Phosphates in Li-ion batteries and automotive applications

Size: px
Start display at page:

Download "Phosphates in Li-ion batteries and automotive applications"

Transcription

1 Phosphates in Li-ion batteries and automotive applications MY. Saidi*, H. Huang, TJ. Faulkner (Batteries 2009) Valence Technology, Inc., (NV USA) 1

2 2

3 Li-ion - HEV market Conventional lithium-ion batteries for HEVs are almost ready for commercialization Intent is displacement of NiMH batteries, Li-ion promises long term reduced cost, with a higher level of performance combined with a longer life. Major hurdle is cost reduction and safety; current cost is approximately twice the goal. Additional improvements include Calendar life projections of 8-12 years are based on limited data Abuse tolerance and improved safety Low-temperature performance Other existing technologies: LMO, NCA, NMC and phosphates as cathodes Li 4 Ti 5 O 12 and alloy composite as anodes 3

4 Li-ion for the automotive industry Higher power density for HEV Higher energy density for PHEV/EV Higher voltage/cell: allows fewer cells/pack (need to meet capacity target as well) NiMH approaching technology limits? Environmentally friendly chemistry? Certainly LMO and phosphates. Cost ($/kwh) Attribute Energy Density (Wh/kg) Power Density (W/kg) Volumetric Energy Density (Wh/L) Self Discharge (% / month) In/Out Efficiency (%) Temperature Range ( C) Cycle Life: EV (# cycles) Cycle Life: HEV (# cycles) Calendar Life (years) Ni-MH < to +40 ~ ,000 > 10 Li-Ion ~150 >3000 > > to ,000 2 >10 4

5 A power-assist HEV battery What are power-assist HEV requirements? Must absorb and release high power pulses (25kW / 10sec) efficiently (90% energy recapture) and repeatedly (300,000 charge-discharge pulse cycles over life of vehicle) Must be inexpensive, lightweight and fit a small space Capacity is not necessary release short pulses. only needs to store and Much higher specific power than PHEV Power assist battery has to be smaller in size and capacity to meet cost and weight targets, 5

6 Application power/energy HEV 1-2 KWh P/E liters PHEV 4-15 KWh P/E = liters EV > 40KWh P/E ~ liters Energy kwh Different applications : different requirements 6

7 7

8 FreedomCAR specifications (HEV) Characteristics Units Power- Assist (Min) 2003 Power- Assist (Max) 2003 IFR PC Pulse discharge power (10s) kw Spec (25) Peak regenerative pulse power (10s) kw Spec (20) Total available energy (over DOD range 0.3 (1C rate) 0.5 (1C Rate)? where power goals are met) KWh Spec (0.3) Minimum round-trip energy efficiency % Cold cranking power at -30 C (three 2-s pulses, 10-s rests between ( o C) Cycle life for specified SOC increments kw cycles 90 (25-Wh cycle) 90 (50-Wh cycle) , Wh cycles (7.5MWh) 300, Wh cycles (15MWh) Calendar Life years FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles 8? 8 ( m > 90-25? 300,000 mixed pulse cycles 8 (? Maximum weight kg <17 (cells only) Maximum volume liter <8 (cells only) max<400 max<400 min>(0.55 x min>(0.55 x? (single Operating Voltage limits Vdc Vmax) Vmax) cell) <30% max 30% max 30%? Power Margin % (projected)

9 Advantages of Lithium Ion 100,000 10,000 1,000 Super capacitors Lead acid spirally wound Ni-Cd Li-Ion Very High Power Li-Ion High Power Ni-MH 100 Lead acid Na / NiCl2 LiM-Polymer Li-ion High Energy Specific Energy, Wh/kg at Cell Level HEV applications require a cell to deliver at least 1000W/Kg. At this Level of power, Li-ion delivers twice the energy density than Ni-MH. Phosphates in a power design easily meet the power requirements Source: SAFT 9

10 Voltage vs. Rate (IFR26650) A 20A 30A 40A Capacity / Ah Time / h 26650: power design shows very little polarization at higher rates (min. self heating lag) 10

11 50C (100A) pulse on IFR P u lsin g at t/s P o w er/w P o w er d en sity (W /kg )* P o w er d en sity (W /kg )** % S O C % S O C * 80g/cell; ** if 70g/cell Specific power capability derived from a fixed 100A pulse. 11

12 High-rate pulse on IFR Power Pulse 100%SOC Rate t/s Power/W density (W/kg)* Power density (W/kg)** 100A A A A A Specific power capability derived or a fixed pulse time of 5s. * 80g/cell; ** if 70g/cell 12

13 Hybrid Pulse Power Capability (HPPC) FreedomCar test manual 2003 IFR Power Cell (18650) V o lts Voltage Current Time Hr Pulse train consisting of 10-sec discharge and charge pulses with 40-sec rest between Determines the DCIR under realistic operating currents (25%-75% of max) Repeated at 10% SOC intervals over 1 complete discharge half-cycle C u rre n t A 13

14 10-Second DCIR at 36A (IFR26650) % 20% 40% 60% 80% 100% DOD / % LiFe(Mg)PO 4 flat operating voltage combined with a flat DCiR helps to further extend the useable DOD range. 14

15 Available Power & Energy (IFR26650) BSF = Regen PPC (W, xbsf) 1C (xbsf) Power capability (HPPC) of a power design using LiFe(Mg)PO 4 at BOL 15

16 Cold cranking test (IFR26650) Voltage Power Cell voltage / V Pulse power / W (x BSF) Time / s -25 o C/45%DOD 16

17 discharge PPC (W, xbsf) HPPC vs. cycles 0 0 0% 20% 40% 60% 80% 100% DOD / % HEV cycling target: 300K Cycles Regen PPC (W, xbsf) Power goal d/0 cycles d/90k cycles d/120k cycles d/150k cycles d/180k cycles d/210k cycles d/240k cycles d/240k cycles d/270k cycles d/300k cycles R/0 cycles R/90K cycles R/120K cycles R/150K cycles R/180k cycles R/210k cycles R/240k cycles R/240k cycles R/270k cycles R/300k cycles Poly. ( d/0 cycles) IFR-PC exhibits excellent power and energy retentions under HEV cycling regime Meets HEV cycle life target: 300K (HEV cycles) % of initial capacity 100% 80% 60% 40% 20% 0% Capacity vs. cycles Cycles % of initial 40%DOD 100% 80% 60% >77% 40% >80% 20% 0% Power vs. cycles Cycles 17

