Types and Dynamics Milos N. Mladenovic Assistant Professor Department of Built Environment Vehicle Types and Dynamics Milos N. Mladenovic Assistant Professor Department of Built Environment 19.02.2018 Outline Transport modes Vehicle and road design relationship Resistance forces Acceleration

More information

Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning

Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning Journal of Energy and Power Engineering 9 (215) 269-275 doi: 1.17265/1934-8975/215.3.6 D DAVID PUBLISHING Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning Seishiro

More information

Analysis of regenerative braking effect to improve fuel economy for E-REV bus based on simulation

Analysis of regenerative braking effect to improve fuel economy for E-REV bus based on simulation EVS28 KINTEX, Korea, May 3-6, 2015 Analysis of regenerative braking effect to improve fuel economy for E-REV bus based on simulation Jongdai Choi 1, Jongryeol Jeong 1, Yeong-il Park 2, Suk Won Cha 1 1

More information

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics Tanmay P. Dobhada Tushar S. Dhaspatil Prof. S S Hirmukhe Mauli P. Khapale Abstract: A shock absorber is

More information

Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads

Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads Perodua Myvi engine fuel consumption map and fuel economy vehicle simulation on the drive cycles based on Malaysian roads Muhammad Iftishah Ramdan 1,* 1 School of Mechanical Engineering, Universiti Sains

More information

Remarkable CO 2 Reduction of the Fixed Point Fishing Plug-in Hybrid Boat

Remarkable CO 2 Reduction of the Fixed Point Fishing Plug-in Hybrid Boat Journal of Asian Electric Vehicles, Volume 13, Number 1, June 215 Remarkable CO 2 Reduction of the Fixed Point Fishing Plug-in Hybrid Boat Shigeyuki Minami 1, Kazusumi Tsukuda 2, Kazuto Koizumi 3, and

More information

Analysis of Fuel Economy and Battery Life depending on the Types of HEV using Dynamic Programming

Analysis of Fuel Economy and Battery Life depending on the Types of HEV using Dynamic Programming World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 - 2013 WEVA Page Page 0320 EVS27 Barcelona, Spain, November 17-20, 2013 Analysis of Fuel Economy and Battery Life depending on the Types of HEV using

More information

SIMULATION OF ELECTRIC VEHICLE AND COMPARISON OF ELECTRIC POWER DEMAND WITH DIFFERENT DRIVE CYCLE

SIMULATION OF ELECTRIC VEHICLE AND COMPARISON OF ELECTRIC POWER DEMAND WITH DIFFERENT DRIVE CYCLE SIMULATION OF ELECTRIC VEHICLE AND COMPARISON OF ELECTRIC POWER DEMAND WITH DIFFERENT DRIVE CYCLE 1 Shivi Arora, 2 Jayesh Priolkar 1 Power and Energy Systems Engineering, Dept. Electrical and Electronics

More information

Development of Motor-Assisted Hybrid Traction System

Development of Motor-Assisted Hybrid Traction System Development of -Assisted Hybrid Traction System 1 H. IHARA, H. KAKINUMA, I. SATO, T. INABA, K. ANADA, 2 M. MORIMOTO, Tetsuya ODA, S. KOBAYASHI, T. ONO, R. KARASAWA Hokkaido Railway Company, Sapporo, Japan

More information

Grey Box System Identification of Bus Mass

Grey Box System Identification of Bus Mass Grey Box System Identification of Bus Mass Darren Achtymichuk M. Sc. Student University of Alberta Department of Mechanical Engineering Project Background When analyzing vehicle dynamics, the mass of the

More information

Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect

Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect PAPER Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect Minoru KONDO Drive Systems Laboratory, Minoru MIYABE Formerly Drive Systems Laboratory, Vehicle Control

More information

Featured Articles Utilization of AI in the Railway Sector Case Study of Energy Efficiency in Railway Operations

Featured Articles Utilization of AI in the Railway Sector Case Study of Energy Efficiency in Railway Operations 128 Hitachi Review Vol. 65 (2016), No. 6 Featured Articles Utilization of AI in the Railway Sector Case Study of Energy Efficiency in Railway Operations Ryo Furutani Fumiya Kudo Norihiko Moriwaki, Ph.D.

More information

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System)

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System) Proc. Schl. Eng. Tokai Univ., Ser. E (17) 15-1 Proc. Schl. Eng. Tokai Univ., Ser. E (17) - Research on Skid Control of Small Electric Vehicle (Effect of Prediction by Observer System) by Sean RITHY *1

More information

PERFORMANCE OF ELECTRIC VEHICLES. Pierre Duysinx University of Liège Academic year

PERFORMANCE OF ELECTRIC VEHICLES. Pierre Duysinx University of Liège Academic year PERFORMANCE OF ELECTRIC VEHICLES Pierre Duysinx University of Liège Academic year 2015-2016 1 References R. Bosch. «Automotive Handbook». 5th edition. 2002. Society of Automotive Engineers (SAE) M. Ehsani,

More information

Optimization of Seat Displacement and Settling Time of Quarter Car Model Vehicle Dynamic System Subjected to Speed Bump

Optimization of Seat Displacement and Settling Time of Quarter Car Model Vehicle Dynamic System Subjected to Speed Bump Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Optimization

More information

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank UNIT I INTRODUCTION 1. What are the design considerations of a vehicle?(jun 2013) 2..Classify the various types of vehicles.

More information

The Comparative Evaluation of the Cost of Traveling and Environment on the Expressway Route vs. the Ground Level Road in Bangkok

The Comparative Evaluation of the Cost of Traveling and Environment on the Expressway Route vs. the Ground Level Road in Bangkok Rev. Integr. Bus. Econ. Res. Vol 5(NRRU) 74 The Comparative Evaluation of the Cost of Traveling and Environment on the Expressway Route vs. the Ground Level Road in Bangkok Nirun Kongritti* Environmental

More information

A Brake Pad Wear Control Algorithm for Electronic Brake System

A Brake Pad Wear Control Algorithm for Electronic Brake System Advanced Materials Research Online: 2013-05-14 ISSN: 1662-8985, Vols. 694-697, pp 2099-2105 doi:10.4028/www.scientific.net/amr.694-697.2099 2013 Trans Tech Publications, Switzerland A Brake Pad Wear Control

More information

MECA0494 : Braking systems

MECA0494 : Braking systems MECA0494 : Braking systems Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 MECA0494 Driveline and Braking Systems Monday 23/10 (@ULG)

More information

Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles

Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles Dileep K 1, Sreepriya S 2, Sreedeep Krishnan 3 1,3 Assistant Professor, Dept. of AE&I, ASIET Kalady, Kerala, India 2Associate Professor,

More information

Simulation and Analysis of Vehicle Suspension System for Different Road Profile

Simulation and Analysis of Vehicle Suspension System for Different Road Profile Simulation and Analysis of Vehicle Suspension System for Different Road Profile P.Senthil kumar 1 K.Sivakumar 2 R.Kalidas 3 1 Assistant professor, 2 Professor & Head, 3 Student Department of Mechanical

More information

Modelling and Simulation Study on a Series-parallel Hybrid Electric Vehicle

Modelling and Simulation Study on a Series-parallel Hybrid Electric Vehicle EVS28 KINTEX, Korea, May 3-6, 205 Modelling and Simulation Study on a Series-parallel Hybrid Electric Vehicle Li Yaohua, Wang Ying, Zhao Xuan School Automotive, Chang an University, Xi an China E-mail:

More information

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle 2012 IEEE International Electric Vehicle Conference (IEVC) Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle Wilmar Martinez, Member National University Bogota, Colombia whmartinezm@unal.edu.co

More information

Fuel Consumption, Exhaust Emission and Vehicle Performance Simulations of a Series-Hybrid Electric Non-Automotive Vehicle

Fuel Consumption, Exhaust Emission and Vehicle Performance Simulations of a Series-Hybrid Electric Non-Automotive Vehicle 2017 Published in 5th International Symposium on Innovative Technologies in Engineering and Science 29-30 September 2017 (ISITES2017 Baku - Azerbaijan) Fuel Consumption, Exhaust Emission and Vehicle Performance

More information

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 References R. Bosch.