18 Why phosphates for the HEV application? A flat and relatively low OCV Wide usable range for power/regen pulses Overcharge voltage is a safe margin above the normal end of charge voltage Operating range can be extended close to fully charged Low power fade over 300,000 mixed pulse cycles Made from the least expensive transition metals available via most efficient and cost effective method (carbothermal) High thermal stability built in robustness Phosphate lithium ion can meet most HEV requirements 18

19 19

20 Introduction In this segment, lithium-ion is also viewed as the most commercially viable chemistry for PHEVs due to its potential for much higher energy and power density than traditional technologies. Within Li-ion, phosphates offer the distinct advantage of paramount importance in large format applications: improved safety Further improvements are needed before a larger penetration of HEVs and PHEVs can take place into the marketplace. 20

21 Plug-In hybrid application (PHEV) Motivation: Hybrid electric vehicles: MPG using fossil fuels PHEV: >100 MPG by displacing fossil fuels with grid electricity New technological challenges for PHEV batteries: Must store significant amount of energy to displace fossil fuels Larger, heavier battery is required Additional battery weight increases vehicle fuel/electricity usage 10Wh/mile for each 100kg (Rousseau, 2007) Li-ion = Higher energy density battery = better vehicle performance Must use as much as possible of this stored energy Significant depth of discharge on cycling (DOD) produces more wear and tear Lithium-ion technology: one of the few chemistries that can meet energy density and high DOD cycle life requirements 21

22 Application power/energy HEV 1-2 KWh P/E liters PHEV 4-15 KWh P/E = liters EV > 40KWh P/E ~ liters Energy kwh Different applications : different requirements 22

23 PHEV Battery Specifications Table 1 is cited from Battery Test Manual For Plug-In Hybrid Electric Vehicles U.S. DOE Vehicle Technologies Program. Specifications for PHEV10 and PHEV

24 Maximizing Cell Energy Density Reduce amount of inert material: Lighter enclosure Thinner separator Less conductive additive Thicker electrodes Increase utilization of active material: Smaller primary particle size More conductive additive Thinner electrodes More porous electrodes Increase amount of active material: Larger primary particle size More dense electrodes Cell energy optimization calls for a balance of higher utilization, less inert material and more active material Powder morphology is key to maximizing energy 24

25 IFR-EC wide useable SOC range Dis. PPC (W, xbsf) %DOD 10%DOD 58.5kW(BOL) 45kW (EOL) 80%DOD Regen PPC (W, xbsf) KW (xbsf) Regen power capability is > 75% above the target at EOL (margin), even at very low DOD. DOD MIN can be reduced from 10% to 5%, or even lower, extending available energy. More available energy for CD mode = BSF can be further decreased by 6% to 12%. 25

26 PHEV: Long Cycle Life at 100% DOD 100% 80% 60% 40% 20% 0% Cycle number IFR18650EC exhibits very long life at e.g. C/2 cycling, 100% DOD After 4000 cycles, 80% of initial capacity is retained. 26

27 Higher Rate over Shorter Range 100% 80% 60% 40% 20% % Cycles Shorter range, higher rate, PHEV designs (PHEV10 etc.) mitigate the higher cost of larger packs and have a a higher chance for commercialization Without sacrificing cell capacity, IFR18650 energy design s rate capability has been improved significantly through cell design to meet this challenge Constant current cycle life at 2C charge, 2C discharge rate, 100% DOD, is predicted to reach more than 2300 cycles to 80% of its initial capacity. 27

28 FreedomCar PHEV10 CD Cycling From Battery Test Manual For Plug-In Hybrid Electric Vehicles U.S. DOE Vehicle Technologies Program. One CD cycle is a series of 5 above profiles, followed by a recharge. Energy throughput / cycle = 3.4kWh 5000 CD cycles are required over lifetime of the battery. 28

29 IFR18650EC: CD Cycle Life (Projected) % of remaining energy 120% 100% 80% 60% 40% 20% 0% Cycles Current / A Time / h One single CD mode discharge Charge depleting (CD) cycle life criterion: 5000 cycles This 360s-pulsing profile is repeated five times as a single discharge before recharging battery at 1.4kW rate The IFR18650EC is predicted to deliver 5000 cycles under CD operation. 29

30 Valence and PHEVs Battery supplier to PHEV integrators as early as Testing conducted at cell, module, and pack levels. Incorporated feedback from early adopters to improve performance, design, and functionality. 30

31 Early adoption First pack was assembled in Feb, Consisted of 18 U1 off the shelf modules (12.8V/40Ah) in series and controlled by Energy CS Battery Management System Originally charged with PFC-20 charger. 31

32 Engineering Evolution Most recent system includes 18 modules (12.8V/40Ah), but not set inside a case. Laid out for better thermal management. Integrated BMS. Uses updated battery management system from Energy CS which includes: Built in data logging GPS Around the clock balancing Communication with charger. 32

33 Pack Performance The Energy CS conversion provides the greatest range of all other conversions on the market (provided boosted electrical assistance for approximately 66 miles while averaging 107 mpg per Argonne National Lab testing). This performance cost only about $1 worth of electricity with overnight charging. 33

34 Promising New Materials 6.0 LCP LVP LVPF LMP LFP LCO LCO is used as a reference Energy / WhKg -1 These new materials promise more energy through higher voltage 34

35 Enabling technologies Materials Safety of phosphates Overcharge prevention simpler than layered oxides Balancing is a functionality issue rather than a safety issue Thermal runaway does not propagate through pack CTR Low-cost high-performance materials Cells Larger format cells will reduce complexity and cost of modules, packs Packs Epoch BMS provides intelligent interface, balancing and soft fail modes 35

36 Summary Phosphates An enabling technology especially in the large format arena The most thermally stable Li-ion chemistry Exhibit excellent performance characteristics for a variety of applications Offer a competitive cost advantage due to inexpensive raw materials, design simplicity and longevity Show a high tolerance under abuse conditions Have the least impact on the environment (LFP) 36

37 37

38 This document was created with Win2PDF available at The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

SB LiMotive Automotive Battery Technology. Kiho Kim

SB LiMotive Automotive Battery Technology. Kiho Kim SB LiMotive Automotive Battery Technology Kiho Kim Contents Introduction Li Ion Cell Technology Page 2 Introduction to SBLiMotive Page 3 SBL Product Portfolio Cell & Module Cooling System BMS Hardware

More information

Requirement, Design, and Challenges in Inorganic Solid State Batteries

Requirement, Design, and Challenges in Inorganic Solid State Batteries Requirement, Design, and Challenges in Inorganic Solid State Batteries Venkat Anandan Energy Storage Research Department 1 Ford s Electrified Vehicle Line-up HEV Hybrid Electric Vehicle C-Max Hybrid Fusion

More information

48V Battery System Design for Mild Hybrid Applications. Angela Duren 11 February 2016

48V Battery System Design for Mild Hybrid Applications. Angela Duren 11 February 2016 48V Battery System Design for Mild Hybrid Applications Angela Duren 11 February 2016 OEM Portfolio Planning; A Balanced Strategy for Fuel Economy Low voltage hybrids are a cost effective solution for higher

More information

From materials to vehicle what, why, and how? From vehicle to materials

From materials to vehicle what, why, and how? From vehicle to materials From materials to vehicle what, why, and how? From vehicle to materials Helena Berg Outline 1. Electric vehicles and requirements 2. Battery packs for vehicles 3. Cell selection 4. Material requirements

More information

High Energy cell target specification for EV, PHEV and HEV-APU applications

High Energy cell target specification for EV, PHEV and HEV-APU applications Project HELIOS - High Energy Lithium-Ion Storage Solutions (www.helios-eu.org) Project number: FP7 2333765 (A 3 year project, supported by the European Commission, to study and test the comparative performances

More information

DOE OVT Energy Storage R&D Overview

DOE OVT Energy Storage R&D Overview DOE OVT Energy Storage R&D Overview David Howell Hybrid and electric vehicles, energy storage technologies and control systems National and international R&D-projects, research institutions and funding

More information

Future Lithium Demand in Electrified Vehicles. Ted J. Miller

Future Lithium Demand in Electrified Vehicles. Ted J. Miller Future Lithium Demand in Electrified Vehicles Ted J. Miller August 5, 2010 Outline Vehicle Electrification at Ford Advanced Battery Technology Lithium Batteries Electrified Vehicle Market Forecasts Key

More information

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader Energy Storage for Transport Three projects Safe, High-Performance Lithium-Metal Batteries Supercapacitors Ultrabattery 10

More information

Li-Ion Batteries for Low Voltage Applications. Christoph Fehrenbacher 19 October 2016

Li-Ion Batteries for Low Voltage Applications. Christoph Fehrenbacher 19 October 2016 Li-Ion Batteries for Low Voltage Applications Christoph Fehrenbacher 19 October 2016 OEM Portfolio Planning; A Balanced Strategy for Fuel Economy Low voltage hybrids are a cost effective solution for higher

More information

innovation at work The NanoSafe Battery Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Research Manufacturing

innovation at work The NanoSafe Battery Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Research Manufacturing Research The NanoSafe Battery Manufacturing Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Products Partners With the exception of historical information, matters

More information

Li-ion Batteries and Electric Vehicles

Li-ion Batteries and Electric Vehicles Li-ion Batteries and Electric Vehicles October 27, 2010 Joel Sandahl ZX Technologies, Inc. 760 Spanish Oak Trail Dripping Springs, TX 78620 USA Phone: +1-512-964-9786 E-Mail: jsandahl@zxtech.net Introduction

More information

12V Start-Stop and 48V Mild Hybrid LMO-LTO Batteries

12V Start-Stop and 48V Mild Hybrid LMO-LTO Batteries 12V Start-Stop and 48V Mild Hybrid LMO-LTO Batteries Veselin Manev Ph.D., Kevin Dahlberg Ph.D., Susmitha Gopu, Steve Cochran 35 th International Battery Seminar & Exhibit Ft. Lauderdale, Florida, March

More information

PROGRESS OF BATTERY SYSTEMS AT GENERAL MOTORS. Manfred Herrmann Roland Matthé. World Mobility Summit Munich October 2016

PROGRESS OF BATTERY SYSTEMS AT GENERAL MOTORS. Manfred Herrmann Roland Matthé. World Mobility Summit Munich October 2016 PROGRESS OF BATTERY SYSTEMS AT GENERAL MOTORS Manfred Herrmann Roland Matthé World Mobility Summit Munich October 2016 AGENDA DEVELOPMENT OF ELECTRIFICATION ELECTRIFICATION BATTERY SYSTEMS PROGRESS OF

More information

The Challenges of Electric Energy Storage. Nigel Taylor, Nick Green, Chris Lyness, Steve Nicholls

The Challenges of Electric Energy Storage. Nigel Taylor, Nick Green, Chris Lyness, Steve Nicholls The Challenges of Electric Energy Storage Nigel Taylor, Nick Green, Chris Lyness, Steve Nicholls Technology Walk Customer familiarity with recharging IC HEV PHEV EV Kinetic energy recovery Plug-in Battery

More information

U.S. Department of Energy Vehicle Technologies Program

U.S. Department of Energy Vehicle Technologies Program INL/EXT-14-32849 U.S. Department of Energy Vehicle Technologies Program United States Advanced Battery Consortium Battery Test Manual For Plug-In Hybrid Electric Vehicles REVISION 3 SEPTEMBER 2014 The