More information

Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor

Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor ABSTRACT Umer Akram*, M. Tayyab Aamir**, & Daud Ali*** Department of Mechanical Engineering,

More information

Special edition paper

Special edition paper Efforts for Greater Ride Comfort Koji Asano* Yasushi Kajitani* Aiming to improve of ride comfort, we have worked to overcome issues increasing Shinkansen speed including control of vertical and lateral

More information

The effect of road profile on passenger car emissions

The effect of road profile on passenger car emissions Transport and Air Pollution, 5 th Int. Sci. Symp., Avignon, France, June The effect of road profile on passenger car emissions Abstract Leonid TARTAKOVSKY*, Marcel GUTMAN*, Yuri ALEINIKOV*, Mark VEINBLAT*,

More information

USING OF BRAKING IN REAL DRIVING URBAN CYCLE

USING OF BRAKING IN REAL DRIVING URBAN CYCLE USING OF BRAKING IN REAL DRIVING URBAN CYCLE Dalibor BARTA, Martin MRUZEK 1 Introduction Relative to the intensifying and ever-evolving of the electromobility and combined alternative propulsions as hybrids

More information

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle ES27 Barcelona, Spain, November 7-2, 23 Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric ehicle Sungyeon Ko, Chulho Song, Jeongman Park, Jiweon

More information

Forced vibration frequency response for a permanent magnetic planetary gear

Forced vibration frequency response for a permanent magnetic planetary gear Forced vibration frequency response for a permanent magnetic planetary gear Xuejun Zhu 1, Xiuhong Hao 2, Minggui Qu 3 1 Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan

More information

White Paper: The Physics of Braking Systems

White Paper: The Physics of Braking Systems White Paper: The Physics of Braking Systems The Conservation of Energy The braking system exists to convert the energy of a vehicle in motion into thermal energy, more commonly referred to as heat. From

More information

837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines

837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines 837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines Yaojung Shiao 1, Ly Vinh Dat 2 Department of Vehicle Engineering, National Taipei University of Technology, Taipei, Taiwan, R. O. C. E-mail:

More information

EFFECT OF PAVEMENT CONDITIONS ON FUEL CONSUMPTION, TIRE WEAR AND REPAIR AND MAINTENANCE COSTS

EFFECT OF PAVEMENT CONDITIONS ON FUEL CONSUMPTION, TIRE WEAR AND REPAIR AND MAINTENANCE COSTS EFFECT OF PAVEMENT CONDITIONS ON FUEL CONSUMPTION, TIRE WEAR AND REPAIR AND MAINTENANCE COSTS Graduate of Polytechnic School of Tunisia, 200. Completed a master degree in 200 in applied math to computer

More information

Flywheel energy storage retrofit system

Flywheel energy storage retrofit system Flywheel energy storage retrofit system for hybrid and electric vehicles Jan Plomer, Jiří First Faculty of Transportation Sciences Czech Technical University in Prague, Czech Republic 1 Content 1. INTRODUCTION

More information

APVC2009. Genetic Algorithm for UTS Plug-in Hybrid Electric Vehicle Parameter Optimization. Abdul Rahman SALISA 1,2 Nong ZHANG 1 and Jianguo ZHU 1

APVC2009. Genetic Algorithm for UTS Plug-in Hybrid Electric Vehicle Parameter Optimization. Abdul Rahman SALISA 1,2 Nong ZHANG 1 and Jianguo ZHU 1 Genetic Algorithm for UTS Plug-in Hybrid Electric Vehicle Parameter Optimization Abdul Rahman SALISA 1,2 Nong ZHANG 1 and Jianguo ZHU 1 1 School of Electrical, Mechanical and Mechatronic Systems, University

More information

The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train

The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train K.Ogawa, T.Yamamoto, T.Hasegawa, T.Furuya, S.Nagaishi Railway Technical Research Institute (RTRI), TOKYO,