More information

Nickel-Zinc Large Format Batteries for Military Ground Vehicles

Nickel-Zinc Large Format Batteries for Military Ground Vehicles 2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER AND ENERGY (P&E) MINI-SYMPOSIUM AUGUST 17-19 DEARBORN, MICHIGAN Todd Tatar, Jeff Philips, Salil Soman, and Richard Brody PowerGenix

More information

Energy Storage (Battery) Systems

Energy Storage (Battery) Systems Energy Storage (Battery) Systems Overview of performance metrics Introduction to Li Ion battery cell technology Electrochemistry Fabrication Battery cell electrical circuit model Battery systems: construction

More information

Quallion Matrix Battery Technology for Lithium-ion Lead Acid Replacement & Wide Operating Temperature Range Cells. May 2011

Quallion Matrix Battery Technology for Lithium-ion Lead Acid Replacement & Wide Operating Temperature Range Cells. May 2011 Quallion Matrix Battery Technology for Lithium-ion Lead Acid Replacement & Wide Operating Temperature Range Cells May 2011 Introduction Employing a core strategy of leveraging R&D, niche focus, complementary

More information

BOOST POWER 1212 Product Description

BOOST POWER 1212 Product Description BOOST POWER 1212 Product Description Contents 1 Introduction...4 2 General Description...4 2.1 Compatibility with standard Lead-Acid Batteries... 4 3 Battery Performance...5 3.1 Discharge Capability...

More information

Battery Pack Laboratory Testing Results

Battery Pack Laboratory Testing Results Battery Pack Laboratory Testing Results 2013 Toyota Prius Plug-in - VIN 8663 Vehicle Details and Battery Specifications¹ʹ² Vehicle Details Base Vehicle: 2013 Toyota Prius Plug-in Architecture: Plug-In

More information

Research Progress of Advanced Lithium Ion Polymer Battery Technology

Research Progress of Advanced Lithium Ion Polymer Battery Technology The 34 th Florida International Battery Seminar Research Progress of Advanced Lithium Ion Polymer Battery Technology Peter Cheng Highpower Research Institute ----------------------------------------------------March

More information

Portable Power & Storage

Portable Power & Storage Portable Power & Storage NMTC Disruptive Technology Summit and TECH CONN3CT Workshops 28 April 2017 Edward J. Plichta Chief Scientist for Power & Energy Command Power & Integration Directorate Aberdeen

More information

Accelerated Testing of Advanced Battery Technologies in PHEV Applications

Accelerated Testing of Advanced Battery Technologies in PHEV Applications Page 0171 Accelerated Testing of Advanced Battery Technologies in PHEV Applications Loïc Gaillac* EPRI and DaimlerChrysler developed a Plug-in Hybrid Electric Vehicle (PHEV) using the Sprinter Van to reduce

More information

The BEEST: An Overview of ARPA-E s Program in Ultra-High Energy Batteries for Electrified Vehicles

The BEEST: An Overview of ARPA-E s Program in Ultra-High Energy Batteries for Electrified Vehicles The BEEST: An Overview of ARPA-E s Program in Ultra-High Energy Batteries for Electrified Vehicles David Danielson, PhD Program Director, ARPA-E NDIA Workshop to Catalyze Adoption of Next-Generation Energy

More information

U.S. Department of Energy Vehicle Technologies Program. United States Advanced Battery Consortium Battery Test Manual For Electric Vehicles

U.S. Department of Energy Vehicle Technologies Program. United States Advanced Battery Consortium Battery Test Manual For Electric Vehicles INL/EXT-15-34184 U.S. Department of Energy Vehicle Technologies Program United States Advanced Battery Consortium Battery Test Manual For Electric Vehicles REVISION 3 JUNE 2015 The Idaho National Laboratory

More information

Lithium battery charging

Lithium battery charging Lithium battery charging How to charge to extend battery life? Why Lithium? Compared with the traditional battery, lithium ion battery charge faster, last longer, and have a higher power density for more

More information

Lithium-Ion Batteries for Electric Cars: Elena Aleksandrova Honda R&D Europe (Deutschland) GmbH Automobile Advanced Technology Research

Lithium-Ion Batteries for Electric Cars: Elena Aleksandrova Honda R&D Europe (Deutschland) GmbH Automobile Advanced Technology Research Lithium-Ion Batteries for Electric Cars: Opportunities and Challenges Elena Aleksandrova Honda R&D Europe (Deutschland) GmbH Automobile Advanced Technology Research 19.01.2010 1 Introduction Li-Ion technology

More information

Lithium-Ion Battery for Audi A6 PHEV. Steve Lehnert, AUDI AG

Lithium-Ion Battery for Audi A6 PHEV. Steve Lehnert, AUDI AG Steve Lehnert, AUDI AG 2 Contents Overview of the battery system Mechanical Overview Advantages/disadvantages of common battery package Architecture Modular set part concept Advantages of set part concept

More information

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density.

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density. ET3034TUx - 7.5.1 - Batteries 1 - Introduction Welcome back. In this block I shall discuss a vital component of not only PV systems but also renewable energy systems in general. As we discussed in the

More information

Optimal Control Strategy Design for Extending. Electric Vehicles (PHEVs)

Optimal Control Strategy Design for Extending. Electric Vehicles (PHEVs) Optimal Control Strategy Design for Extending All-Electric Driving Capability of Plug-In Hybrid Electric Vehicles (PHEVs) Sheldon S. Williamson P. D. Ziogas Power Electronics Laboratory Department of Electrical

More information

Lithium Ion Batteries - for vehicles and other applications

Lithium Ion Batteries - for vehicles and other applications Lithium Ion Batteries - for vehicles and other applications Tekes 2008-12-03 Kai Vuorilehto / European Batteries What do we need? High energy (Wh/kg) driving a car for 5 hours High power (W/kg) accelerating

More information

U.S. Army s Ground Vehicle Programs & Goals

U.S. Army s Ground Vehicle Programs & Goals Panel VII: State & Federal Programs to Support the Battery Industry U.S. Army s Ground Vehicle Programs & Goals Sonya Zanardelli Energy Storage Team Leader, U.S. Army TARDEC, DOD Power Sources Member sonya.zanardelli@us.army.mil