More information

Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b

Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b Control of PMS Machine in Small Electric Karting to Improve the output Power Didi Istardi 1,a, Prasaja Wikanta 2,b 1 Politeknik Negeri Batam, parkway st., Batam Center, Batam, Indonesia 2 Politeknik Negeri

More information

Development of Pushrim-Activated Power-Assisted Wheelchair

Development of Pushrim-Activated Power-Assisted Wheelchair Development of Pushrim-Activated Power-Assisted Wheelchair Yoon Heo, Ki-Tae Nam, Eung-Pyo Hong, Mu-Sung Mun Korea Orthopedics & Rehabilitation Engineering Center 26, Gyeongin-ro 10beon-gil, Bupyeong-gu,

More information

Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset

Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset Vikas Kumar Agarwal Deputy Manager Mahindra Two Wheelers Ltd. MIDC Chinchwad Pune 411019 India Abbreviations:

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE

NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND SELECTED ROAD VEHICLE Journal of KONES Powertrain and Transport, Vol. 21, No. 4 2014 ISSN: 1231-4005 e-issn: 2354-0133 ICID: 1130437 DOI: 10.5604/12314005.1130437 NUMERICAL ANALYSIS OF IMPACT BETWEEN SHUNTING LOCOMOTIVE AND

More information

Construction of a Hybrid Electrical Racing Kart as a Student Project

Construction of a Hybrid Electrical Racing Kart as a Student Project Construction of a Hybrid Electrical Racing Kart as a Student Project Tobias Knoke, Tobias Schneider, Joachim Böcker Paderborn University Institute of Power Electronics and Electrical Drives 33095 Paderborn,

More information

FE151 Aluminum Association Inc. Impact of Vehicle Weight Reduction on a Class 8 Truck for Fuel Economy Benefits

FE151 Aluminum Association Inc. Impact of Vehicle Weight Reduction on a Class 8 Truck for Fuel Economy Benefits FE151 Aluminum Association Inc. Impact of Vehicle Weight Reduction on a Class 8 Truck for Fuel Economy Benefits 08 February, 2010 www.ricardo.com Agenda Scope and Approach Vehicle Modeling in MSC.EASY5

More information

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2016, 8 (7):31-40 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Comparison

More information

Research and Design of an Overtaking Decision Assistant Service on Two-Lane Roads

Research and Design of an Overtaking Decision Assistant Service on Two-Lane Roads Research and Design of an Overtaking Decision Assistant Service on Two-Lane Roads Shenglei Xu, Qingsheng Kong, Jong-Kyun Hong and Sang-Sun Lee* Department of Electronics and Computer Engineering, Hanyang

More information

Research on Electric Vehicle Regenerative Braking System and Energy Recovery

Research on Electric Vehicle Regenerative Braking System and Energy Recovery , pp. 81-90 http://dx.doi.org/10.1457/ijhit.016.9.1.08 Research on Electric Vehicle Regenerative Braking System and Energy Recovery GouYanan College of Mechanical and Electrical Engineering, Zaozhuang

More information

Parameters Matching and Simulation on a Hybrid Power System for Electric Bulldozer Hong Wang 1, Qiang Song 2,, Feng-Chun SUN 3 and Pu Zeng 4

Parameters Matching and Simulation on a Hybrid Power System for Electric Bulldozer Hong Wang 1, Qiang Song 2,, Feng-Chun SUN 3 and Pu Zeng 4 2nd International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT-2012) Parameters Matching and Simulation on a Hybrid Power System for Electric Bulldozer Hong Wang

More information

CITY DRIVING ELEMENT COMBINATION INFLUENCE ON CAR TRACTION ENERGY REQUIREMENTS

CITY DRIVING ELEMENT COMBINATION INFLUENCE ON CAR TRACTION ENERGY REQUIREMENTS CITY DRIVING ELEMENT COMBINATION INFLUENCE ON CAR TRACTION ENERGY REQUIREMENTS Juris Kreicbergs, Denis Makarchuk, Gundars Zalcmanis, Aivis Grislis Riga Technical University juris.kreicbergs@rtu.lv, denis.mkk@gmail.com,