More information

Energy Storage Advancement

Energy Storage Advancement Energy Storage Advancement LiFeYPO4 as replacement for Lead-Acid Lithium Iron Yttrium Phosphate (LiFeYPO4) February 2016 Summary & Conclusion For the same Price today; retailing @ $550/kWh (daily useable)

More information

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems Overview By Robert Atlas, Aqua EWP,LLC. September 2007 Aqua EWP. has for the last 10 years

More information

KOKAM Li-ion/Polymer Cell

KOKAM Li-ion/Polymer Cell Superior Lithium Polymer Battery (SLPB) KOKAM Li-ion/Polymer Cell Kokam s SLPB cell has proven its outstanding power, high energy density, longer cycle life and safety. Kokam is a pioneer in supplying

More information

Development and application of CALB olivine-phosphate batteries

Development and application of CALB olivine-phosphate batteries Development and application of CALB olivine-phosphate batteries 1 Agenda Introducing CALB Application and research on LFP/C batteries Development of high energy NCM+LMFP/C batteries Summary 2 Advanced

More information

Vehicle Battery R&D Progress and Future Plans

Vehicle Battery R&D Progress and Future Plans Vehicle Battery R&D Progress and Future Plans Tien Q. Duong Office of Vehicle Technologies U.S. Department of Energy KSAE and IEA IA-HEV International Symposium on Electric Mobility and IA-HEV Task 1 Information

More information

Guidelines for Battery Electric Vehicles in the Underground

Guidelines for Battery Electric Vehicles in the Underground Guidelines for Battery Electric Vehicles in the Underground Energy Storage Systems Rich Zajkowski Energy Storage Safety & Compliance Eng. GE Transportation Agenda Terminology Let s Design a Battery System

More information

Battery Evaluation for Plug-In Hybrid Electric Vehicles

Battery Evaluation for Plug-In Hybrid Electric Vehicles Battery Evaluation for Plug-In Hybrid Electric Vehicles Mark S. Duvall Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 9434 Abstract-This paper outlines the development of a battery

More information

2011 Advanced Energy Conference -Buffalo, NY

2011 Advanced Energy Conference -Buffalo, NY 2011 Advanced Energy Conference -Buffalo, NY Electrification Technology and the Future of the Automobile Mark Mathias Electrochemical Energy Research Lab General Motors R&D Oct. 13, 2011 Transitioning

More information

Turbo-charging Your Forklift Fleet: The Power of Industrial Lithium Forklift Batteries

Turbo-charging Your Forklift Fleet: The Power of Industrial Lithium Forklift Batteries Turbo-charging Your Forklift Fleet: The Power of Industrial Lithium Forklift Batteries Presented by: Samer Elshafei Director of Commercial Product and Business Development selshafei@navitassys.com PRESENTATION

More information

2009 JSPE - Saft. Advanced Lithium Power Sources Real World Experience

2009 JSPE - Saft. Advanced Lithium Power Sources Real World Experience 2009 JSPE - Saft Advanced Lithium Power Sources Real World Experience 5 May 2009 2 Real World Experience Key Topics Saft Background Improved Target Acquisition System Lithium Battery Box Battery Life Expectations

More information

Quallion Large Battery Pack Technology. May 2009 Hisashi Tsukamoto, PhD. CEO/CTO Quallion LLC

Quallion Large Battery Pack Technology. May 2009 Hisashi Tsukamoto, PhD. CEO/CTO Quallion LLC Quallion Large Battery Pack Technology May 2009 Hisashi Tsukamoto, PhD. CEO/CTO Quallion LLC Quallion Milestones 1998 2001 2002 2003 2004 2005 2006 2007 2008 Company established in Southern California,

More information

Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement

Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement : Dist A. Approved for public release Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement David Skalny Deputy Team Leader, Energy Storage Team, US Army TARDEC May 4, 2011 Agenda Goals

More information

Medium Rate Hybrid Pouch Cell

Medium Rate Hybrid Pouch Cell LCF-134 Medium Rate Hybrid Pouch Cell Li/CF x -MnO 2 Hybrid Highly reliable, lightweight cell with 2X the capacity of Li-SO 2 and impressive rate capability over a wide temperature range. Features & Benefits

More information

Altairnano Grid Stability and Transportation Products

Altairnano Grid Stability and Transportation Products Altairnano Grid Stability and Transportation Products Joe Heinzmann Senior Director Energy Storage Solutions 1 Altairnano Overview Altairnano is an emerging growth company which is developing and commercializing

More information

Argonne Mobility Research Impending Electrification. Don Hillebrand Argonne National Laboratory

Argonne Mobility Research Impending Electrification. Don Hillebrand Argonne National Laboratory Argonne Mobility Research Impending Electrification Don Hillebrand Argonne National Laboratory 2018 Argonne: DOE s Largest Transportation Research Program Located 25 miles from the Chicago Loop, Argonne

More information

Energy Storage Technology Roadmap Lithium Ion Technologies

Energy Storage Technology Roadmap Lithium Ion Technologies Energy, Mining and Environment Portfolio Energy Storage Technology Roadmap Lithium Ion Technologies Isobel Davidson, Principal Research Officer 19 November 2014 Energy Storage Technology Roadmap Li ion

More information

EENERGY EFFICIENCY. German-Japanese Energy Symposium Lithium-Ion-Technology in mobile und stationary applications. February 10 th, 2011

EENERGY EFFICIENCY. German-Japanese Energy Symposium Lithium-Ion-Technology in mobile und stationary applications. February 10 th, 2011 German-Japanese Energy Symposium 2011 Lithium-Ion-Technology in mobile und stationary applications EENERGY EFFICIENCY CO EENERGY EFFICIENCY CLIMATE PROTECTION2 February 10 th, 2011 Carsten Kolligs Evonik

More information

Comparing the powertrain energy and power densities of electric and gasoline vehicles

Comparing the powertrain energy and power densities of electric and gasoline vehicles Comparing the powertrain energy and power densities of electric and gasoline vehicles RAM VIJAYAGOPAL Argonne National Laboratory 20 July 2016 Ann Arbor, MI Overview Introduction Comparing energy density