More information

USING OF dspace DS1103 FOR ELECTRIC VEHICLE MODELING

USING OF dspace DS1103 FOR ELECTRIC VEHICLE MODELING USING OF dspace DS1103 FOR ELECTRIC VEHICLE MODELING T. Haubert, T. Hlinovsky, P. Mindl Czech Technical University in Prague, Faculty of El. Engineering, Dept. of El. Drives and Traction Abstract This

More information

Analysis of Parametric Studies on the Impact of Piston Velocity Profile On the Performance of a Single Cylinder Diesel Engine

Analysis of Parametric Studies on the Impact of Piston Velocity Profile On the Performance of a Single Cylinder Diesel Engine IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 2 Ver. II (Mar - Apr. 2015), PP 81-85 www.iosrjournals.org Analysis of Parametric Studies

More information

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION International Journal of Latest Research in Science and Technology Volume 3, Issue 1: Page No.68-74,January-February 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 POWER QUALITY IMPROVEMENT

More information

Hovercraft

Hovercraft 1 Hovercraft 2017-2018 Names: Score: / 44 Show all equations and work. Point values are shown in parentheses at the end of the question. Assume g=9.8 m/s/s for all calculations. Include units in your answer.

More information

Modal Analysis of Automobile Brake Drum Based on ANSYS Workbench Dan Yang1, 2,Zhen Yu1, 2, Leilei Zhang1, a * and Wentao Cheng2

Modal Analysis of Automobile Brake Drum Based on ANSYS Workbench Dan Yang1, 2,Zhen Yu1, 2, Leilei Zhang1, a * and Wentao Cheng2 7th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2017) Modal Analysis of Automobile Brake Drum Based on ANSYS Workbench Dan Yang1, 2,Zhen Yu1, 2, Leilei Zhang1,

More information

Vehicle Performance. Pierre Duysinx. Research Center in Sustainable Automotive Technologies of University of Liege Academic Year

Vehicle Performance. Pierre Duysinx. Research Center in Sustainable Automotive Technologies of University of Liege Academic Year Vehicle Performance Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2015-2016 1 Lesson 4: Fuel consumption and emissions 2 Outline FUEL CONSUMPTION

More information

HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar,

HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar, 1 HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar, 1,2 E&TC Dept. TSSM s Bhivrabai Sawant College of Engg. & Research, Pune, Maharashtra, India. 1 priyaabarge1711@gmail.com,

More information

Energy Management for Regenerative Brakes on a DC Feeding System

Energy Management for Regenerative Brakes on a DC Feeding System Energy Management for Regenerative Brakes on a DC Feeding System Yuruki Okada* 1, Takafumi Koseki* 2, Satoru Sone* 3 * 1 The University of Tokyo, okada@koseki.t.u-tokyo.ac.jp * 2 The University of Tokyo,

More information

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x Kaoru SAWASE* Yuichi USHIRODA* Abstract This paper describes the verification by calculation of vehicle

More information

PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL. Pierre Duysinx. LTAS Automotive Engineering University of Liege Academic Year

PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL. Pierre Duysinx. LTAS Automotive Engineering University of Liege Academic Year PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL Pierre Duysinx LTAS Automotive Engineering University of Liege Academic Year 2015-2016 1 References R. Bosch. «Automotive Handbook». 5th edition. 2002.

More information

Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World Driving Data

Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World Driving Data World Electric Vehicle Journal Vol. 6 - ISSN 32-663 - 13 WEVA Page Page 416 EVS27 Barcelona, Spain, November 17-, 13 Effectiveness of Plug-in Hybrid Electric Vehicle Validated by Analysis of Real World

More information

MARINE FOUR-STROKE DIESEL ENGINE CRANKSHAFT MAIN BEARING OIL FILM LUBRICATION CHARACTERISTIC ANALYSIS

MARINE FOUR-STROKE DIESEL ENGINE CRANKSHAFT MAIN BEARING OIL FILM LUBRICATION CHARACTERISTIC ANALYSIS POLISH MARITIME RESEARCH Special Issue 2018 S2 (98) 2018 Vol. 25; pp. 30-34 10.2478/pomr-2018-0070 MARINE FOUR-STROKE DIESEL ENGINE CRANKSHAFT MAIN BEARING OIL FILM LUBRICATION CHARACTERISTIC ANALYSIS

More information

OMICS Group International is an amalgamation of Open Access publications

OMICS Group International is an amalgamation of Open Access publications About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of

More information

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 The impacts of

More information

Research in hydraulic brake components and operational factors influencing the hysteresis losses

Research in hydraulic brake components and operational factors influencing the hysteresis losses Research in hydraulic brake components and operational factors influencing the hysteresis losses Shreyash Balapure, Shashank James, Prof.Abhijit Getem ¹Student, B.E. Mechanical, GHRCE Nagpur, India, ¹Student,

More information

Available online at ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering

Available online at   ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 129 (2015 ) 166 170 International Conference on Industrial Engineering Refinement of hybrid motor-transmission set using micro

More information

Torque Management Strategy of Pure Electric Vehicle Based On Fuzzy Control

Torque Management Strategy of Pure Electric Vehicle Based On Fuzzy Control International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 6 Issue 4 Ver. II ǁ 2018 ǁ PP. 01-09 Torque Management Strategy of Pure Electric

More information

The research on gearshift control strategies of a plug-in parallel hybrid electric vehicle equipped with EMT

The research on gearshift control strategies of a plug-in parallel hybrid electric vehicle equipped with EMT Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):1647-1652 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 The research on gearshift control strategies of

More information

Journal of Asian Scientific Research. DESIGN OF SWITCHED RELUCTANCE MOTOR FOR ELEVATOR APPLICATION T. Dinesh Kumar. A. Nagarajan

Journal of Asian Scientific Research. DESIGN OF SWITCHED RELUCTANCE MOTOR FOR ELEVATOR APPLICATION T. Dinesh Kumar. A. Nagarajan Journal of Asian Scientific Research journal homepage: http://aessweb.com/journal-detail.php?id=5003 DESIGN OF SWITCHED RELUCTANCE MOTOR FOR ELEVATOR APPLICATION T. Dinesh Kumar PG scholar, Department

More information

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers U. Bin-Nun FLIR Systems Inc. Boston, MA 01862 ABSTRACT Cryocooler self induced vibration is a major consideration in the design of IR

More information

Performance Evaluation of Electric Vehicles in Macau

Performance Evaluation of Electric Vehicles in Macau Journal of Asian Electric Vehicles, Volume 12, Number 1, June 2014 Performance Evaluation of Electric Vehicles in Macau Tze Wood Ching 1, Wenlong Li 2, Tao Xu 3, and Shaojia Huang 4 1 Department of Electromechanical

More information

A Relationship between Tyre Pressure and Rolling Resistance Force under Different Vehicle Speed

A Relationship between Tyre Pressure and Rolling Resistance Force under Different Vehicle Speed A Relationship between Tyre Pressure and Rolling Resistance Force under Different Vehicle Speed Apiwat Suyabodha Department of Automotive Engineering, Rangsit University, Lak-hok, Pathumthani, Thailand

More information

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured

More information

MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 References R. Bosch.