More information

Status & Future Perspectives of Li-Ion Batteries and PEM Fuel Cell Systems in the Automotive Industry

Status & Future Perspectives of Li-Ion Batteries and PEM Fuel Cell Systems in the Automotive Industry German-Japanese Energy Symposium 2011 Munich, 10 th February Dr.-Ing. Arnold Lamm, Senior Manager Daimler AG Group Research / 7th February 2011 Contents 1. Battery Requirements HEV/EV 2. Battery Development

More information

Lithium-Ion Battery Simulation for Greener Ford Vehicles

Lithium-Ion Battery Simulation for Greener Ford Vehicles Lithium-Ion Battery Simulation for Greener Ford Vehicles October 13, 2011 COMSOL Conference 2011 Boston, MA Dawn Bernardi, Ph.D., Outline Vehicle Electrification at Ford from Nickel/Metal-Hydride to Lithium-Ion

More information

U.S. Army s Ground Vehicle Energy Storage R&D Programs & Goals

U.S. Army s Ground Vehicle Energy Storage R&D Programs & Goals U.S. Army s Ground Vehicle Energy Storage R&D Programs & Goals Sonya Zanardelli Energy Storage Team, US Army TARDEC sonya.zanardelli@us.army.mil 586-282-5503 November 17, 2010 Report Documentation Page

More information

2010 Advanced Energy Conference. Electrification Technology and the Future of the Automobile. Mark Mathias

2010 Advanced Energy Conference. Electrification Technology and the Future of the Automobile. Mark Mathias 2010 Advanced Energy Conference Electrification Technology and the Future of the Automobile Mark Mathias Electrochemical Energy Research Lab General Motors R&D New York, NY Nov. 8, 2010 Transitioning From

More information

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes Overview Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes By Robert Atlas, Aqua EWP,LLC. September 2006 Aqua EWP. has for the last 10 years

More information

Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008)

Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008) Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008) PE/SB Winter Meeting 2015, New Orleans Background History Started with primary batteries with metallic lithium negatives True

More information

Design of a 14V nominal dual battery system. Audi AG, Gehrmann, Johannes

Design of a 14V nominal dual battery system. Audi AG, Gehrmann, Johannes Design of a 14V nominal dual battery system Audi AG, Gehrmann, Johannes Agenda Introduction and background Functions Design and architecture of a 14V dual battery system Challenges and key requirements

More information

Recent advancements in lead battery performance and new demonstration work of ALABC 1618 Program

Recent advancements in lead battery performance and new demonstration work of ALABC 1618 Program Recent advancements in lead battery performance and new demonstration work of ALABC 1618 Program Boris Monahov Program Manager ALABC International Battery Seminar and Exhibition, Fort Lauderdale, FL, March

More information

SONNENSCHEIN LITHIUM INDUSTRIAL BATTERIES / MOTIVE POWER

SONNENSCHEIN LITHIUM INDUSTRIAL BATTERIES / MOTIVE POWER SONNENSCHEIN LITHIUM INDUSTRIAL BATTERIES / MOTIVE POWER FEATURES AND TECHNOLOGY The Intelligent Energy Source Maximizing Your Productivity GNB's traction batteries based on Lithium-ion technology are

More information

Leveraging developments in xev Lithium batteries for stationary applications

Leveraging developments in xev Lithium batteries for stationary applications Leveraging developments in xev Lithium batteries for stationary applications International Colloquium on Energy Storage Brussels, Nov 8 th, 2017 Daniel Gloesener Global technical leader- Battery Technologies,

More information

NorthStar Battery (NSB) Telecom Application Manual

NorthStar Battery (NSB) Telecom Application Manual NorthStar Battery (NSB) Telecom Application Manual Contents Silver Star Technology TM... 3 1 Introduction... 3 1.1 The Silver Star Technology TM and Semi-Stable Mains... 3 1.2 Discharge Rate... 3 2 Charge...

More information

Energy Storage Requirements & Challenges For Ground Vehicles

Energy Storage Requirements & Challenges For Ground Vehicles Energy Storage Requirements & Challenges For Ground Vehicles Boyd Dial & Ted Olszanski March 18 19, 2010 : Distribution A. Approved for Public Release 1 Report Documentation Page Form Approved OMB No.

More information

Seoul, Korea. 6 June 2018

Seoul, Korea. 6 June 2018 Seoul, Korea 6 June 2018 Innovation roadmap in clean mobility materials SPEAKER Denis Goffaux Chief Technology Officer Executive Vice-President Energy & Surface Technologies 2 Agenda Well to wheel efficiency

More information

Implementation and development of standards for Lithium-ion energy storage technologies within the South African context

Implementation and development of standards for Lithium-ion energy storage technologies within the South African context Implementation and development of standards for Lithium-ion energy storage technologies within the South African context by Nico Rust, Nelson Mandela University uyilo EMTIP uyilo emobility Technology Innovation

More information

Store Energy, Green Future

Store Energy, Green Future Store Energy, Green Future Hill Ren Sr. Country Manager, BYD BYD Profile CONTENT ESS Solution and Technology China State Grid Project Introduction BYD Battery Other Application Cases BYD Business Areas

More information

Large Format Lithium Power Cells for Demanding Hybrid Applications

Large Format Lithium Power Cells for Demanding Hybrid Applications Large Format Lithium Power Cells for Demanding Hybrid Applications Adam J. Hunt Manager of Government Programs 2011 Joint Service Power Expo Power to Sustain Warfighter Dominance Myrtle Beach, SC May 4,

More information

Batteries for electric commercial vehicles and mobile machinery

Batteries for electric commercial vehicles and mobile machinery Batteries for electric commercial vehicles and mobile machinery Tekes EVE annual seminar, Dipoli 6.11.2012 Dr. Mikko Pihlatie VTT Technical Research Centre of Finland 2 Outline 1. Battery technology for