More information

INDUCTION motors are widely used in various industries

INDUCTION motors are widely used in various industries IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 6, DECEMBER 1997 809 Minimum-Time Minimum-Loss Speed Control of Induction Motors Under Field-Oriented Control Jae Ho Chang and Byung Kook Kim,

More information

COMPUTER BASED COMPARISON OF TRAIN PERFORMANCE BEHAVIOUR ON A CERTAİN ROUTE

COMPUTER BASED COMPARISON OF TRAIN PERFORMANCE BEHAVIOUR ON A CERTAİN ROUTE 2. Uluslar arası Raylı Sistemler Mühendisliği Sempozyumu (ISERSE 13), 9-11 Ekim 2013, Karabük, Türkiye COMPUTER BASED COMPARISON OF TRAIN PERFORMANCE BEHAVIOUR ON A CERTAİN ROUTE ġenol ERDOĞAN a, * Mustafa

More information

Thermal Stress Analysis of Diesel Engine Piston

Thermal Stress Analysis of Diesel Engine Piston International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 576 Thermal Stress Analysis of Diesel Engine Piston B.R. Ramesh and Kishan

More information

Development of Engine Clutch Control for Parallel Hybrid

Development of Engine Clutch Control for Parallel Hybrid EVS27 Barcelona, Spain, November 17-20, 2013 Development of Engine Clutch Control for Parallel Hybrid Vehicles Joonyoung Park 1 1 Hyundai Motor Company, 772-1, Jangduk, Hwaseong, Gyeonggi, 445-706, Korea,

More information

HS2 Traction Energy Modelling

HS2 Traction Energy Modelling HS2 Traction Energy Modelling Version 1.1 31 December 2009 Page 1 of 16 Contents 1. Introduction...3 2. Assumptions...3 3. Modelling Approach...3 4. Key Conclusions...4 Appendix A: Imperial College Final

More information

A CAD Design of a New Planetary Gear Transmission

A CAD Design of a New Planetary Gear Transmission A CAD Design of a New Planetary Gear Transmission KONSTANTIN IVANOV AIGUL ALGAZIEVA ASSEL MUKASHEVA GANI BALBAYEV Abstract This paper presents the design and characteriation of a new planetary transmission

More information

[Mukhtar, 2(9): September, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

[Mukhtar, 2(9): September, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Consumpton Comparison of Different Modes of Operation of a Hybrid Vehicle Dr. Mukhtar M. A. Murad *1, Dr. Jasem Alrajhi 2 *1,2

More information

Racing Tires in Formula SAE Suspension Development

Racing Tires in Formula SAE Suspension Development The University of Western Ontario Department of Mechanical and Materials Engineering MME419 Mechanical Engineering Project MME499 Mechanical Engineering Design (Industrial) Racing Tires in Formula SAE

More information

D. Hasegawa, G. L. Nicholson, C. Roberts & F. Schmid Birmingham Centre for Railway Research and Education, University of Birmingham, UK.

D. Hasegawa, G. L. Nicholson, C. Roberts & F. Schmid Birmingham Centre for Railway Research and Education, University of Birmingham, UK. Computers in Railways XIV 485 The impact of different maximum speeds on journey times, energy use, headway times and the number of trains required for Phase One of Britain s High Speed Two line D. Hasegawa,

More information

various energy sources. Auto rickshaws are three-wheeled vehicles which are commonly used as taxis for people and

various energy sources. Auto rickshaws are three-wheeled vehicles which are commonly used as taxis for people and ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com ANALYSIS OF ELECTRIC TRACTION FOR SOLAR POWERED HYBRID AUTO RICKSHAW Chaitanya Kumar. B, Monisuthan.S.K Student,

More information

Train Group Control for Energy-Saving DC-Electric Railway Operation

Train Group Control for Energy-Saving DC-Electric Railway Operation Train Group Control for Energy-Saving DC-Electric Railway Operation Shoichiro WATANABE and Takafumi KOSEKI Electrical Engineering and Information Systems The University of Tokyo Bunkyo-ku, Tokyo, Japan

More information

Modeling of Conventional Vehicle in Modelica

Modeling of Conventional Vehicle in Modelica Modeling of Conventional Vehicle in Modelica Wei Chen, Gang Qin, Lingyang Li, Yunqing Zhang, Liping Chen CAD Center, Huazhong University of Science and Technology, China chenw@hustcad.com Abstract Modelica

More information

Fuel consumption analysis of motor vehicle

Fuel consumption analysis of motor vehicle 1 Portál pre odborné publikovanie ISSN 1338-0087 Fuel consumption analysis of motor vehicle Matej Juraj Elektrotechnika 09.01.2013 Paper discuss about the traces of fuel consumption in various operating

More information

Investigation of CO 2 emissions in usage phase due to an electric vehicle - Study of battery degradation impact on emissions -

Investigation of CO 2 emissions in usage phase due to an electric vehicle - Study of battery degradation impact on emissions - EVS27 Barcelona, Spain, November 17 -, 13 Investigation of CO 2 emissions in usage phase due to an electric vehicle - Study of battery degradation impact on emissions - Abstract Tetsuya Niikuni, Kenichiroh

More information

Comparing PID and Fuzzy Logic Control a Quarter Car Suspension System

Comparing PID and Fuzzy Logic Control a Quarter Car Suspension System Nemat Changizi, Modjtaba Rouhani/ TJMCS Vol.2 No.3 (211) 559-564 The Journal of Mathematics and Computer Science Available online at http://www.tjmcs.com The Journal of Mathematics and Computer Science

More information

Drivetrain design for an ultra light electric vehicle with high efficiency

Drivetrain design for an ultra light electric vehicle with high efficiency World Electric Vehicle Journal Vol. 6 - ISSN 3-6653 - 3 WEVA Page Page EVS7 Barcelona, Spain, November 7 -, 3 Drivetrain design for an ultra light electric vehicle with high efficiency Isabelle Hofman,,

More information

DEVELOPMENT OF A DRIVING CYCLE FOR BRASOV CITY

DEVELOPMENT OF A DRIVING CYCLE FOR BRASOV CITY DEVELOPMENT OF A DRIVING CYCLE FOR BRASOV CITY COVACIU Dinu *, PREDA Ion *, FLOREA Daniela *, CÂMPIAN Vasile * * Transilvania University of Brasov Romania Abstract: A driving cycle is a standardised driving

More information

Fuzzy based Adaptive Control of Antilock Braking System

Fuzzy based Adaptive Control of Antilock Braking System Fuzzy based Adaptive Control of Antilock Braking System Ujwal. P Krishna. S M.Tech Mechatronics, Asst. Professor, Mechatronics VIT University, Vellore, India VIT university, Vellore, India Abstract-ABS

More information

Implementable Strategy Research of Brake Energy Recovery Based on Dynamic Programming Algorithm for a Parallel Hydraulic Hybrid Bus

Implementable Strategy Research of Brake Energy Recovery Based on Dynamic Programming Algorithm for a Parallel Hydraulic Hybrid Bus International Journal of Automation and Computing 11(3), June 2014, 249-255 DOI: 10.1007/s11633-014-0787-4 Implementable Strategy Research of Brake Energy Recovery Based on Dynamic Programming Algorithm

More information

The influence of aerodynamic forces on the vehicle bodywork of railway traction

The influence of aerodynamic forces on the vehicle bodywork of railway traction The influence of aerodynamic forces on the vehicle bodywork of railway traction Sorin ARSENE*,1, Ioan SEBESAN 1 *Corresponding author 1 POLITEHNICA University of Bucharest, Transport Faculty, Depart Rolling

More information

USING OF dspace DS1103 FOR ELECTRIC VEHICLE POWER CONSUMPTION MODELING

USING OF dspace DS1103 FOR ELECTRIC VEHICLE POWER CONSUMPTION MODELING USING OF dspace DS1103 FOR ELECTRIC VEHICLE POWER CONSUMPTION MODELING T. Haubert, J. Bauer, P. Mindl Czech Technical University in Prague, Faculty of El. Engineering, Dept. of El. Drives and Traction

More information

Development of a Plug-In HEV Based on Novel Compound Power-Split Transmission

Development of a Plug-In HEV Based on Novel Compound Power-Split Transmission Page WEVJ7-66 EVS8 KINEX, Korea, May 3-6, 5 velopment of a Plug-In HEV Based on Novel Compound Power-Split ransmission ong Zhang, Chen Wang,, Zhiguo Zhao, Wentai Zhou, Corun CHS echnology Co., Ltd., NO.888

More information