More information

Industrial Batteries / Motive Power

Industrial Batteries / Motive Power Industrial Batteries / Motive Power Battery System Highlights > Fast Charge in 1 hour > 4000 cycles at 80% depth of discharge > Full system supply, BMS, modules, tray and charger»the high productivity,

More information

House/Building Wind Power Storage Facility Supply Factory Supply. Ferry Energy Adjustment Grid Peaking Shaving

House/Building Wind Power Storage Facility Supply Factory Supply. Ferry Energy Adjustment Grid Peaking Shaving House/Building Wind Power Storage Facility Supply Factory Supply Ferry Energy Adjustment Grid Peaking Shaving Power Shifting for Peak Shaving (on-grid) Pulse Load Compensation (on-grid) Power Shifting

More information

ProLogium Lithium Ceramic Battery Profile

ProLogium Lithium Ceramic Battery Profile ProLogium Lithium Ceramic Battery Profile 2018.07 About ProLogium Milestone Technology Target market About ProLogium ProLogium TM Technology (PLG) is a next generational Lithium battery cell maker who

More information

Panasonic Industrial Europe D&E Forum 2011Industrial Batteries. Safety, Power, Long-life. Li-Ion batteries from Panasonic

Panasonic Industrial Europe D&E Forum 2011Industrial Batteries. Safety, Power, Long-life. Li-Ion batteries from Panasonic Panasonic Industrial Europe D&E Forum 2011Industrial Batteries Safety, Power, Long-life Li-Ion batteries from Panasonic Lithium-Ion, Ni-MH, Lithium, Lithium, VRLA, VRLA, Zinc-Carbon, Zinc-Carbon, Alkaline,

More information

Components for Powertrain Electrification

Components for Powertrain Electrification Components for Powertrain Electrification Uwe Möhrstädt Jörg Grotendorst Continental AG 334 Schaeffler SYMPOSIUM 2010 Schaeffler SYMPOSIUM 2010 335 Introduction The current development of vehicle powertrains

More information

Battery Market Trends and Safety Aspects

Battery Market Trends and Safety Aspects Battery Market Trends and Safety Aspects Adam Sobkowiak PhD, Battery Technologies adam.sobkowiak@etteplan.com 2018-01-17, Breakfast Seminar at Celltech, Kista 1 Battery Market Trends Engineering with a

More information

Development of High Power Li-ion Cell "LIM25H" for Industrial Applications

Development of High Power Li-ion Cell LIM25H for Industrial Applications Technical Report 報文 Development of High Power Li-ion Cell "" for Industrial Applications Yasushi Uebo * Keiji Shimomura * Katsushi Nishie * Katsuya Nanamoto * Takehito Matsubara ** Haruo Seike ** Minoru

More information

Lithium-based Batteries

Lithium-based Batteries Lithium-based Batteries Pioneer work with the lithium battery began in 1912 under G.N. Lewis, but it was not until the early 1970s that the first non-rechargeable lithium batteries became commercially

More information

Key developments in Rechargeable Battery Materials. Capital Markets Event Seoul, 24 May 2012

Key developments in Rechargeable Battery Materials. Capital Markets Event Seoul, 24 May 2012 Key developments in Rechargeable Battery Materials Capital Markets Event Seoul, 24 May 2012 What is a Li-ion battery? Anode (= negative) Graphite/carbon Separator Ion permeable inert membrane separator

More information

Winter 2016 Conference

Winter 2016 Conference Winter 2016 Conference * Reference: 7x24 International Conference, Spring 2012, Comparison of UPS Alternative Energy Storage Technologies, Syska Hennessy Group, BB&T 3/3/2016 We Will Discuss: What Is A

More information

USABC Development of 12 Volt Energy Storage Requirements for Start-Stop Application

USABC Development of 12 Volt Energy Storage Requirements for Start-Stop Application USABC Development of 12 Volt Energy Storage Requirements for Start-Stop Application HarshadTataria(GM), Oliver Gross (Chrysler), ChulheungBae(Ford), Brian Cunningham (DOE), James A. Barnes (DOE), Jack

More information

ZOE Battery Durability, Field Experience and Future Vision

ZOE Battery Durability, Field Experience and Future Vision ZOE Battery Durability, Field Experience and Future Vision Dr. Bruno DELOBEL, Dr. Isabel JIMENEZ GORDON, Dr. Lucie LEVEAU Renault Battery Development Department 1 World EV Market ZOE Fluence / SM3 Twizy

More information

Energy Storage. 9. Power Converter Demo. Assoc. prof. Hrvoje Pandžić. Vedran Bobanac, PhD

Energy Storage. 9. Power Converter Demo. Assoc. prof. Hrvoje Pandžić. Vedran Bobanac, PhD Energy Storage 9. Power Converter Demo Assoc. prof. Hrvoje Pandžić Vedran Bobanac, PhD Lecture Outline Rechargeable batteries basics Power converter for experimenting with rechargeable batteries Rechargeable

More information

U.S. Department of Energy

U.S. Department of Energy U.S. Department of Energy Vehicle Technologies Office Electric Vehicle Battery Research Pathways and Key Results March 21, 2017 David Howell Brian Cunningham (Presenter) Tien Duong Peter Faguy Samuel Gillard

More information

Litarion GmbH Electrovaya Inc.

Litarion GmbH Electrovaya Inc. Litarion GmbH Electrovaya Inc. Lithium Ion Technology beyond the Standard Company Presentation 08/2017 Company Group System integration: From cassettes and modules up to MWh scale energy storage 160,000

More information

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 References R. Bosch.

More information

Sustainable Personal Electric Transportation: EVs, PHEVs, and FCVs Andrew Burke Institute of Transportation Studies University of California-Davis

Sustainable Personal Electric Transportation: EVs, PHEVs, and FCVs Andrew Burke Institute of Transportation Studies University of California-Davis Sustainable Personal Electric Transportation: EVs, PHEVs, and FCVs Andrew Burke Institute of Transportation Studies University of California-Davis Renewable Energy Workshop UC Santa Cruz August 1-2, 2011

More information

Growth Trends in Li-Ion Batteries

Growth Trends in Li-Ion Batteries Growth Trends in Li-Ion Batteries The effect on LCE consumption Elewout Depicker Purchase Director 5th Lithium Supply & Markets January 2013, Las Vegas Agenda Introduction: Umicore within the Li-Ion market

More information

Chris Pick. Ford Motor Company. Vehicle Electrification Technologies and Industry Approaches

Chris Pick. Ford Motor Company. Vehicle Electrification Technologies and Industry Approaches Chris Pick Manager, Global Electrification Business Strategy Ford Motor Company Vehicle Electrification Technologies and Industry Approaches Agenda Drivers for Electrification and Technology Background

More information

ENERGY SAFETY SUSTAINABILITY

ENERGY SAFETY SUSTAINABILITY ENERGY SAFETY SUSTAINABILITY ESSTALION was created to develop the safest and most efficient, reliable and utility-friendly energy storage systems. Choose ESSTALION because: We know utilities and utilities

More information

Duracell Battery Glossary

Duracell Battery Glossary Duracell Battery Glossary 1 Duracell Battery Glossary AB Absorption Alloy Ambient Humidity Ambient Temperature Ampere-Hour Capacity Anode Battery or Pack Bobbin C-Rate (also see Hourly Rate) Capacity Capacity

More information

Beth Lowery. GM Vice President Environment and Energy

Beth Lowery. GM Vice President Environment and Energy Beth Lowery GM Vice President Environment and Energy Global Energy Consumption 35% of global energy needs are met by petroleum Energy demand will grow 2% annually from 2003-2030 70% more energy will be

More information

Supercapacitors for Micro-Hybrid Automotive Applications. Anthony Kongats, CEO, CAP-XX Ltd 18 th April 2013

Supercapacitors for Micro-Hybrid Automotive Applications. Anthony Kongats, CEO, CAP-XX Ltd 18 th April 2013 Supercapacitors for Micro-Hybrid Automotive Applications Anthony Kongats, CEO, CAP-XX Ltd 18 th April 2013 World leader in high power energy storage devices (supercapacitors) for consumer and industrial

More information

SimpliPhi Power PHI Battery

SimpliPhi Power PHI Battery Power. On Your Terms. SimpliPhi Power PHI Battery INTEGRATION GUIDE: SELECTRONIC Optimized Energy Storage & Management for Residential & Commercial Applications Utilizing Efficient, Safe, Non-Toxic, Energy

More information

Types batteries. AGM Gel OpZs OpZv Lead Carbon LiFePO4 NCA Saltwater Zinc Bromine Etc,etc, etc, etc, etc, etc,

Types batteries. AGM Gel OpZs OpZv Lead Carbon LiFePO4 NCA Saltwater Zinc Bromine Etc,etc, etc, etc, etc, etc, Batteries Types batteries AGM Gel OpZs OpZv Lead Carbon LiFePO4 NCA Saltwater Zinc Bromine Etc,etc, etc, etc, etc, etc, Today focus on Victron batteries AGM Gel OpZs OpZv Lead Carbon LiFePO4 NCA Saltwater

More information

Saft Intensium Flex & Evolion. Lithium-Ion batteries for UPS, Switchgear and Telecom applications

Saft Intensium Flex & Evolion. Lithium-Ion batteries for UPS, Switchgear and Telecom applications Flex & Evolion Lithium-Ion batteries for UPS, Switchgear and Telecom America Inc. Industrial Standby Division 2016 Agenda 1. Li-Ion Technology 2. Intensum Flex System 3. Evolion 4. Li-Ion into Standby

More information

GLOSSARY: TECHNICAL BATTERY TERMS

GLOSSARY: TECHNICAL BATTERY TERMS GLOSSARY: TECHNICAL BATTERY TERMS AB5 Absorption Alloy Ambient Humidity Ambient Temperature Ampere-Hour Capacity Anode Battery or Pack Bobbin C-Rate (also see Hourly Rate) Capacity Capacity Retention (or

More information

Upgrading from Older Battery Technologies to Lithium Ion (Li-Ion) Systems

Upgrading from Older Battery Technologies to Lithium Ion (Li-Ion) Systems Upgrading from Older Battery Technologies to Lithium Ion (Li-Ion) Systems Battery systems are no longer simply a collection of isolated components, but a complete electro-mechanical structure that plays

More information

Lead-acid batteries in a competing market stationary batteries for grid services and PV home storage

Lead-acid batteries in a competing market stationary batteries for grid services and PV home storage Batteriealterung Batteriemodelle Batteriediagnostik Batteriepackdesign Elektromobilität Stationäre Energiespeicher Energiesystemanalyse Lead-acid batteries in a competing market stationary batteries for

More information

AEG Belgium customer day Telecom products & systems

AEG Belgium customer day Telecom products & systems AEG Belgium customer day Telecom products & systems June 20th, 2012 Telecom applications A complete range of battery solution for the multitude needs of the modern networks 2 Context Multiplication of

More information

Lithium-Ion Battery Business

Lithium-Ion Battery Business Lithium-Ion Battery Business COP21 Delta EMEA Partner Event 8th Dec. 2015 LIB business transfer and collaboration MHI LIB development milestone Plant relocation Product platform and application Back-up

More information

CREATIVE ENERGY. Reliable producer of high-quality, cost-competitive lithium iron phosphate. belifematerials.com

CREATIVE ENERGY. Reliable producer of high-quality, cost-competitive lithium iron phosphate. belifematerials.com CREATIVE ENERGY Reliable producer of high-quality, cost-competitive lithium iron phosphate belifematerials.com Created by Umicore and Prayon, belife develops and produces phosphate-based cathode materials

More information

SLB SMART LITHIUM BATTERIES JOIN THE EVOLUTION FROM LEAD TO LITHIUM

SLB SMART LITHIUM BATTERIES JOIN THE EVOLUTION FROM LEAD TO LITHIUM SLB SMART LITHIUM BATTERIES JOIN THE EVOLUTION FROM LEAD TO LITHIUM Incell Smart Lithium Battery - something unique Power back-up systems for telecom has for long been a costly and challenging issue.

More information